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Abstract
We examine the stability problem for delayed neutral-type neural networks (NNs)
with interval time-varying delay signals under the effects of leakage term by
constructing a suitable Lyapunov–Krasovskii functionals (LKFs) with the triple- and
four-integral terms and using the famous Jensen inequality, Wirtinger single integral
inequality (WSII), and Wirtinger double integral inequality (WDII), combined with the
reciprocally convex approach (RCC) for the stability of addressing NNs. Therefore, the
major contribution of this study lies in a consideration of new integral inequalities
and improved LKFs, fully taking the relationship between the terms in the
Leibniz–Newton formula within the framework of linear matrix inequalities (LMIs).
Moreover, we assume that the lower bound of interval time-varying delay is not
restricted to zero. Using several examples, we show that the proposed stability
criterion is less conservative than previous results. Also, the proposed technique is
applied to benchmark problem that is associated with reasonable issues to showing
feasibility on a real-world problem, including transporting time delay signals and
leakage delay as a process variable in the quadruple-tank process system.

Keywords: Neural network; Neutral type; Leakage delay; Interval time-varying delay;
Wirtinger double integral inequality

1 Introduction
During the past few decades, neural networks have been extensively investigated and have
been found in a wide range of applications in various science and engineering fields, such
as signal processing, target tracking, fault diagnosis, pattern recognition, communication,
image processing, parallel computation, and industrial automation. All these applications
mainly depend on the dynamical behaviors of the considered NNs and their equilibrium
points. Therefore, the study of dynamical behaviors of the delayed NN is an active research
topic and has received considerable attention in recent years [1–3]. It is obvious that time-
delay naturally exists in many real systems. Moreover, in practice, it is the main reason to
affect the stability performances of a system [4, 5]. Therefore, it is necessary and important
to investigate the concept of time-delay while discussing the dynamical behaviors of NNs.
Recently, much progress has been achieved in the study of NNs with time delays [1–3]. It is
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well known that, according to dependence on the size of the delays, the stability criteria are
usually classified into two types, the delay-independent stability criteria [6, 7] and delay-
dependent stability criteria [8–16]. As a result, the delay-dependent stability criteria have
received much attention from the researchers because they are concerned with the size of
the delay and provide less conservative results than delay-independent criteria.

On the other hand, neutral-type time-delay in the system models are usually encoun-
tered in many practical applications, such as population ecology, chemical reactors, wa-
ter pipes, heat exchangers, and robots in contact with rigid environments [17]. It is well
known that the neutral-type time-delay incorporates the time delays both in its state and
in the derivatives of state in the system model. Additionally, many dynamical NNs are rep-
resented with neutral functional differential equations that combine neutral delay differ-
ential equations as their special type. Therefore, these NNs are referred to neutral neural
networks or neural networks of neural type. It is obviously known that time-delay and
nonlinearity are usually a source of instability and/or poor performance of many systems
[18]. Therefore, in stability analysis of NNs with neutral time, delays have been one of the
primary research topics, and many remarkable achievements have been explored [19–23].

Recently stability of NNs with leakage delays has become one of impressive research
topics and has been widely studied by many researchers. The research on the dynamical
behaviors of system models with leakage delay (or forgetting delay), which has been found
in the negative feedback term of a dynamical system, can be traced back to 1992. In [24],
it was realized that the leakage delay had vast impact research on the dynamical behav-
iors of the system model. Since then, many researchers have well focused on the systems
with leakage delay, and many interesting results have been derived. For example, in [25],
a population model with leakage delays was considered, and it was found that the leakage
delay can destabilize a system. In [26], the bidirectional associative memory (BAM) neu-
ral networks with constant leakage delays were studied extensively based on LKFs and the
properties of M-matrices. Since [26], it is more important and necessary to investigate the
stability of delayed NNs including leakage effects. For this purpose, recently relevant leak-
age problems had arisen, and significant progress has been made (see, e.g., [27–29]. Re-
cently, in [27], the global exponential stability for BAM neural networks with time-varying
leakage delays was discussed, which extended and improved the main results developed
in [25, 26]. In [28], the stability of nonlinear systems with leakage time-varying delay was
investigated, and it was proved that the impact of leakage delay cannot be avoided.

