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Abstract
In this paper, using the theory of q-fractional calculus, we deal with the
q-Mittag-Leffler stability of q-fractional differential systems, and based on it, we
analyze the direct Lyapunov method of q-fractional differential systems. Several
sufficient criteria are established to guarantee the q-Mittag-Leffler stability and
asymptotic stability for the differential systems with q-fractional order.
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1 Introduction
The development of the theory of q-calculus can be dated back to the early 20th century
in order to look for a better description of the phenomena having both discrete and con-
tinuous behaviors. The q-analog of fractional integrals and derivatives were first studied
by Al-Salam [1–3] and then by Agrawal [4]. Recently, the q-fractional calculus has been
payed more attention [5–8] because it serves as a bridge between fractional calculus and
q-calculus.

In nonlinear systems, Lyapunov’s direct method provides an effective way to analyze
the stability of a system without explicitly solving the differential equations. Motivated
by the application of fractional calculus in nonlinear systems Li,Chen, and Podlubny [9,
10] proposed the Mittag-Leffler stability and Lyapunov direct method, and a considerable
number results of stability analysis for fractional systems have been reported; see [11–
21] and the references therein. However, to our knowledge, the q-Mittag-Leffler stability
of q-fractional dynamic systems has not been studied. In this paper, we propose the q-
Mittag-Leffler stability and the q-fractional Lyapunov direct method with a hope to enrich
the knowledge of the theory of q-fractional calculus. We also present a simple Lyapunov
function to get the q-Mittag-Leffler stability for many q-fractional-order systems and show
that q-fractional-order dynamical systems also do not have to decay exponentially for the
system to be stable in the Lyapunov sense.
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2 Preliminaries
2.1 Definitions and properties of q-caculus
This section is devoted to recall some essential definitions and properties of q-calculus
[1–4, 8].

If q ∈ R, 0 < q < 1, a subset A of R is called q-geometric if qx ∈ A whenever x ∈ A. If a
subset A of R is q-geometric, then it contains all geometric sequences {xqn}∞n=0, x ∈ A.

Definition 2.1 ([8]) Let f (x) be a real function defined on a q-geometric set A. The q-
derivative is defined by

Dqf (x) =
f (qx) – f (x)

(q – 1)x
, x ∈ A \ {0}, (1)

and

Dqf (x)|x=0 = lim
n→∞

f (qn) – f (0)
qn . (2)

Setting q → 1, we have limq→1 Dqf (x) = f ′(x).
Also, the q-integral is given as

∫ x

0
f (t) dqt = (1 – q)x

∞∑
n=0

qnf
(
qnx

)
, x ∈ A, (3)

and
∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt, a, b ∈ A. (4)

We present here two basic properties concerning q-derivatives.

Property 1 ([7])

Dq(f ± g)(x) = Dqf (x) ± Dqg(x). (5)

Property 2 ([7]) The q-Leibniz product rule is given by

Dq
[
g(x)f (x)

]
= g(qx)Dqf (x) + f (x)Dqg(x), (6)

where Dq is the q-derivative.

The q-analogue of exponent (s – t)(k) is

(s – t)(0) = 1, (s – t)(k) =
k–1∏
j=0

(
x – yqj), k ∈ N , x, y ∈ R.

Definition 2.2 ([7]) A q-analogue of the Riemann–Liouville fractional integral is defined
as

Iα
q,af (x) =

∫ x

0

(x – qs)(α–1)

�q(α)
f (s) dqs, α > 0. (7)
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If we let q → 1, then the q-analogue of Riemann–Liouville fractional integral qIα
q,af (x) →

Iα
a f (x).

Definition 2.3 ([6]) The Riemann–Liouville type fractional q-derivative of a function f :
(0,∞) → R is defined by

(
Dα

q,af
)
(x) =

⎧⎨
⎩

(I–α
q,af )(x), α ≤ 0,

(D[α]
q,aI[α]–α

q,a f )(x), α > 0,
(8)

where [α] denotes the smallest integer greater than or equal to α.

Definition 2.4 ([6]) The Caputo type fractional q-derivative of a function f : (0,∞) → R
is define by

(CDα
q,af

)
(x) =

⎧⎨
⎩

(I–α
q,af )(x), α ≤ 0,

(I[α]–α]
q,a D[α]

q,af )(x), α > 0,
(9)

where [α] denotes the smallest integer greater or equal to α.

