
Wei et al. Advances in Difference Equations  (2018) 2018:60 
https://doi.org/10.1186/s13662-018-1501-6

R E S E A R C H Open Access

Global stability of an SIS epidemic model
with feedback mechanism on networks
Xiaodan Wei1,2*, Gaochao Xu1 and Wenshu Zhou3

*Correspondence:
weixiaodancat@126.com
1College of Computer Science and
Technology, Jilin University,
Changchun, China
2College of Computer Science,
Dalian Nationalities University,
Dalian, China
Full list of author information is
available at the end of the article

Abstract
We study the global stability of endemic equilibrium of an SIS epidemic model with
feedback mechanism on networks. The model was proposed by J. Zhang and J. Sun
(Physica A 394:24–32, 2014), who obtained the local asymptotic stability of endemic
equilibrium. Our main purpose is to show that if the feedback parameter is sufficiently
large or if the basic reproductive number belongs to the interval (1, 2], then the
endemic equilibrium is globally asymptotically stable. We also present numerical
simulations to illustrate the theoretical results.
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1 Introduction
In recent years, the spreading dynamics of epidemic models on complex networks have
been extensively studied by many researchers [2–13]. In the famous works [2, 3], Pastor-
Satorras and Vespignani established a dynamical mean-field equation based on the SIS
model and showed that the finite-size effects induce an epidemic threshold, which ap-
proaches zero at increasing sizes, so that if the effective spreading rate is above this thresh-
old, then the infection spreads and becomes endemic. For such significant finding, until
recently, a mathematically rigorous proof was given by Wang and Dai [14]. Stability anal-
ysis is an important tool to understand the spreading dynamics of epidemic models on
complex networks. Recently, there have been many studies concerning the stability and
asymptotic behavior of epidemic models on complex networks [15–23].

We note that in most of the models mentioned, the initiative response of people is not
considered when epidemic diseases prevail. In fact, as soon as an epidemic outbreaks,
people are more cautious and reduce contacts with other people consciously. Clearly, the
feedback mechanism can affect the contacts among people. To investigate the efficiency
of feedback mechanism, new models based on the SIS model were established [1, 24–26].
Under the assumption that all individuals understand the instant situation of the propa-
gation and can estimate the possibility of contacting with infected individuals, Zhang and
Sun [1] proposed the following model with a feedback mechanism:

⎧
⎨

⎩

dSk (t)
dt = b(Sk(t) + Ik(t)) – dSk(t) – λkSk(t)(1 – α�(t))�(t) + γ Ik(t),

dIk (t)
dt = λkSk(t)(1 – α�(t))�(t) – (γ + d)Ik(t), k = 1, 2, . . . , n,

(1.1)
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where Sk(t) and Ik(t) represent the relative densities of susceptible and infected nodes
with given degree k, respectively, n is the maximum degree of all nodes, �(t) is the
probability that any given link pointing to an infected individual and has the form
�(t) = 〈k〉–1 ∑n

k=1 kP(k)Ik(t), where P(k) is the probability that a node has degree k with
〈k〉 =

∑n
k=1 kP(k), b is the natural birth rate, d is the death rate, λ is the transmission

rate, γ is recovery rate, and the parameter α > 0 is called the “fear factor.” The term
λkSk(t)(1 – α�(t))�(t) represents the proportion of individuals that acquire infection and
become infected individuals. This means that, on one hand, the higher the fear degree of
people to the epidemic disease, the lower the spreading speed; on the other hand, when
� is larger than a certain threshold, the speed of the propagation decreases based on the
feedback, which is consistent with the actual prevalence law of infectious diseases.

Like in [1], we assume that b = d (i.e. the birth rate equals the death rate), and the initial
conditions of system (1.1) satisfy

0 ≤ Sk(0), Ik(0) ≤ 1, Sk(0) + Ik(0) = 1, k = 1, 2, . . . , n. (1.2)

Thus Sk(t) + Ik(t) ≡ 1. This leads to the following system:

⎧
⎪⎨

⎪⎩

dSk (t)
dt = b – bSk(t) – λkSk(t)(1 – α�(t))�(t) + γ Ik(t),

dIk (t)
dt = λkSk(t)(1 – α�(t))�(t) – (γ + b)Ik(t), k = 1, 2, . . . , n.

