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Abstract
In this paper, we consider a stochastic SIR epidemic model with regime switching.
The Markov semigroup theory will be employed to obtain the existence of a unique
stable stationary distribution. We prove that, ifRs < 0, the disease becomes extinct
exponentially; whereas ifRs > 0 and β(i) > α(i)(ε(i) + γ (i)), i ∈ S, the densities of the
distributions of the solution can converge in L1 to an invariant density.
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1 Introduction
Infectious disease population dynamics is often influenced by different types of environ-
mental noise, in which white noise is the most typical one. The effects of white noise on
epidemic models have already been considered by many authors (e.g. [1–4]). In this lit-
erature the extinction and persistence of the disease were discussed. In reference [4], the
authors assumed that the environmental white noises mainly influence the natural death
rates μ of the populations. That is, μ → μ + σ Ḃ(t), where B(t) is a standard Brownian mo-
tion, σ 2 represents the intensity of white noise. By replacing μdt by μdt + σ dB(t) in the
deterministic SIR model with saturated incidence, the authors obtained a stochastic SIR
model, which takes the form of

⎧
⎨

⎩

dS(t) = (� – βS(t)I(t)
1+αI(t) – μS(t)) dt – σS(t) dB(t),

dI(t) = ( βS(t)I(t)
1+αI(t) – (μ + ε + γ )I(t)) dt – σ I(t) dB(t).

(1.1)

In this model, S(t) and I(t) denote the number of susceptible and infected individuals at
time t, respectively. The influx of individuals into the susceptibles is given by a constant �.
The natural death rate is denoted by constant μ and individuals in I(t) suffer an additional
death due to disease with rate constant ε; β and γ represent the disease transmission coef-
ficient and the rate of recovery from infection, respectively; α is the saturated coefficient.
Since the dynamics of compartment R has no effect on the disease transmission dynam-
ics, it was omitted from the classical SIR model. In [4] the authors analyzed the long-time
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behavior of densities of the distributions of the solution and proved that the densities can
converge in L1 to an invariant density.

In reality, except for white noise there is another important environmental noise: color
noise, which can cause the population system to switch from one environmental regime
to another. Such a switching is usually described by a continuous-time Markov chain r(t),
t ≥ 0 with a finite state space S = {1, 2, . . . , N}. And the generator � = (γij)N×N of r(t) is
given by

P
{

r(t + δ) = j|r(t) = i
}

=

⎧
⎨

⎩

γijδ + o(δ) if i �= j,

1 + γiiδ + o(δ) if i = j,

where γij ≥ 0 for i, j = 1, . . . , N with j �= i and γii = –
∑

j �=i γij for each i = 1, . . . , N . Assume
Markov chain r(t) is independent of Brownian motion. For convenience, throughout this
paper we assume

γij > 0 for i, j = 1, . . . , N with j �= i.

This assumption ensures that the Markov chain r(t) is irreducible. Consequently, there
exists a unique stationary distribution π = {π1,π2, . . . ,πN } of r(t) which satisfies π� = 0,
∑N

i=1 πi = 1 and πi > 0, ∀i ∈ S.
Incorporating color noise into system (1.1), we get a regime-switching diffusion model:

⎧
⎨

⎩

dS(t) = (�(r(t)) – β(r(t))S(t)I(t)
1+α(r(t))I(t) – μ(r(t))S(t)) dt – σ (r(t))S(t) dB(t),

dI(t) = ( β(r(t))S(t)I(t)
1+α(r(t))I(t) – (μ(r(t)) + ε(r(t)) + γ (r(t)))I(t)) dt – σ (r(t))I(t) dB(t),

(1.2)

where �(i), β(i), μ(i), ε(i), γ (i), α(i) and σ (i), i ∈ S, are all positive constants.
In the earlier literature, regime switching was introduced into population models; see

e.g. [5–8]. Due to the important effect of color noise on disease transmission, many author
considered deterministic epidemic model with Markovian switching [9, 10].

Recently, much literature considered asymptotic behavior of stochastic epidemic model
under regime switching, e.g. [11–14]. In this literature the uniform ellipticity condition is
necessary when proving the ergodicity of stochastic system. But for system (1.2) the diffu-
sion matrix of system (1.2) is given by Ai = σ 2(i)

( S2 SI
SI I2

)
, i ∈ S. Obviously Ai is degenerate,

the uniform ellipticity condition is no longer satisfied. System (1.2) with α = ε = γ = 0 has
been considered by Liu [12], but the author ignored the fact that a degenerate diffusion
matrix cannot ensure uniform ellipticity.