Generally speaking, from the available literature we can find that most of the work on
NNs with time-varying delays has been studied under the assumption that the range of
time-varying delay is from 0 to a certain upper bound. However, in practical world, the
time-varying delay may be an interval delay, that is, the lower bound of the delay interval
is not restricted to zero. For this case, the stability criteria for dynamical systems proposed
in [29, 30] cannot be applied because those results could not consider the case where lower
bound of delay is nonzero. Therefore, it is of significant importance to study the stability
of NNs containing a nonzero lower bound of the interval time-varying delays, and some of
the researchers have reported fruitful results in the previous literature (see [8–13, 16]). Re-
cently, in [8], the asymptotic stability for a class of cellular NNs with interval time-varying
delay was studied by combining novel LKFs and delay partitioning approach. New stability
criteria for NNs with time-varying interval delays based on a piecewise delay method were
proposed in [16]. Recently, the asymptotic stability of delayed NNs have been extensively
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investigated in [10], where an improved delay-partitioning idea is employed. Very recently,
in [13], the exponential stability criteria for cellular NNs with interval time-varying delays
were proposed, based on the generalized activation functions. More recently, the authors
in [11, 12] investigated the delay-dependent stability criteria for NNs with interval time-
varying delays via an augmented LKF and RCC approach. More recently, the authors in
[31–34] investigated the stability problems of NNs with time-varying delays, based on
the integral inequality technique and also demonstrated that the proposed criteria are ap-
plied to the practical application, showing how to derive efficient stability criteria for a
real-world problem. The main contributions of this paper are highlighted in the following
viewpoints:
� In this paper, as a first attempt, leakage delay is considered in the quadruple-tank pro-

cess system model to investigate the stability performance in a real-world problem.
� New mathematical technique is adopted together with LKFs when estimating their

derivatives to improve stability performance of the neural system (1) with interval
time-varying delay signals and leakage delays in the system model.

� Differently from [8–13, 16, 19, 20], several numerical examples are presented to illus-
trate the validity of the main results with a real-world simulation.

� Additionally, WDII technique is taken into account to bound the time-derivative of
triple integral LKFs, which provide more tighter bounding technology for dealing with
such LKFs. This technique has never been used in the previous literature [8–13, 16,
19, 20] and plays an important role in reducing conservatism.

� All the sufficient conditions are expressed in terms of LMIs, which can be easily solved
by using Matlab software.

The remainder of this paper is structured as follows. The NN model is composed and
assumption and some lemmas are presented in Section 2. In Section 3, we derive a new
delay-dependent stability criteria for NN model to be asymptotically stable. In Section 4,
interesting numerical simulation studies are proposed. Finally, some conclusions and fu-
ture study directions are made in Section 5.

Notation. The notation used in this paper is quite standard. Throughout this paper, Rn

and R
n×n denote, respectively, the n-dimensional Euclidean space and the set of all n × n

real matrices; ‖ · ‖ refers to the Euclidean vector norm; AT represents the transpose of
a matrix A; I is the identity matrix of compatible dimension; X > Y means that X and Y
are symmetric matrices and that X – Y is positive definite; λmax(·) and λmin(·) denote the
largest and smallest eigenvalues of a given matrix, respectively. The symbol � represents
the elements below the main diagonal of a symmetric matrix. Matrices, if not explicitly
specified, are assumed to have compatible dimensions.

2 Problem formulation and preliminaries
Consider the following neutral-type NNs with leakage term and discrete interval time-
varying delays:

ė(t) = –Ae(t – δ) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
+ W3ė

(
t – h(t)

)
,

e(t) = φ(t), t ∈ [–r, 0],
(1)

where e(t) = [e1(t), e2(t), . . . , en(t)]T ∈ R
n is the state vector of the network at time t, n

corresponds to the number of neurons, f (e(t)) = [f1(e1(t)), f2(e2(t)), . . . , fn(en(t))]T ∈ R
n is
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the neuron activation function. The matrix A = diag(a1, a2, . . . , an) is a diagonal matrix
with positive entries ai > 0. W1, W2, and W3 are the interconnection matrices represent-
ing the weight coefficients of the neurons, φ(t) is a vector-valued initial function, and
r = max{δ, τM, h}, where δ ≥ 0 denotes the constant leakage delay. The discrete delay τ (t)
and the neutral delay h(t) are assumed to satisfy

0 < τ1 ≤ τ (t) ≤ τ2, τ̇ (t) ≤ μ, 0 < h(t) < h, ḣ(t) ≤ hD, (2)

where τ1, τ2, μ, h, and hD are known real constants.