(1.3)

The second equation of (1.3) can be written as

dIk(t)
dt

= λk
(
1 – Ik(t)

)(
1 – α�(t)

)
�(t) – (γ + b)Ik(t), k = 1, 2, . . . , n. (1.4)

They obtained the basic reproductive number R0 = λ〈k2〉
(γ +b)〈k〉 , where 〈k2〉 =

∑n
k=1 k2P(k), and

proved that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable,
and if R0 > 1, then there exists a unique positive equilibrium E∗(S∗

1, I∗
1 , S∗

2, I∗
2 , . . . , S∗

n, I∗
n) de-

termined by

⎧
⎨

⎩

I∗
k = λk(1–α�∗)�∗

γ +b+λk(1–α�∗)�∗ ,

S∗
k = γ +b

γ +b+λk(1–α�∗)�∗ , k = 1, 2, . . . , n,
(1.5)

where �∗ = 〈k〉–1 ∑n
j=1 jP(j)I∗

j is the unique positive root of the equation

f (�) := 1 –
1

〈k〉
n∑

k=1

λk2P(k)(1 – α�)
b + γ + λk(1 – α�)�

= 0. (1.6)

Moreover, E∗ is locally asymptotically stable. It should be pointed out that in the special
case α = 0, which corresponds to the original model by Pastor-Satorras and Vespignani
[2, 3], the global stability of endemic equilibrium was shown in [27]. As far as we know,
however, the global asymptotic behavior of the endemic equilibrium remained unsolved
for α > 0. In the present paper, we prove that the endemic equilibrium of system (1.3) is
globally asymptotically stable if α ≥ λn

4(b+γ ) ( R0–1
R0 )2 or if R0 ∈ (1, 2] and α > 0.



Wei et al. Advances in Difference Equations  (2018) 2018:60 Page 3 of 14

We will give a remark on �∗, which plays an important role in proving the following
Theorems 3.1.

Remark 1.1 Following the arguments in [1, Section 2], we can see that if R0 > 1, then �∗ <
α–1. In fact, if {(S∗

k , I∗
k )}n

k=1 is a positive equilibrium of system (1.3), it must satisfy (1.5). It
follows from 0 < I∗

k S∗
k = (γ +b)λk(1–α�∗)�∗

[γ +b+λk(1–α�∗)�∗]2 that �∗ < α–1. On the other hand, since f (α–1) =
1 > 0 and f (0) = 1 – R0 < 0, we find that �∗ is indeed the unique root of the equation
f (�) = 0 in (0,α–1) because f ′(�) > 0 in (0,α–1).

We further claim that �∗ ≤ R0–1
αR0 if R0 > 1. By (1.5) we have (b + γ )I∗

k = λk(1 – I∗
k )(1 –

α�∗)�∗ ≤ λk(1 – α�∗)�∗, so b + γ ≤ λ〈k2〉
〈k〉 (1 – α�∗), which implies the claim.

This paper is organized as follows. In Section 2, we show that the disease is permanent
if R0 > 1. In Section 3, we prove the global asymptotic stability of the endemic equilibrium
for sufficiently large α by using a Lyapunov function. In Section 4, we show the global
asymptotic stability of the endemic equilibrium for R0 ∈ (1, 2] and α > 0 by the monotone
iterative technique. In Section 5, we present numerical simulations. In Section 6, we give
our conclusions.