2.2 q-Mittag-Leffler function
Similar to the Mittag-Leffler function frequently used in the solutions of fractional-order
equations, the functions frequently used in the solutions of q-fractional-order equations
are the q-analogues of Mittag-Leffler functions defined as

eα,β (z, q) =
∞∑

n=0

znα

�q(nα + β)
(∣∣z(1 – q)α

∣∣ < 1
)

(10)

and

Eα,β (z, q) =
∞∑

n=0

q
αn(n–1)

2 znα

�q(nα + β)
(z ∈ C), (11)

where α > 0 and β ∈ C . When β = 1, the functions eα,β (z, q) and Eα,β (z, q) are defined by

eα,1(z, q) =
∞∑

n=0

znα

�q(nα + 1)
(∣∣z(1 – q)α

∣∣ < 1
)

(12)

and

Eα,1(z, q) =
∞∑

n=0

q
αn(n–1)

2 znα

�q(nα + 1)
(z ∈ C). (13)

2.3 q-Laplace transform of fractional q-integrals, q-derivatives, and
q-Mittag-Leffler functions

Theorem 2.5 ([6]) If f ∈ L1
q[0, a] and �(s) =q Lsf (x), then

qLsIα
q f (x) =

(1 – q)α

sα
�(s) for α > 0. (14)
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If n – 1 < α ≤ n and In–α
q f (x) ∈ C(n)

1 [0, a], then let �(s) =q Lsf (x). The q-Laplace transform
of the Riemann–Liouville fractional and the Caputo fractional q-derivatives are given by

qLC
s Dα

q f (x) =
sα

(1 – q)α

(
�(s) –

n–1∑
r=0

Dr
qf

(
0+) (1 – q)r

sr+1

)
(15)

and

qLsDα
q f (x) =

sα

(1 – q)α
�(s) –

n∑
m=1

Dα–m
q f

(
0+) sm–1

(1 – q)m . (16)

Theorem 2.6 ([6]) If | s
1–q | > |a| 1

Re(α) , then

qLs
(
xβ–1eα,β (ax; q)

)
=

1
1 – q

( s
1–q )α–β

( s
1–q )α – a

. (17)

Taking β = 1, we have

qLs
(
eα,1(ax; q)

)
=

1
1 – q

( s
1–q )α–1

( s
1–q )α – a

. (18)

3 q-Mittag-Leffler stability and Lyapunov direct method for differential
systems with q-fractional order

Consider the Caputo fractional nonautonomous system q-Mittag-Leffler stability of solu-
tions of the following system:

⎧⎨
⎩

CDα
q x(t) = f (t, x(t)),

x(t0) = x0,
(19)

where t ≥ t0, t, t0 ∈ A, A = [t0, t]q, 0 < α < 1, and f : [t0, t] × R → R is a function with f ∈
Lq,1[t0, t]. Let f (t, 0) = 0, for all t ∈ [t0, t]q, so that system (19) admits the trivial solution.

Now we give some definitions that will be used in studying the q-Mittag-Leffler stability
of (19).

Definition 3.1 The trivial solution x(t) = 0 of (19) is said to be asymptotically stable
if for all ε > 0 and t0 ∈ A, there exists δ = δ(t0, ε) such that if ‖x0‖ < δ implies that
limt→∞ ‖x(t)‖ = 0.

Definition 3.2 (q-Mittag-Leffler stability) The solution of (19) is said to be q-Mittag-
Leffler stability if

∥∥x(t)
∥∥ ≤ {

m
[
x(t0)

]
eq,α

(
–λ(t – t0)α

)}b, (20)

where tq ∈ A is the initial time, α ∈ (0, 1),λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally
Lipschitz on x ∈ B ⊂ R with Lipschitz constant m0. We further assume that t0 = 0.
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Theorem 3.3 Let x = 0 be an equilibrium point for system (19), and let D ⊂ R be a domain
containing origin. Let V (t, x(t)) : [0, T] × D → R be a continuously differentiable function
and locally Lipschitz with respect to x such that

β1
∥∥x(t)

∥∥a ≤ V
(
t, x(t)

) ≤ β2
∥∥x(t)

∥∥ab, (21)

C
0 Dα

q V
(
t, x(t)

) ≤ (–β3)
∥∥x(t)

∥∥ab, (22)

where t ∈ [0, T], t > 0, 0 < α < 1, and β1, β2, β3, a, and b are arbitrary positive constants.
Then x = 0 is q-Mittag-Leffler stable.