Throughout this paper, if A is a vector or matrix, we use A′ to denote its transpose; set
ĝ = mink∈S{g(k)} and ǧ = maxk∈S{g(k)} for any vector g = (g(1), . . . , g(N)); set

Ri := νi�(i) – μ(i) – ε(i) – γ (i) –
σ 2(i)

2
, i ∈ S and Rs =

N∑

i=1

πiRi,

where ν = (ν1, . . . ,νN )′ is the unique positive solution of linear equation

(
diag

{
μ(1), . . . ,μ(N)

}
– �

)
x =

(
β(1), . . . ,β(N)

)′. (1.3)
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Remark 1.1 The existence of the unique solution of (1.3) is given by Lemma 2.1 in [12].

By using similar arguments to Theorem 2.1 of [14], it follows that, for any (S(0), I(0),
r(0)) ∈R

2
+ × S, system (1.2) has a unique global solution, which remain in R

2
+ with proba-

bility 1.
The aim of this paper is to consider the long-time behavior of system (1.2). We prove that

the disease becomes extinct exponentially if Rs < 0; whereas if Rs > 0 and β(i) > α(i)(ε(i) +
γ (i)), i ∈ S, system (1.2) has a stable stationary distribution.

The rest of this paper is organized as follows. In Section 2, we present the sufficient
condition for the extinction of the disease. In Section 3 the conditions for the existence of
a stable stationary distribution are given. Finally, we draw a conclusion.

2 Extinction of the disease
In this section, we present the sufficient condition for the extinction of the disease.

Theorem 2.1 If Rs < 0, the disease I(t) tends to zero exponentially.

Proof Consider the following system:

dX(t) =
(
�

(
r(t)

)
– μ

(
r(t)

)
X(t)

)
dt + σ

(
r(t)

)
X(t) dB(t).

By the stochastic comparison theorem, it follows that S(t) ≤ X(t) a.s. if S(0) = X(0) > 0.
According to Corollary 4.1 in [12], we have

lim
t→∞

1
t

∫ t

0
β
(
r(s)

)
X(s) ds =

∑

i∈S
πi�(i)νi. (2.1)

By using the generalized Itó formula, it follows from (1.2) that

ln I(t) – ln I(0)
t

=
1
t

∫ t

0

β(r(s))S(s)
1 + α(r(t))I(s)

ds –
1
t

∫ t

0

(

μ
(
r(t)

)
+ ε

(
r(t)

)
+ γ

(
r(t)

)
+

σ 2(r(s))
2

)

ds

+
1
t

∫ t

0
σ
(
r(s)

)
dB(s)

≤ 1
t

∫ t

0

(

β
(
r(s)

)
X(s) – μ

(
r(s)

)
– ε

(
r(s)

)
– γ

(
r(s)

)
–

σ 2(r(s))
2

)

ds

+
1
t

∫ t

0
σ
(
r(s)

)
dB(s).

Taking t → ∞, in view of (2.1), it follows that

lim sup
t→∞

ln I(t)
t

≤
N∑

i=1

πiRi = Rs < 0.

The proof is complete. �
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3 Existence of stationary distribution and its stability
Let x(t) = ln S(t) and y(t) = ln I(t), system (1.2) becomes

⎧
⎨

⎩

dx(t) = (�(r(t))e–x(t) – β(r(t))ey(t)

1+α(r(t))ey(t) – c1(r(t))) dt – σ (r(t)) dB(t),

dy(t) = ( β(r(t))ex(t)

1+α(r(t))ey(t) – c2(r(t))) dt – σ (r(t)) dB(t),
(3.1)

where c1(i) := μ(i) + σ 2(i)
2 , c2(i) := μ(i) + ε(i) + γ (i) + σ 2(i)

2 .
In order to investigate the existence of stationary distribution of system (1.2) and its

stability, it suffices to consider the corresponding property for system (3.1).

Theorem 3.1 Let (x(t), y(t)) be a solution of system (3.1) with initial value (x(0), y(0), r(0)) ∈
R

2 × S. Then for every t > 0 the distribution of (x(t), y(t), r(t)) has a density u(t, x, y, i). If
Rs > 0 and β(i) > α(i)(ε(i)+γ (i)), i ∈ S, then there exists a unique density u∗(x, y, i) such that

lim
t→∞

N∑

i=1

∫∫

R2

∣
∣u(t, x, y, i) – u∗(x, y, i)

∣
∣dx dy = 0.