2 Permanence of disease
In this section, we state our main results as follows.

Theorem 2.1 Let R0 > 1. Assume that {(Sk , Ik)}n
k=1 is a nonnegative solution of system (1.3)

with the initial conditions (1.2) and �(0) > 0. Then �(t) > 0 for all t ≥ 0, and

lim inf
t→∞ �(t) ≥ (R0 – 1)

αR0 + λn(γ + b)–1 =: θα ,

lim sup
t→∞

�(t) ≤ (R0 – 1)
αR0 ,

(2.1)

and

lim inf
t→∞ Ik(t) ≥ λkθα

(γ + b)R0 + λkθα

,

lim sup
t→∞

Ik(t) ≤ λk
4α(γ + b) + λk

.
(2.2)

Proof From (1.4) we have

d�

dt
=

λ

〈k〉
n∑

j=1

j2P(j)(1 – Ij)(1 – α�)� – (γ + b)�

=
(

λ〈k2〉
〈k〉 – γ – b

)

� –
αλ〈k2〉

〈k〉 �2 –
λ

〈k〉
n∑

j=1

j2P(j)Ij� +
αλ

〈k〉
n∑

j=1

j2P(j)Ij�
2

=: Y (t)�(t), (2.3)
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which gives that �(t) = �(0) exp{∫ t
0 Y (s) ds} > 0 for all t ≥ 0. By [1, Theorem 2.1], 0 ≤ Ik ≤ 1

for k = 1, 2, . . . , n, thus we deduce from (2.3) that

d�

dt
≥

(
λ〈k2〉
〈k〉 – γ – b

)

� –
αλ〈k2〉

〈k〉 �2 –
λ

〈k〉
n∑

j=1

j2P(j)Ij�

≥
(

λ〈k2〉
〈k〉 – γ – b

)

� –
αλ〈k2〉

〈k〉 �2 – λn�2

= (γ + b)
{(

R0 – 1
)
� –

[
αR0 + λn(γ + b)–1]�2},

which implies lim inft→∞ �(t) ≥ θα .
We further show that lim supt→∞ �(t) ≤ (R0–1)

αR0 . Since 0 ≤ Ik ≤ 1 for k = 1, 2, . . . , n, we can
deduce from (2.3) that d2�(t)

dt2 is bounded in (0,∞). By Corollary C in the Appendix, there
is a sequence {tm}, increasing to infinity, such that

θα ≤ lim
m→∞�(tm) = lim sup

t→∞
�(t) =: θ , lim

m→∞�′(tm) = 0.

On the other hand, since {Ik(tm)}∞m=1 ∈ [0, 1] for every k, there is a subsequence of {tm}∞m=1,
denoted by itself, and some constants ik ∈ [0, 1] for k = 1, 2, . . . , n such that Ik(tm) → ik

(m → ∞). Passing to the limit as m → ∞ in (2.3) at t = tm yields

(γ + b)θ =
λ

〈k〉
n∑

j=1

j2P(j)(1 – ik)(1 – αθ )θ ≤ λ〈k2〉
〈k〉 (1 – αθ )θ . (2.4)

This implies the required result.
Finally, we prove (2.2). Note that d2Ik (t)

dt2 is bounded in (0,∞) for every k. Based on Corol-
lary C in the Appendix and (2.1), we can derive by an argument similar to the previous one
that, for any fixed k ∈ {1, 2, . . . , n}, there are two sequences {t(k)

m } and {s(k)
m }, increasing to

infinity, and some constants θ k , θ k ∈ [θα , (R0–1)
αR0 ] such that

lim
m→∞ Ik

(
t(k)
m

)
= lim sup

t→∞
Ik =: ik ∈ [0, 1], lim

m→∞ I ′
k
(
t(k)
m

)
= 0,

lim
m→∞ Ik

(
s(k)

m
)

= lim inf
t→∞ Ik =: ik ∈ [0, 1], lim

m→∞ I ′
k
(
s(k)

m
)

= 0,

lim
m→∞�

(
t(k)
m

)
= θ k , lim

m→∞�
(
s(k)

m
)

= θ k .

(2.5)

Passing to the limits as m → ∞ in (1.4) at t = t(k)
m and t = s(k)

m , respectively, we obtain

0 = λk(1 – ik)(1 – αθ k)θ k – (γ + b)ik ,

0 = λk(1 – ik)(1 – αθ k)θ k – (γ + b)ik ,

and therefore

ik =
λk(1 – αθ k)θ k

γ + b + λk(1 – αθ k)θ k
, ik =

λk(1 – αθ k)θ k
γ + b + λk(1 – αθ k)θ k

. (2.6)
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By the inequality x(1 – αx) ≤ 1
4α

for x ∈R we have

ik ≤
λk
4α

γ + b + λk
4α

=
λk

4α(γ + b) + λk
, k = 1, 2, . . . , n.