Remark 2.1 The first term in the right side of the model (1) variously known as forgetting
or leakage term. It is well known from the literature the study of population dynamics (see
Gopalsamy [25]) that time delays in the stabilizing negative feedback terms will have a
tendency to destabilize a system. The functions fj(·), j = 1, 2, . . . , n, are signal transmission
functions. Furthermore, NNs (1) contains some data about the derivative of the past state
to further analysis and model the dynamics of such complex neural responses. Hence NNs
(1) have been referred as neutral-type NNs, in which the system has both the state delay
and the state derivative with delay, the so-called neutral delay.

Throughout this paper, we assume that each activation function fj(·) in (1) satisfies the
following:

Assumption (H) ([35]) For any j ∈ {1, 2, . . . , n}, fj(0) = 0, and their exist constants F–
j and

F+
j such that

F–
j ≤ fj(α1) – fj(α2)

α1 – α2
≤ F+

j (3)

for all α1 �= α2, where α1,α2 ∈R.

Next, we present some preliminary lemmas, which are needed in the proof of our main
results.

Lemma 2.1 ([36]) For any positive definite matrix M ∈ R
n×n, scalars h2 > h1 > 0, and a

vector function w : [h1, h2] → R
n such that the integrations concerned are well defined, we

have the inequality

–(h2 – h1)
∫ t–h1

t–h2

wT (s)Mw(s) ds ≤ –
(∫ t–h1

t–h2

w(s) ds
)T

M
(∫ t–h1

t–h2

w(s) ds
)

.

Lemma 2.2 ([37]) Let f2, f2, . . . , fN : Rm �−→ R have positive values in an open subset D of
Rm. Then, the reciprocally convex combination of fi over D satisfies

min
{αi|αi>0,

∑
i αi=1}

∑

i

1
αi

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑

i�=j

gi,j(t)

subject to
{

gi,j : Rm �−→ R, gj,i(t) � gi,j(t),

[
fi(t) gi,j(t)

gj,i(t) fj(t)

]

≥ 0

}

.
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Lemma 2.3 ([38]) For a positive definite matrix M > 0, we have the following inequality
for all continuously differentiable functions ω(t) in [a, b] ∈R

n:

–(b – a)
∫ t–b

t–a
ω̇T (s)Mω̇(s) ds ≤ –

[
�0

�1

]T [
M 0
� 3M

][
�0

�1

]

,

where �0 = ω(b) – ω(a) and �1 = ω(b) + ω(a) – 2
(b–a)

∫ b
a ω(s) ds.

Lemma 2.4 ([39]) Suppose r1 ≤ r(t) ≤ r2, where r(·) : R+ (or Z+) → R+ (or Z+). Then, for
any R = RT > 0, we have the integral inequality:

–
∫ t–r1

t–r2

ẋT (s)Rẋ(s) ds ≤ αT (t)
[(

r2 – r(t)
)
KR–1KT +

(
r(t) – r1

)
JR–1JT

+ [J –J + K –K] + [J –J + K –K]T]α(t),

where αT (t) = [xT (t – r1) xT (t – r(t)) xT (t – r2)], K = [KT
1 KT

2 KT
3 ]T , and J = [JT

1 JT
2 JT

3 ]T .

Lemma 2.5 ([40]) Let M > 0 be any constant matrix. For given scalars a and b with a < b,
the following relation is well defined for any differentiable function ω in [a, b] →R

n:

–
b2 – a2

2

∫ –b

–a

∫ t

t+u
ω̇T (s)Mω̇(s) ds du ≤ –

[
�2

�3

]T [
M 0
� 2M

][
�2

�3

]

,

where

�2 = (b – a)ω(t) –
∫ t–b

t–a
ω(s) ds

and

�3 = –
(b – a)

2
ω(t) –

∫ t–b

t–a
ω(s) ds +

3
b – a

∫ –b

–a

∫ t

t+u
ω(s) ds du.