Next, we will prove this theorem by Lemmas 3.1–3.2.
Let (x(i)(t), y(i)(t)) be a solution of system

⎧
⎪⎨

⎪⎩

dx(i)(t) = (�(i)e–x(i)(t) – β(i)ey(i)(t)

1+α(i)ey(i)(t)
– c1(i)) dt – σ (i) dB(t),

dy(i)(t) = ( β(i)ex(i)(t)

1+α(i)ey(i)(t)
– c2(i)) dt – σ (i) dB(t).

(3.2)

Denote by Ai the differential operators

Aif =
σ 2(i)

2

[
∂2f
∂x2 + 2

∂2f
∂x∂y

+
∂2f
∂y2

]

–
∂(h1

i f )
∂x

–
∂(h2

i f )
∂y

, f ∈ L1(
R

2,B
(
R

2), m
)
,

where B(R2) is the σ -algebra of Borel subsets of R
2, m is the Lebesgue measure on

(R2,B(R2)) and

h1
i (x, y) = �(i)e–x –

β(i)ey

1 + α(i)ey – c1(i), h2
i (x, y) =

β(i)ex

1 + α(i)ey – c2(i).

According to Lemma 3.3 and Lemma 3.5 in [4], we know that for any i ∈ S the operator
Ai generates an integral Markov semigroup {Ti(t)}t≥0 on the space L1(R2,B(R2), m) and

∫ ∞

0
Ti(t)f dt > 0, a.e. on R

2. (3.3)

Let (x(t), y(t)) be the unique solution of system (3.1) with (x(0), y(0), r(0)) ∈R
2 × S, then

(x(t), y(t), r(t)) constitutes a Markov process on R
2 × S. In view of Lemma 5.5 in [15], for

t > 0 the distribution of the process (x(t), y(t), r(t)) is absolutely continuous and its density
u = (u1, u2, . . . , uN ) (where ui := u(t, x, y, i)) satisfies the following master equation:

∂u
∂t

= �′u + Au, (3.4)

where Au = (A1u1,A2u2, . . . ,AN uN )′.
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Let X = R
2 ×S,  be the σ -algebra of Borel subsets of X, and m̂ be the product measure

on (X,) given by m̂(B × i) = m(B) for each B ∈ B(R2) and i ∈ S. Obviously, Au generates
a Markov semigroup {T (t)}t≥0 on the space L1(X,, m̂), which is given by

T (t)f =
(
T1(t)f (x, y, 1), . . . ,TN (t)f (x, y, N)

)′, f ∈ L1(X,, m̂).

Let λ be a constant such that λ > max1≤i≤N {–γii} and Q = λ–1�′ + I . Then (3.4) becomes

∂u
∂t

= λQu – λu + Au. (3.5)

Obviously, Q is also a Markov operator on L1(X,, m̂).
From the Philips perturbation theorem [16], (3.5) with the initial condition u(0, x, y, k) =

f (x, y, k) generates a Markov semigroup {P(t)}t≥0 on the space L1(X) given by

P(t)f = e–λt
∞∑

n=0

λnS(n)(t)f , (3.6)

where S(0)(t) = T (t) and

S(n+1)(t)f =
∫ t

0
S(0)(t – s)QS(n)(s)f ds, n ≥ 0. (3.7)

Lemma 3.1 If β(i) > α(i)(ε(i) + γ (i)), i ∈ S, then the semigroup {P(t)}t≥0 is asymptotically
stable or is sweeping with respect to compact sets.

Proof Since {T (t)}t≥0 is an integral Markov semigroup, {P(t)}t≥0 is a partially integral
Markov semigroup. In view of (3.3), (3.7) and Qij > 0 (i �= j), we know that, for every non-
negative f ∈ L1(X) with ‖f ‖ = 1,

∫ ∞

0
P(t)f dt > 0, a.e. on X.

By using similar arguments to Corollary 1 in [17], it follows that {P(t)}t≥0 is asymptotically
stable or is sweeping with respect to compact sets. �

Remark 3.1 A density f∗ is called invariant if P(t)f∗ = f∗ for each t > 0. The Markov semi-
group {P(t)}t≥0 is called asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

∥
∥P(t)f – f∗

∥
∥ = 0 for f ∈ D,

where D = {f ∈ L1(X) : f ≥ 0,‖f ‖ = 1}.
A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈  if for every

f ∈ D

lim
t→∞

∫

A
P(t)f (x)m̂(dx) = 0.