Since θα ≤ θ k ≤ (R0–1)
αR0 , we have ik ≥

λkθα
R0

b+γ + λkθα
R0

. Thus, the proof is completed. �

Remark 2.1 When R0 = 1 (i.e., γ + b = λ〈k2〉
〈k〉 ), we can obtain (2.4) by a similar argu-

ment, where θ ∈ [0, 1], which implies that lim supt→∞ � = θ = 0, so limt→∞ Ik(t) = 0 for
k = 1, 2, . . . , n, i.e., the disease-free equilibrium is globally attractive. This can also be seen
from (2.1) by letting R0 → 1+. This result is a supplement of [1, Theorem 3.1].

3 Global stability for large α

The main result of this section can be stated as follows.

Theorem 3.1 Let R0 > 1 and �(0) > 0. If α ≥ λn
4(b+γ ) ( R0–1

R0 )2, then the endemic equilibrium
E∗ of system (1.3) is globally asymptotically stable, that is, the disease becomes endemic.

Proof According to [1, Theorem 3.2], the endemic equilibrium E∗ is locally asymptotically
stable. To prove the theorem, it suffices to show that E∗ is globally attractive.

Let us consider a nonnegative solution {(Sk , Ik)}n
k=1 and define

V (t) =
1
2

n∑

k=1

ak
(
Sk(t) – S∗

k
)2 + �(t) – �∗ – �∗ ln

�(t)
�∗ ,

where ak = kP(k)
〈k〉S∗

k
. Calculating the derivative of V (t) along the solution, we have

dV
dt

=
n∑

k=1

ak
(
Sk – S∗

k
) dSk

dt
+

� – �∗

�

d�

dt
=: V1 + V2.

Using the first equation of (1.3) and the identity γ + b = (γ + b)S∗
k + λkS∗

k (1 – α�∗)�∗, we
have

V1 =
n∑

k=1

ak
(
Sk – S∗

k
){

(γ + b)
(
S∗

k – Sk
)

+ λk
[
S∗

k
(
1 – α�∗)�∗ – Sk(1 – α�)�

]}
. (3.1)

Note that

S∗
k
(
1 – α�∗)�∗ – Sk(1 – α�)�

= (1 – α�)�
(
S∗

k – Sk
)

– S∗
k
(
1 – 2α�∗)(� – �∗) + αS∗

k
(
� – �∗)2.

Substituting this into (3.1) yields

V1 = –
n∑

k=1

(γ + b)ak
(
Sk – S∗

k
)2 – (1 – α�)�

n∑

k=1

λkak
(
Sk – S∗

k
)2

–
n∑

k=1

λkakS∗
k
(
1 – 2α�∗)(Sk – S∗

k
)(

� – �∗) +
n∑

k=1

αλkakS∗
k
(
Sk – S∗

k
)(

�∗ – �
)2
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= –
n∑

k=1

(γ + b)ak
(
Sk – S∗

k
)2 – (1 – α�)�

n∑

k=1

λkak
(
Sk – S∗

k
)2

+
n∑

k=1

αλkakS∗
k�

∗(Sk – S∗
k
)(

� – �∗) –
n∑

k=1

αλkak
(
S∗

k
)2(

� – �∗)2

–
n∑

k=1

λkakS∗
k
[(

1 – α�∗)(Sk – S∗
k
)(

� – �∗) – αSk
(
� – �∗)2]. (3.2)

Using (2.3) and the identity γ + b = λ
〈k〉

∑n
k=1 k2P(k)S∗

k (1 – α�∗), we have

V2 =
(
� – �∗)

[

–(γ + b) +
λ

〈k〉
n∑

k=1

k2P(k)Sk(1 – α�)

]

=
(
� – �∗) λ

〈k〉
n∑

k=1

k2P(k)
[
Sk(1 – α�) – S∗

k
(
1 – α�∗)]