Lemma 2.6 ([41]) Suppose γ1 ≤ γ (t) ≤ γ2, where γ (·) : R+ (or Z+) →R+ (or Z+). Then, for
any constant matrices 
1, 
2, and � of proper dimensions, the matrix inequality

� +
(
γ (t) – γ1

)

1 +

(
γ2 – γ (t)

)

2 < 0

holds if and only if

� + (γ2 – γ1)
1 < 0, � + (γ2 – γ1)
2 < 0.

3 Main results
This section is devoted to exploring a new stability criterion in terms of LMIs for
the designed neural system (1) to be asymptotically stable, based on the conditions
developed by newly improved integral inequalities. For simplicity, we denote F1 =
diag(F–

1 F+
1 , F–

2 F+
2 , . . . , F–

n F+
n ) and F2 = diag( F–

1 +F+
1

2 , F–
2 +F+

2
2 , . . . , F–

n +F+
n

2 ).
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Theorem 3.1 Assume that Assumption (H) holds. For given positive scalars δ, τ1, τ2, μ,
h, and hD, the NN described by (1) is asymptotically stable for any time-varying delay τ (t)
and h(t) satisfying (2) if there exist symmetric positive definite matrices Pi (i = 1, 2, 3), Qi

(i = 1, 2, 3, . . . , 5),

U =

[
U11 U12

� U22

]

, V =

[
V11 V12

� V22

]

, D =

[
D11 D12

� D22

]

,

Ri (i = 1, 2, 3), Ri (i = 1, 2, 3), Ti (i = 1, 2, 3), Ui (i = 1, 2, 3), diagonal matrices X, Y , and
Z, any matrices Gi (i = 1, 2, . . . , 6) of appropriate dimensions, and any appropriate dimen-
sional matrices Li, Mi, Ni, Oi (i = 1, 2, . . . , 4) such that the following LMIs hold:

[
D E
� D

]

≥ 0, (4)

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

�
√

τ1L √
τρM √

τρN √
τ2O τρK̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (5)

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

�
√

τ1L √
τρM √

τρN √
τ2O τρ J̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (6)

where � = (�i,j)18×18 with

�11 = –P1A + P2 + δ2P3 + Q1 + Q2 + Q3 + τ 2
1 U11 + τ 2

2 V11 + τ 2
ρ D11 – U22 – V22 – 4R1,

�12 = –G1A – τ 2
1 U12A – τ 2

2 V12A – τ 2
ρ D12A, �14 = LT

3 – M1 + NT
1 + OT

3 – F1Z,

�13 = –2R1 – L1 + LT
2 + M1 + OT

2 + U22, �15 = –2R2 + LT
4 – N1 – O1 + OT

4 + V22,

�16 = P1W1 + G1W1 – F2X – F2Z + τ 2
1 U12W1 + τ 2

2 V12W1 + τ 2
ρ D12W1,

�18 = 6τiR1, �17 = P1W2 + G1W2 – F2Z + τ 2
1 U12W2 + τ 2

2 V12W2 + τ 2
ρ D12W2,

�111 = 6τ2R2, �112 = 3S1 +
τ 2

1
2

T1, �113 = 3S3 +
(

τ 2
2 – τ 2

1
2

)
T3,

�114 = 3S3 +
(

τ 2
2 – τ 2

1
2

)
T3, �115 = 3S2 +

τ 2
2
2

T2, �116 = APT
1 AT ,

�117 = τ 2
1 U12W3 + τ 2

2 V12W3 + τ 2
ρ D12W3 + G1W3, �22 = –P2 – G2A – AT G2,

�23 = –GT
3 AT , �24 = –GT

4 AT , �25 = –GT
5 AT ,

�26 = G2W1, �27 = G2W2, �217 = G2W3 – AT G1,

�33 = –Q2 + Q4 – 4R1 + KT
1 + K1 – L2 – LT

2 + M2 + MT
2 – U22 – D22,
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�34 = KT
2 – K1 + J1 – LT