Lemma 3.2 If Rs > 0 and β(i) > α(i)(ε(i) + γ (i)), i ∈ S, then the semigroup {P(t)}t≥0 is
asymptotically stable.
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Proof We will construct a nonnegative C2-function V and a closed set U ∈ B(R2) (which
lies entirely in R

2) such that, for any i ∈ S,

sup
(x,y)∈R2\U

A∗V (x, y, i) < 0,

where

A∗V (x, y, i) =
σ 2(i)

2

[
∂2V
∂x2 + 2

∂2V
∂x∂y

+
∂2V
∂y2

]

+ h1
i
∂V
∂x

+ h2
i
∂V
∂y

+
∑

j∈S
γijV (x, y, j) (3.8)

and

h1
i (x, y) = �(i)e–x –

β(i)ey

1 + α(i)ey – c1(i), h2
i (x, y) =

β(i)ex

1 + α(i)ey – c2(i).

In fact, A∗ is the adjoint operator of the infinitesimal generator of the semigroup {P(t)}t≥0.
Since the matrix � is irreducible, there exists � = (�1,�2, . . . ,�N ) that is a solution of

the Poisson system (see [18], Lemma 2.3) such that

�� – R = –
N∑

i=1

πiRi1,

where R = (R1,R2, . . . ,RN )′ and 1 = (1, 1, . . . , 1)′. That is, for any i ∈ S,

∑

j∈S
γij�j – Ri = –

N∑

i=1

πiRi = –Rs. (3.9)

Take θ ∈ (0, 1) and r > 0 such that

μ̂ –
θ

2
σ̌ 2

1 > 0, μ̂ + ε̂ + γ̂ –
θ

2
σ̌ 2

2 > 0 and max
x∈[0,∞)

f (x) – rRs ≤ –2, (3.10)

where the function f (x) is given in (3.11).
Define a C2-function V as follows:

V (x, y, i) =
1

θ + 1
(
ex + ey)θ+1 – x – r

(
y + νi

(
ex + ey)) + r

(
�i + |� |), (x, y) ∈R

2.

Next we will find a closed set U ⊂R
2 such that A∗V (x, y, i) ≤ –1, (x, y) ∈R

2 – U .
Denote

V1 =
1

θ + 1
(
ex + ey)θ+1, V2 = –y – νi

(
ex + ey) +

(
�i + |� |), V3 = –x.

Then

A∗V = A∗V1 + rA∗V2 + A∗V3.
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Direct calculation implies that

A∗V1 =
(
ex + ey)θ (

�(i) – μ(i)ex –
(
μ(i) + ε(i) + γ (i)

)
ey) +

σ 2(i)θ
2

(
ex + ey)θ–1(e2x + e2y)

≤ 2θ�(i)
(
eθx + eθy) – μ(i)e(1+θ )x –

(
μ(i) + ε(i) + γ (i)

)
e(1+θ )y

+
θ

2
σ 2(i)

(
e(1+θ )x + e(1+θ )y)

= 2θ�(i)
(
eθx + eθy) –

(

μ(i) –
θ

2
σ 2(i)

)

e(1+θ )x

–
(

μ(i) + ε(i) + γ (i) –
θ

2
σ 2(i)

)

e(1+θ )y,

A∗V3 = –�(i)e–x +
β(i)ey

1 + α(i)ey + c1(i),

and

A∗V2 = –
β(i)ex

1 + α(i)ey + c2(i) – νi�(i) + νiμ(i)ex + νi
(
μ(i) + ε(i) + γ (i)

)
ey

–
∑

j∈S
γijνj

(
ex + ey) +

∑

j∈S
γij�j

= –
(

β(i) – νiμ(i) +
∑

j∈S
γijνj

)

ex +
(

νi
(
μ(i) + ε(i) + γ (i)

)
–

∑

j∈S
γijνj

)

ey

– Ri +
∑

j∈S
γij�j +

β(i)α(i)ex+y

1 + α(i)ey

= –Rs +
(
β(i) + νi

(
ε(i) + γ (i)

))
ey +

β(i)α(i)ex+y

1 + α(i)ey ,

where equations (1.3) and (3.9) are used. Hence,

A∗V ≤ f (x) + g(y) – rRs + r
β(i)α(i)ex+y

1 + α(i)ey ,

where

f (x) = 2θ �̌eθx –
(

μ̂ –
θ

2
σ̌ 2

)

e(1+θ )x – �̂e–x + č1,

g(y) = 2θ �̌eθy –
(

μ̂ + ε̂ + γ̂ –
θ

2
σ̌ 2

)

e(1+θ )y + r
(
β̌ + ν̌(ε̌ + γ̌ )

)
ey.