=
λ

〈k〉
n∑

k=1

k2P(k)
[(

1 – α�∗)(Sk – S∗
k
)(

� – �∗) – αSk
(
� – �∗)2]. (3.3)

Adding (3.2) and (3.3) and noticing that ak = kP(k)
〈k〉S∗

k
, we obtain

dV
dt

= –
n∑

k=1

(γ + b)ak
(
Sk – S∗

k
)2 – (1 – α�)�

n∑

k=1

λkak
(
Sk – S∗

k
)2

+
n∑

k=1

αλkakS∗
k�

∗(Sk – S∗
k
)(

� – �∗) –
n∑

k=1

αλkak
(
S∗

k
)2(

� – �∗)2

= –(1 – α�)�
n∑

k=1

λkak
(
Sk – S∗

k
)2

–
n∑

k=1

ak
[
(γ + b)Z2

k – αλkS∗
k�

∗ZkX + αλk
(
S∗

k
)2X2], (3.4)

where Zk = Sk – S∗
k and X = � – �∗. Note that �∗ ≤ R0–1

αR0 (see Remark 1.1). Then if α ≥
λn

4(b+γ ) ( R0–1
R0 )2, then we have

� :=
(
αλkS∗

k�
∗)2 – 4(γ + b)αλk

(
S∗

k
)2

≤ (
λkS∗

k
)2

(
R0 – 1

R0

)2

– 4(γ + b)αλk
(
S∗

k
)2

≤ λk
(
S∗

k
)2

[

λn
(

R0 – 1
R0

)2

– 4α(γ + b)
]

≤ 0.

This implies that

(γ + b)Z2
k – αλkS∗

k�
∗ZkX + αλk

(
S∗

k
)2X2 ≥ 0, k = 1, 2, . . . , n.
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It follows from (3.4) that

dV
dt

≤ –(1 – α�)�
n∑

k=1

λkak
(
Sk – S∗

k
)2, ∀t > 0.

By (2.1), there exists some T > 0 such that �(t) < α–1 for all t ≥ T . Consequently,

dV
dt

≤ –(1 – α�)�
n∑

k=1

λkak
(
Sk – S∗

k
)2 ≤ 0, ∀t ≥ T .

Therefore, the only invariant set in { dV
dt = 0, t ≥ T} is the singleton {E∗}. According to the

LaSalle invariant principle [28], E∗ is globally attractive, so E∗ is globally asymptotically
stable. The proof is completed. �

4 Global stability for R0 ∈ (1, 2]
Theorem 4.1 Let R0 > 1 and �(0) > 0. If R0 ≤ 2, then the endemic equilibrium E∗ of system
(1.3) is globally asymptotically stable for any α > 0.

Proof According to [1, Theorem 3.2], the endemic equilibrium E∗ is locally asymptotically
stable. To prove the theorem, it suffices to show that

lim
t→∞ Ik(t) = I∗

k , k = 1, 2, . . . , n.

To this end, we will use an iterative technique and define the sequence {u(m)
k }∞m=1 for k =

1, 2, . . . , n by

⎧
⎨

⎩

u(1)
k = λk

4α(γ +b)+λk < λk
4α(γ +b) ,

u(m+1)
k = gk(Um), Um = 〈k〉–1 ∑n

j=1 jP(j)u(m)
j , m = 1, 2, . . . ,

where

gk(x) =

⎧
⎨

⎩

λk(1–αx)x
γ +b+λk(1–αx)x , ∀x ∈ [0,α–1],

0, ∀x ∈ (–∞, 0) ∪ (α–1, +∞).