Proof It follows from equations (19) and (20) that

C
0 Dα

q V
(
t, x(t)

) ≤ –
β3

β2
V

(
t, x(t)

)
. (23)

There exists a nonnegative function M(t) satisfying

C
0 Dα

q V
(
t, x(t)

)
+ M(t) = –

β3

β2
V

(
t, x(t)

)
. (24)

Taking the q-Laplace transform of (24) gives

sα

(1 – q)α
(V (s) –

1
s

V
(
0, x(0)

)
+ M(s) = –

β3

β2
V (s), (25)

where V (s) =q Ls{V (t, x(t))}. It then follows that

V (s) = V (0, x(0))
sα–1

(1–q)α

sα
(1–q)α + β3

β2

–
M(s)

sα
(1–q)α + β3

β2

= V (0, x(0))
1

1 – q
( s

1–q )α–1

( s
1–q )α + β3

β2

– (1 – q)M(s)
1

1 – q
1

sα
(1–q)α + β3

β2

. (26)

It follows from the inverse Laplace transform that the unique solution of (24) is

V (t) = V
(
0, x(0)

)
eα,1

(
–

β3

β2
t; q

)
–

∫ t

0
M(τ )(t – qτ )α–1eα,α

(
–

β3

β2
(t – qτ )α ; q

)
dτ . (27)

Since 0 < q < 1, M(t) ≥ 0, and eα,α(– β3
β2

(t – qτ )α ; q) are nonnegative functions, we get

V (t) ≤ V
(
0, x(0)

)
eα,1

(
–

β3

β2
t; q

)
. (28)

Substitution of (28) into (21) yields

∥∥x(t)
∥∥ ≤

[
V (0, x(0))

β1
eα,1

(
–

β3

β2
t; q

)] 1
a

, (29)

where V (0,x(0))
β1

> 0 for x(0) 
= 0.
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Let m = V (0,x(0))
β1

≥ 0. Then we have

∥∥x(t)
∥∥ ≤

[
meα,1

(
–

β3

β2
t; q

)] 1
a

, (30)

where m = 0 if and only if x(0) = 0. Because V (t, x) is locally Lipschitz with respect to x
and V (0, x(0)) = 0 if and only if x(0), it follows that m is also Lipschitz with respect to x(0)
and m(0), which implies the q-Mittag-Leffler stability.

In [8], an identity relation between the Caputo fractional q-derivative and the Riemann–
Liouville fractional q-derivative is introduced:

f (t) =t0 Dα
q f (t) –t0 Dα

q

( n–1∑
k=0

Dk
qf (0+)

�q(k + 1)
xk

)
, (31)

where α > 0 and n = [α] + 1. When 0 < α < 1, we have

C
t0 Dα

q f (t) =t0 Dα
q f (t) –

(t – t0)αq
�q(1 – α)

f (t0). (32)

�

Theorem 3.4 If the assumptions in Theorem 3.3 are satisfied except replacing C
t0 Dα

q by
t0Dα

q , then the trivial solution of (19) is q-Mittag-Leffler stable.

Proof From (32) we have

C
0 Dα

q V
(
t, x(t)

)
=0 Dα

q V
(
t, x(t)

)
–

tα
q

�q(1 – α)
V

(
0, x(0)

)
for t ∈ [0, T], (33)

and since V (0, x(0)) ≥ 0 and tαq
�q(1–α) ≥ 0, we obtain the result.

Furthermore, if we extend the Lyapunov direct method to the case of q-fractional-order
systems, then the asymptotic stability of the corresponding systems can be obtained. The
following properties of the q-Mittag-Leffler function and the class-K functions are applied
to analysis of the q-fractional Lyapunov direct method. �

Remark 3.5 Since

Dqeα,1
(
(–λt; q)

)
= –λtα–1eα,α–1(–λt; q), (34)

where t > 0, 0 < α < 1, λ > 0, the q-Mittag-Leffler function eα,1(((–λt)α ; q)) is decreasing,
so the q-Mittag-Leffler stability implies the asymptotic stability.

4 q-Mittag-Leffler stability of linear systems with q-fractional order
In this section, we present a new result that allows us to find Lyapunov candidate functions
for demonstrating the q-Mittag-Leffler of many fractional-order systems using the results
of the Lyapunov direct method in Theorem 3.3.
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Theorem 4.1 Let x(t) ∈ R be defined in a suitable q-geometric set A = [0, a]q, Dqx(t) ∈
Cq[0, q] (where Cq[0, a] is the space of all continuous functions on the interval [0, a]). Then,
for any time t > 0, t ∈ A,

C
0 Dα

q x2(t) ≤ (
x(t) + x(tq)

)C
0 Dα

q x(t), 0 < α < 1. (35)

Proof Proving expression (35) is equivalent to proving that

(
x(t) + x(tq)

)C
0 Dα

q x(t) –C
0 Dα

q x2(t) ≥ 0. (36)

Using Definition 2.2 and Definition 2.4, (x(t) + x(tq))C
0 Dα

q x(t) and C
0 Dα

q x2(t) can be written
as

(
x(t) + x(tq)