3 – M2 + MT
3 + N2 + DT

22 – E2, �36 = G3W1,

�35 = KT
3 – J1 – LT

4 + MT
4 – N2 – O2 + E2, �37 = G3W2,

�38 = 6τ1R1, �317 = G3W3,

�44 = –(1 – μ)Q1 – KT
2 – K2 + JT

2 + J2 – M3 – MT
3 + N3 + NT

3

+ F1Y + F1Z – 2D22 + E2 + ET
2 ,

�45 = –KT
3 + JT

3 – J2 – MT
4 – N3 + NT

4 – O3 – D22 – E2, �46 = G4W1 + FT
2 ZT ,

�47 = G4W2 – F2Y – F2Z, �417 = G4W3,

�55 = –Q3 – Q4 – 4R2 – JT
3 – J3 – N4 – NT

4 + O4 – OT
4 – V22 – D22, �56 = G5W1,

�57 = G5W2, �511 = 6τ2R3, �517 = G5W3, �66 = –X + Z, �67 = –Z,

�616 = –APT
1 W T

1 , �617 = W T
1 GT

1 , �77 = –Y + Z, �716 = –APT
1 W T

2 ,

�717 = W T
2 G1, �88 = –12τ 2

1 R1 – 3S1 – U11, �812 =
6
τ1

S1,

�99 = –3S3 – D11, �913 =
6
τρ

S3, �1010 = –3S3 – D11, �1014 =
6
τρ

S3,

�1111 = –12τ 2
2 R2 – 3S2 – V11, �1115 =

6
τ2

S2, �1212 = –
18
τ 2

1
S1 – T1,

�1313 = –
18
τ 2
ρ

S3 – T3, �1414 = –
18
τ 2
ρ

S3 – T3, �1515 = –
18
τ 2

2
S2 – T2,

�1616 = –P3, �1617 = –AT P1W3,

�1717 = Q5 + τ 2
1 U22 + τ 2

2 V22 + τρD22 + τ 2
1 R1 + τ 2

2 R2 + τ 2
ρ R3

+ τ1R1 + τρR2 + τ2R3 +
τ 4

1
4

T1 +
τ 4

2
4

T2 +
(τ 2

2 – τ 2
1 )2

4
T3

+
(

τ 3
1
6

)2

U1 +
(

τ 3
2
6

)2

U2 +
(

τ 3
2 – τ 3

1
6

)2

U3 – 2G1 – 2GT
1 ,

�1718 = G1W3, �1818 = –(1 – hD)Q5,

J̄ = [0 0 J1 J2 J3 0 0 0 0 0 0 0 0 0 0 0 0],

K̄ = [0 0 K1 K2 K3 0 0 0 0 0 0 0 0 0 0 0 0],

E =

[
E1 0
� E2

]

, τρ = τ2 – τ1.

Proof Let us choose the following LKF candidate for NNs (1):

V
(
e(t), t

)
=

9∑

i=1

Vi
(
e(t), t

)
, (7)

where

V1
(
e(t), t

)
=
(

e(t) – A
∫ t

t–δ

e(s) ds
)T

P1

(
e(t) – A

∫ t

t–δ

e(s) ds
)

,

V2
(
e(t), t

)
=
∫ t

t–δ

eT (s)P2e(s) ds + δ

∫ 0

–δ

∫ t

t+θ

eT (s)P3e(s) ds dθ ,
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V3
(
e(t), t