Note that, for every k = 1, 2, . . . , n,

gk(x) is increasing in x on
[

0,
1

2α

]

. (4.1)

Since 1 < R0 ≤ 2, we obtain

0 < U1 = 〈k〉–1
n∑

j=1

jP(j)u(1)
j <

λ〈k2〉
4α(γ + b)〈k〉 =

R0

4α
≤ 1

2α
.
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By (4.1) we have

0 < u(2)
k = gk(U1) =

λk(1 – αU1)U1

γ + b + λk(1 – αU1)U1

≤ λk
4α(γ + b) + λk

= u(1)
k

<
λk

4α(γ + b)
. (4.2)

This leads to

0 < U2 = 〈k〉–1
n∑

j=1

jP(j)u(2)
j <

λ〈k2〉
4α(γ + b)〈k〉 =

R0

4α
≤ 1

2α
,

and therefore 0 < U2 ≤ U1 < 1
2α

by (4.2). Thus, we have, by (4.1),

0 < u(3)
k = gk(U2) =

λk(1 – αU2)U2

γ + b + λk(1 – αU2)U2

≤ λk(1 – αU1)U1

γ + b + λk(1 – αU1)U1
= u(2)

k <
λk

4α(γ + b)
.

By induction we find that

0 < Um <
1

2α
, 0 < u(m+1)

k ≤ u(m)
k <

λk
4α(γ + b)

, m = 1, 2, . . . , (4.3)

and

u(m+1)
k = gk(Um) =

λk(1 – αUm)Um

γ + b + λk(1 – αUm)Um
, m = 1, 2, . . . . (4.4)

Using (2.2) yields lim supt→∞ Ik(t) ≤ u(1)
k . Thus, applying Lemma D in the Appendix re-

peatedly, we have

lim sup
t→∞

Ik(t) ≤ u(m)
k , k = 1, 2, . . . , n, m = 1, 2, . . . . (4.5)

Since by (4.3) the sequence {u(m)
k }∞m=1 is nonincreasing for every k, its limit exists and is

denoted by limm→∞ u(m)
k = uk . Letting m → ∞ in (4.4) and (4.5), respectively, we obtain

uk =
λk(1 – α〈k〉–1 ∑n

j=1 jP(j)uj)〈k〉–1 ∑n
j=1 jP(j)uj

γ + b + λk(1 – α〈k〉–1 ∑n
j=1 jP(j)uj)〈k〉–1 ∑n

j=1 jP(j)uj
,

lim sup
t→∞

Ik(t) ≤ uk , k = 1, 2, . . . , n.
(4.6)

On the other hand, we consider the function

f (x) =
1

〈k〉
n∑

j=1

λj2P(j)x(1 – αx)
γ + b + λjx(1 – αx)

– x, ∀x ∈ [
0,α–1).
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A simple calculation gives f ′(0) = R0 – 1 > 0, so f (x) > 0 for each small x > 0. Due to (2.2),
we can choose l(1)

k for k = 1, 2, . . . , n such that

0 < l(1)
k < lim inf

t→∞ Ik(t) <
1
α

, f

(

〈k〉–1
n∑

j=1

jP(j)l(1)
j

)

> 0. (4.7)

We now define the sequence {l(m)
k }∞m=1 for k = 1, 2, . . . , n by

l(m+1)
k = gk(Lm), Lm = 〈k〉–1

n∑

j=1

jP(j)l(m)
j , m = 1, 2, . . . .

Since 1 < R0 ≤ 2, a similar argument gives

0 < l(m)
k <

λk
4α(γ + b)

, 0 < Lm <
1

2α
, m = 1, 2, . . . .

It follows from the definition of gk that

l(m+1)
k =

λk(1 – αLm)Lm

γ + b + λk(1 – αLm)Lm
, m = 1, 2, . . . . (4.8)

Using (4.7) and applying Lemma D in the Appendix repeatedly, we have

lim inf
t→∞ Ik(t) ≥ l(m)

k , k = 1, 2, . . . , n, m = 1, 2, . . . . (4.9)

Since 1
2α

> L2 > L1 > 0 by (4.7) and (4.8), we have, by (4.1),

l(3)
k =

λk(1 – αL2)L2

γ + b + λk(1 – αL2)L2
≥ λk(1 – αL1)L1

γ + b + λk(1 – αL1)L1
= l(2)

k .

So 1
2α

> L3 ≥ L2 > 0, and thus

l(4)
k =

λk(1 – αL3)L3

γ + b + λk(1 – αL3)L3
≥ λk(1 – αL2)L2

γ + b + λk(1 – αL2)L2
= l(3)

k .