)C
0 Dα

q x(t) =
(
x(t) + x(tq)

) 1
�(1 – α)

∫ t

0
(t – qs)–αDqx(s) dqs (37)

and

C
0 Dα

q x2(t) =
1

�(1 – α)

∫ t

0
(t – qs)–α

(
x(s) + x(qs)

)
Dqx(s) dqs. (38)

So, the left side of expression (36) can be written as

1
�(1 – α)

∫ t

0
(t – qs)–α

[(
x(t) – x(s)

)
+

(
x(tq) – x(sq)

)]
Dqx(s) dqs. (39)

Now, let us define the axillary variable y(s) = x(t) – x(s), which implies that

Dqy2(s) =
(
y(s) + y(sq)

)
Dqy(s)

= –
[(

x(t) – x(s)
)

+
(
x(tq) – x(sq)

)]
Dqx(s). (40)

In this way, expression (39) can be written as

1
�(1 – α)

∫ t

0
(t – qs)–α dqy2(s) = –

1
�(1 – α)

∫ t

0
(t – qs)–α

[
y(s) + y(sq)

]
Dqy(s) dqs. (41)

Since x(t) is regular at zero, using the rule of q-integration by parts, expression (41) be-
comes

∫ t

t0

(t – qs)–α dqy2(s) = y2(t)(t – qt)–α – �(1 – α)y2(0)t–α

– αq
∫

0
(t – qs)–α–1y2(qs) dq(s). (42)

Since y2(t) = (x(t) – x(s))2 = 0, it follows that

C
0 Dα

q x(t) –C
0 Dα

q x2(t)

=
1

�(1 – α)

∫ t

0
(t – qs)–α[(x(t) – x(s)) + (x(tq) – x(sq))]Dqx(s) dqs
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= –
1

�(1 – α)

∫ t

0
(t – qs)–α dqy2(s)

=
1

�(1 – α)
y2(0)t–α +

αq
�(1 – α)

∫ t

0
(t – qs)–α–1y2(s) dq(s)

≥ 0. (43)

This concludes the proof. �

Corollary 4.2 For the q-fractional-order system

C
0 Dα

q x(t) = f
(
t, x(t)

)
, (44)

where α ∈ (0, 1), x = 0 is the equilibrium point, and Dqx(t) ∈ Cq[0, a], f (t, x(t)) ∈ $1
q[0, a]. If

(
x(t) + x(tq)

)
f
(
t, x(t)

) ≤ 0, ∀x ∈ A, (45)

then the origin of system (44) is q-Mittag-Leffler stable.

Proof Let us propose the following Lyapunov candidate function:

V
(
t, x(t)

)
= x2. (46)

Applying Theorem 4.1 results in

C
0 Dα

q V
(
t, x(t)

) ≤ (
x(t) + x(tq)

)C
0 Dα

q x(t) ≤ (
x(t) + x(tq)

)
f
(
t, x(t)

) ≤ 0, (47)

and thus the origin of system (44) is q-Mittag-Leffler stable. �

Proposition 4.3 For the system

C
0 Dα

q x(t) = –x(t) – x(tq), (48)

where 0 < α < 1 and Dqx(t) ∈ Cq[0, a], the origin of system (44) is q-Mittag-Leffler stable.

Proof Let V (x(t)) = x2(t). Then

C
0 Dα

q x2(t) ≤ (
x(t) + x(tq)

)C
0 Dα

q x(t)

= –
(
x(t) + x(tq)

)2 ≤ –
∥∥x(t)

∥∥2. (49)

So we can conclude that the trivial solution of system (48) is asymptotically stable.
Furthermore, from the expression of exact solution for (48) using two q-analogues of

the Mittag-Leffler functions defined by (12) and (13),

x(t) = c1e(α,1)(–x, q) + c2E(α,1)(–x, q), (50)

and the properties of these two functions the asymptotical stability can also be
derived. �
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5 Conclusions
In this paper, we studied the stability of systems with q-fractional order. We proposed the
definition of q-Mittag-Leffler stability, presented sufficient criteria of q-Mittag-Leffler sta-
bility and the q-fractional Lyapunov direct method of nonlinear systems with q-fractional
order. Meanwhile, the q-fractional Lyapunov candidate functions for demonstrating the q-
Mittag-Leffler stability of many q-fractional-order systems were discussed. With the rapid
development of advanced applied science, we believe that many other study subjects of the
q-fractional calculus and q-fractional dynamical systems will attract more attention of re-
searchers. In our following study, we will still focus on the stability problem of q-fractional
differential equations in a variety of different forms.
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