(3.11)

In view of (3.10), we can obtain

f (x) + max
y∈[0,∞)

g(y) – rRs + rβ̌ex → –∞, as x → ±∞.

Take κ ∈ (0,∞) large enough such that

A∗V ≤ f (x) + max
y∈[0,∞)

g(y) – rRs + rβ̌ex ≤ –1, on R
2 – U1, (3.12)

where U1 = {(x, y) ∈R
2 : x ∈ [–κ ,κ]}.
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For (x, y) ∈ U1, according to (3.10) we have

A∗V ≤ max
x∈[0,∞)

f (x) + g(y) – rRs + rβ̌α̌eκ+y → –∞, as y → +∞,

and

A∗V ≤ max
x∈[0,∞)

f (x) + g(y) – rRs + rβ̌α̌eκ+y → max
x∈[0,∞)

f (x) – rRs ≤ –2, as y → –∞.

Taking ρ ∈ (0,∞) large enough such that

A∗V ≤ –1, on U1 – U2, (3.13)

where U2 = {(x, y) ∈ R
2 : x ∈ [–κ ,κ], y ∈ [–ρ,ρ]}. Noting U2 ⊂ U1, we obtain (R2 – U1) ∪

(U1 – U2) = R
2 – U2. Combining (3.12) and (3.13), it follows that, for any i ∈ S,

A∗V (x, y, i) < –1, (x, y) ∈R
2 – U2.

Such a function V is called a Khasminskĭı function. By using similar arguments to those
in [19], the existence of a Khasminskĭı function implies that the semigroup is not sweeping
from the set U2. According to Lemma 3.1, the semigroup {P(t)}t≥0 is asymptotically stable,
which completes the proof. �

4 Conclusion
In this paper, we consider the long-time behavior of a regime-switching SIR epidemic
model. Since the diffusion is degenerate we employ the Markov semigroup theory to study
the long-time behavior of system (1.2). We prove that if Rs < 0, the disease becomes ex-
tinct exponentially; whereas if Rs > 0 and β(i) > α(i)(ε(i) + γ (i)), i ∈ S, the densities of the
distributions of the solution can converge in L1 to an invariant density. In some sense, Rs

is the threshold determining that the disease does or does not occur.
Let S = {1, 2}, � =

[ –2 2
1 –1

]
. Obviously, π = (1/3, 2/3). Take S(0) = 2, I(0) = 1 and

�(1) = 0.9, μ(1) = 0.2, ε(1) = 0.2, γ (1) = 0.3,

β(1) = 0.3, α(1) = 0.1, σ (1) = 0.1,

�(2) = 1.0, μ(2) = 0.2, ε(2) = 0.1, γ (2) = 0.4,

β(2) = 0.1, α(2) = 0.15, σ (2) = 0.2.

It is easy to check that the disease persists and becomes extinct in fixed environments 1
and 2, respectively. However, in the regime-switching case, we get Rs = 0.1042 > 0. Ac-
cording to Theorem 3.1, the disease is persistent (see Figure 1). In fact, the condition
β(i) > α(i)(ε(i) + γ (i)), i ∈ S is not necessary (see Figure 2). In the proof of Theorem 3.1,
such a condition is mainly used to ensure that the support of the invariant measure (if it
exists) in each fixed environment is R2

+, which can make the proof of the main result easier.
References [20, 21] provided another skeleton to prove the ergodicity of stochastic pop-

ulation systems and rates of convergence can also be estimated. In the future, we may
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Figure 1 The sample path of I(t) with S(0) = 2, I(0) = 1. Here α(1) = 0.1 and α(2) = 0.15. In this case,
β(i) > α(i)(ε(i) + γ (i)), i ∈ S

Figure 2 The sample path of I(t) with S(0) = 2, I(0) = 1. Here α(1) = 0.7 and α(2) = 0.3. In this case,
β(i) < α(i)(ε(i) + γ (i)), i ∈ S

continue our research in this direction. In addition, delay is a common phenomenon in
the natural world; then it is interesting to consider stochastic models with delay (see e.g.
[22, 23]), which can lead to further investigation of along the line of the present paper.
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