By induction we find that the sequence {l(m)
k }∞m=2 is nondecreasing for every k, so its limit

exists and is denoted by limm→∞ l(m)
k = lk . Letting m → ∞ in (4.8) and (4.9). respectively,

we obtain

lk =
λk(1 – α〈k〉–1 ∑n

j=1 jP(j)lj)〈k〉–1 ∑n
j=1 jP(j)lj

γ + b + λk(1 – α〈k〉–1 ∑n
j=1 jP(j)lj)〈k〉–1 ∑n

j=1 jP(j)lj
,

lim inf
t→∞ Ik(t) ≥ lk , k = 1, 2, . . . , n.

Finally, it follows from the uniqueness of positive solutions of (1.6) that uk = lk = I∗
k , so

lim inf
t→∞ Ik(t) = lim sup

t→∞
Ik(t) = I∗

k .

The proof is completed. �
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Remark 4.1 According to Theorems 3.1 and 4.1, we have that if R0 ∈ (1, 2] and α > 0,
or if R0 > 2 and α ≥ αn := λn

4(b+γ ) ( R0–1
R0 )2, then the endemic equilibrium of (1.1) is glob-

ally asymptotically stable. On the other hand, if we consider the scale-free network (i.e.,
P(k) ∼ k–c (2 < c ≤ 3)) and fix the parameters λ, b, and γ , then R0 → +∞ and αn → +∞
as n → +∞. This means that when the maximum degree n is sufficiently large, we have
R0 > 2, so the endemic equilibrium of (1.1) is globally asymptotically stable for sufficiently
large α by Theorem 3.1.

5 Numerical simulations
In this section, we present numerical simulations to illustrate the theoretical results. We
consider (1.4) on a finite scale-free network with n = 500 and P(k) = ak–3, where the con-
stant a satisfies

∑500
k=1 P(k) = 1. Recall that αn = λn

4(b+γ ) ( R0–1
R0 )2.

In Figure 1, we fix the parameters b = 0.31,γ = 0.41, and λ = 0.26 to plot the time evolu-
tion of I(t) with different α, where I(t) =

∑500
k=1 P(k)Ik(t) is the density of infected nodes in

the whole network. We can verify that R0 = 1.4930 < 2. Obviously, the orbits converge to
stationary levels, which illustrates the correctness of Theorem 4.1. Moreover, we can ob-
serve from the simulation that the larger the α, the weaker the disease, which is consistent
with the theoretical result (2.2).

In Figure 2, we fix the parameters b = 0.4, γ = 0.3, and λ = 0.34 to plot the time evo-
lution of I(t) with five different initial values. We can verify that R0 = 2.0082 > 2 and
α500 = 15.3028. We choose α = 30 in Figure 2 (left) and α = 15 in Figure 2 (right). The

Figure 1 0 < R0 < 2. The orbits of I(t) with
different α

Figure 2 R0 > 2. The orbits of I(t) with α = 30 (left) and α = 15 (right)
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Figure 3 The relation between I∗ and α

α value in the left figure satisfies the assumption of Theorem 3.1. whereas the α value in
the right figure does not, and despite of this, the endemic equilibrium is globally stable.

In Figure 3, the parameters are chosen as follows: b = 0.25,γ = 0.35, and λ = 0.3. We can
verify that R0 = 2.0673 > 1. The simulation clearly indicates the relation between I∗ and α,
where I∗ =

∑500
k=1 P(k)I∗

k .
We can see from the numerical simulations that the when the disease is endemic, the

endemic level decreases significantly as α is increased. The biological meaning is that when
an epidemic outbreaks, people consciously reduce the number of contacts with others, and
the larger the probability one may contact with infected individuals, the more careful the
people are, which is consistent with our real experience.