)
=
∫ t

t–τ (t)
eT (s)Q1e(s) ds +

∫ t

t–τ1

eT (s)Q2e(s) ds +
∫ t

t–τ2

eT (s)Q3e(s) ds

+
∫ t–τ1

t–τ2

eT (s)Q4e(s) ds,

V4
(
e(t), t

)
=
∫ t

t–h(t)
ėT (s)Q5ė(s) ds,

V5
(
e(t), t

)
= τ1

∫ 0

–τ1

∫ t

t+θ

ξT (s)Uξ (s) ds dθ + τ2

∫ 0

–τ2

∫ t

t+θ

ξT (s)Vξ (s) ds dθ

+ τρ

∫ –τ1

–τ2

∫ t

t+θ

ξT (s)Dξ (s) ds dθ ,

V6
(
e(t), t

)
= τ1

∫ 0

–τ1

∫ t

t+θ

ėT (s)R1ė(s) ds dθ + τ2

∫ 0

–τ2

∫ t

t+θ

ėT (s)R2ė(s) ds dθ

+
∫ –τ1

–τ2

∫ t

t+θ

ėT (s)R3ė(s) ds dθ ,

V7
(
e(t), t

)
=
∫ 0

–τ1

∫ t

t+θ

ėT (s)R1ė(s) ds dθ +
∫ –τ1

–τ2

∫ t

t+θ

ėT (s)R2ė(s) ds dθ

+
∫ 0

–τ2

∫ t

t+θ

ėT (s)R3ė(s) ds dθ ,

V8
(
e(t), t

)
=

τ 2
1
2

∫ 0

–τ1

∫ 0

θ

∫ t

t+u
ėT (s)T1ẋ(s) ds du dθ

+
τ 2

2
2

∫ 0

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)T2ė(s) ds du dθ

+
τ 2

2 – τ 2
1

2

∫ –τ1

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)T3ė(s) ds du dθ ,

V9
(
e(t), t

)
=

τ 3
1
6

∫ 0

–τ1

∫ 0

θ

∫ 0

u

∫ t

t+λ

ėT (s)U1ė(s) ds dλdu dθ

+
τ 3

2
6

∫ 0

–τ2

∫ 0

θ

∫ 0

u

∫ t

t+λ

ėT (s)U2ė(s) ds dλdu dθ

+
τ 3

2 – τ 3
1

6

∫ –τ1

–τ2

∫ 0

θ

∫ 0

u

∫ t

t+λ

ėT (s)U3ė(s) ds dλdu dθ ,

ξT (t) = col
{

e(t), ė(t)
}

,

U =

[
U11 U12

� U22

]

, V =

[
V11 V12

� V22

]

, D =

[
D11 D12

� D22

]

.

Taking the time derivative of V (e(t), t) along the trajectories of system (1) yields

V̇
(
e(t), t

)
=

9∑

i=1

V̇i
(
e(t), t

)
, (8)

where

V̇1
(
e(t), t

)
= 2

(
e(t) – A

∫ t

t–δ

e(s) ds
)T

× P1
(
–Ae(t) + W1f

(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
+ W3ė

(
t – h(t)

))
, (9)
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V̇2
(
e(t), t

)
= eT (t)

(
P2 + δ2P3

)
e(t) + eT (t – δ)(–P2)e(t – δ) – δ

∫ t

t–δ

eT (s)P3e(s) ds. (10)

By Lemma 2.1 we have

V̇2
(
e(t), t

) ≤ eT (t)
(
P2 + δ2P3

)
e(t) + eT (t – δ)(–P2)e(t – δ)

–
(∫ t

t–δ

e(s) ds
)T

P3

(∫ t

t–δ

e(s) ds
)

, (11)

V̇3
(
e(t), t

) ≤ eT (t)(Q1 + Q2 + Q3)e(t) + eT (t – τ1)(–Q2 + Q4)e(t – τ1)

+ eT (t – τ2)(–Q3 – Q4)e(t – τ2)

+ eT(t – τ (t)
)(

–(1 – μ)Q1
)
e
(
t – τ (t)

)
, (12)

V̇4
(
e(t), t

) ≤ ėT (t)Q5ė(t) + eT(t – h(t)
)(

–(1 – hD)Q5
)
e
(
t – h(t)

)
, (13)

V̇5
(
e(t), t

)
= ξT (t)

(
τ 2

1 U + τ 2
2 V + τρD

)
ξ (t)

– τ2

∫ t

t–τ1

ξT (s)Uξ (s) ds – τ2

∫ t

t–τ2

ξT (s)Vξ (s) ds

– τρ

∫ t–τ1

t–τ2

ξT (s)Dξ (s) ds. (14)

Using Lemma 2.1, we get the following inequalities:

–τ1

∫ t

t–τ1

ξT (s)Uξ (s) ds ≤ –

[ ∫ t
t–τ1

e(s) ds
e(t) – e(t – τ1)

]T [
U11 U12

� U22

][ ∫ t
t–τ1

e(s) ds
e(t) – e(t – τ1)

]

, (15)

–τ2

∫ t

t–τ2

ξT (s)Vξ (s) ds ≤ –

[ ∫ t
t–τ2

e(s) ds
e(t) – e(t – τ2)

]T [
V11 V12

� V22

][ ∫ t
t–τ2

e(s) ds
e(t) – e(t – τ2)

]

. (16)

Using Lemma 2.1 and Lemma 2.2, provided that (4) is satisfied, we can obtain

–τρ

∫ t–τ1

t–τ2

ξT (s)Dξ (s) ds ≤ – τρ

∫ t–τ1

t–τ (t)
ξT (s)Dξ (s) ds – τρ

∫ t–τ (t)

t–τ2

ξT (s)Dξ (s) ds

≤ –

[∫ t–τ1
t–τ (t) ξ (s) ds

∫ t–τ (t)
t–τ2

ξ (s) ds

]T [
D E
� D

][∫ t–τ1
t–τ (t) ξ (s) ds

∫ t–τ (t)
t–τ2

ξ (s) ds

]