6 Conclusions
In this paper, we prove that the disease is permanent if R0 > 1 and that the endemic equi-
librium of (1.1) is globally asymptotically stable if R0 ∈ (1, 2] and α > 0, or if R0 > 2 and
α ≥ αn = λn

4(b+γ ) ( R0–1
R0 )2. Moreover, we have performed numerical experiments to illustrate

the theoretical results. It is observed from the numerical results that the endemic equi-
librium is globally asymptotically stable for any α > 0 whenever R0 > 1; however, a mathe-
matical proof remains to be very difficult.

Although the feedback parameter α does not affect the threshold R0, it plays a role in
weakening the spreading of disease, for which a theoretical analysis can be seen from the
second inequality of (2.2). Numerical experiments done in [1] and the present paper in-
dicate that the endemic level decreases significantly as the fear factor α increases. The
biological meaning is that as soon as an epidemic outbreaks, people are more cautious
and reduce contacts with other people consciously, which is beneficial to preventing epi-
demic spreading.

Appendix
The following result is due to Barbǎlat [29, Lemma 1.2.3].

Lemma A Let a ∈ (–∞, +∞), and let f : [a,∞) → R be a differentiable function. If
limt→∞ f (t) exists (finite) and f ′(t) is uniformly continuous in (a,∞), then limt→∞ f ′(t) = 0.

The following result is due to Hirsch, Hanisch, and Gabriel [30, Lemma 4.2]; see also
[31, Lemma 1.1].
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Lemma B Suppose that f : R+ → R is a differentiable function. If lim inft→∞ f <
lim supt→∞ f , then there are two sequences {τk} and {σk}, increasing to infinity, such that

lim
k→∞

f (τk) = lim sup
t→∞

f , f ′(τk) = 0,

lim
k→∞

f (σk) = lim inf
t→∞ f , f ′(σk) = 0.

The following result is a combination of Lemmas A and B and will be used to show
Theorem 2.1.

Corollary C Suppose that f : R+ →R is a bounded twice differentiable function with f ′′(t)
bounded in R

+. Then there are two sequences {τk} and {σk}, increasing to infinity, such that

lim
k→∞

f (τk) = lim sup
t→∞

f , lim
k→∞

f ′(τk) = 0,

lim
k→∞

f (σk) = lim inf
t→∞ f , lim

k→∞
f ′(σk) = 0.

Proof Since f ′′(t) is bounded in R
+, f ′(t) is uniformly continuous in R

+. Consequently,
if limt→∞ f (t) exists, then by Lemma A all previous conclusions hold for any increasing
to infinity sequence {xk}. Otherwise, lim inft→∞ f < lim supt→∞ f . Then the conclusions
follow by Lemma B. The proof is completed. �

The following result will be used to prove Theorem 4.1.

Lemma D Let R0 > 1 and �(0) > 0. Assume that {(Sk , Ik)}n
k=1 is a nonnegative solution of

system (1.3) with initial conditions (1.2). Then
(i) If there are constants uk > 0 for k = 1, 2, . . . , n such that

U := 〈k〉–1
n∑

j=1

jP(j)uj ≤ 1
2α

, lim sup
t→∞

Ik(t) ≤ uk ,

then

lim sup
t→∞

Ik(t) ≤ λk(1 – αU)U
γ + b + λk(1 – αU)U

.

(ii) If there are constants lk > 0 for k = 1, 2, . . . , n such that

L := 〈k〉–1
n∑

j=1

jP(j)lj ≤ 1
2α

, lim inf
t→∞ Ik(t) ≥ lk ,

then

lim inf
t→∞ Ik(t) ≥ λk(1 – αL)L

γ + b + λk(1 – αL)L
.

Proof We only prove (i) since (ii) can be proved similarly.
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Indeed, by the same argument as that yielding (2.5) and (2.6) we have

lim sup
t→∞

Ik(t) = ik =
λk(1 – αθ k)θ k

γ + b + λk(1 – αθ k)θ k
, k = 1, 2, . . . , n.

Note that 0 < θ k ≤ lim supt→∞ �(t) ≤ 1
〈k〉

∑n
k=1 kP(k) lim supt→∞ Ik(t) ≤ U ≤ 1

2α
. This, to-

gether with (4.1), yields (i). Thus, the proof is completed. �
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