, (17)

V̇6
(
e(t), t

)
= ėT (t)

(
τ 2

1 R1 + τ 2
2 R2 + τ 2

ρ R3
)
ė(t) – τ1

∫ t

t–τ1

ėT (s)R1ė(s) ds

– τ2

∫ t

t–τ2

ėT (s)R2ė(s) ds –
∫ t–τ1

t–τ2

ėT (s)R3ė(s) ds. (18)

To obtain new bounds for the integral terms in (18), we apply Lemma 2.3 and obtain

–τ1

∫ t

t–τ1

ėT (s)R1ė(s) ds ≤ –

[
�1

�2

]T [
R1 0
� 3R1

][
�1

�2

]

, (19)

–τ2

∫ t

t–τ2

ėT (s)R2ė(s) ds ≤ –

[
�3

�4

]T [
R2 0
� 3R2

][
�3

�4

]

, (20)
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where

�1 = e(t) – e(t – τ1), �2 = e(t) + e(t – τ1) –
2
τ1

∫ t

t–τ1

e(s) ds,

�3 = e(t) – e(t – τ2), �4 = e(t) + e(t – τ2) –
2
τ2

∫ t

t–τ2

e(s) ds.

Using Lemma 2.4 for the integral terms in (18), we have

–
∫ t–τ1

t–τ2

ėT (s)R3ė(s) ds ≤ χT (t)
[(

τ2 – τ (t)
)
JR–1

3 JT +
(
τ (t) – τ1

)
KR–1

3 KT

+ [K –K + J –J] + [K –K + J –J]T]χ (t), (21)

V̇7
(
e(t), t

)
= ėT (t)(τ1R1 + τρR2 + τ2R3)ė(t)

–
∫ t

t–τ1

ėT (s)R1ė(s) ds –
∫ t–τ1

t–τ (t)
ėT (s)R2ė(s) ds

–
∫ t–τ (t)

t–τ2

ėT (s)R2ė(s) ds –
∫ t

t–τ2

ėT (s)R3ė(s) ds, (22)

V̇8
(
e(t), t

)
= ėT (t)

(
τ 4

1
4

T1 +
τ 4

2
4

T2 +
(τ 2

3 – τ 2
1 )2

4
T3

)
ė(t) –

τ 2
1
2

∫ 0

–τ1

∫ t

t+θ

ėT (s)T1ė(s) ds dθ

–
τ 2

2
2

∫ 0

–τ2

∫ t

t+θ

ėT (s)T2ė(s) ds dθ –
τ 2(t) – τ 2

1
2

∫ –τ1

–τ (t)

∫ t

t+θ

ėT (s)T3ė(s) ds du

–
τ 2(t) – τ 2

1
2

∫ –τ (t)

–τ1

∫ t

t+θ

ėT (s)T3ė(s) ds dθ . (23)

To obtain new bounds for the integral terms in (23), we apply Lemma 2.5 and obtain

–
τ 2

1
2

∫ 0

–τ1

∫ t

t+θ

ėT (s)T1ė(s) ds dθ ≤ –

[
ϒ1

ϒ2

]T [
T1 0
� 2T1

][
ϒ1

ϒ2

]

, (24)

–
τ 2

2
2

∫ 0

–τ2

∫ t

t+θ

ẋT (s)T2ė(s) ds dθ ≤ –

[
ϒ3

ϒ4

]T [
T2 0
� 2T2

][
ϒ3

ϒ4

]

, (25)

–
τ 2(t) – τ 2

1
2

∫ –τ1

–τ (t)

∫ t

t+θ

ėT (s)T3ė(s) ds dθ ≤ –

[
ϒ5

ϒ6

]T [
T3 0
� 2T3

][
ϒ5

ϒ6

]

, (26)

–
τ 2(t) – τ 2

2
2

∫ –τ (t)

–τ2

∫ t

t+θ

ėT (s)T3ė(s) ds dθ ≤ –

[
ϒ7

ϒ8

]T [
T3 0
� 2T3

][
ϒ7

ϒ8

]

, (27)

where

ϒ1 = τ1e(t) –
∫ t

t–τ1

e(s) ds, ϒ2 =
τ1

2
e(t) –

∫ t

t–τ1

e(s) ds +
3
τ1

∫ 0

–τ1

∫ t

t+θ

e(s) ds dθ ,

ϒ3 = τ2e(t) –
∫ t

t–τ2

e(s) ds, ϒ4 =
τ2

2
e(t) –

∫ t

t–τ2

e(s) ds +
3
τ2

∫ 0

–τ2

∫ t

t+θ

e(s) ds dθ ,

ϒ5 = τρe(t) –
∫ t–τ1

t–τ (t)
e(s) ds, ϒ6 =

τρ

2
e(t) –

∫ t–τ1

t–τ (t)
e(s) ds +

3
τρ

∫ –τ1

–τ (t)

∫ t

t+θ

e(s) ds dθ ,
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ϒ7 = τρe(t) –
∫ t–τ (t)

t–τ2

e(s) ds, ϒ8 =
τρ

2
e(t) –

∫ t–τ (t)

t–τ2

e(s) ds +
3
τρ

∫ –τ (t)

–τ2

∫ t

t+θ

e(s) ds dθ .

V̇9
(
x(t), t

)
= ėT (t)

((
τ 3

1
6

)2

U1 +
(

τ 3
2
6

)2

U2 +
(

τ 3
2 – τ 3

1
6

)2

U3

)
ė(t)

–
τ 3

1
6

∫ 0

–τ1

∫ 0

θ

∫ t

t+u
ėT (s)U1ė(s) ds du dθ

–
τ 3

2
6

∫ 0

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)U2ė(s) ds du dθ

–
τ 3(t) – τ 3

1
6

∫ –τ1

–τ (t)

∫ 0

θ

∫ t

t+u
ėT (s)U3ė(s) ds du dθ

–
τ 3(t) – τ 3

1
6

∫ –τ (t)

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)U3ė(s) ds du dθ . (28)

Using Lemma 2.1, we can rewrite the integral terms in (28) as

–
τ 3

1
6

∫ 0

–τ1

∫ 0

θ

∫ t

t+u
ėT (s)U1ė(s) ds du dθ

≤ –
(

τ 2
1
2

e(t) –
∫ 0

–τ1

∫ t

t+θ

e(s) ds dθ

)T

U1

(
τ 2

2
2

e(t) –
∫ 0

–τ1

∫ t

t+θ

e(s) ds dθ

)
, (29)

–
τ 3

2
6

∫ 0

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)U2ė(s) ds du dθ

≤ –
(

τ 2
2
2

e(t) –
∫ 0

–τ2

∫ t

t+θ

e(s) ds dθ

)T

U2

(
τ 2

3
2

e(t) –
∫ 0

–τ2

∫ t

t+θ

e(s) ds dθ

)
, (30)

–
(τ 3(t) – τ 3

1 )
6

∫ –τ1

–τ (t)

∫ 0

θ

∫ t

t+u
ėT (s)U3ė(s) ds du dθ

≤ –
((

τ 2
2 – τ 2

1
2

)
e(t) –

∫ –τ1

–τ (t)

∫ t

t+θ

e(s) ds dθ

)T

× U3

((
τ 2

2 – τ 2
1

2

)
e(t) –

∫ –τ1

–τ (t)

∫ t

t+θ

e(s) ds dθ

)
, (31)

–
(τ 3(t) – τ 3

1 )
6

∫ –τ (t)

–τ2

∫ 0

θ

∫ t

t+u
ėT (s)U3ė(s) ds du dθ

≤ –
((

τ 2
2 – τ 2

1
2

)
e(t) –

∫ –τ (t)

–τ2

∫ t

t+θ

e(s) ds dθ

)T

× U3

((
τ 2

2 – τ 2
1

2

)
e(t) –

∫ –τ (t)

–τ2

∫ t

t+θ

e(s) ds dθ

)
. (32)

Furthermore, for any arbitrary matrices Gi (i = 1, 2, . . . , 6) of compatible dimensions, we
have

0 = 2ηT
1 (t)G

[
–ė(t) – Ae(t – δ) + W1f

(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
+ W3ė

(
t – h(t)

)]
. (33)
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By the Leibniz–Newton formula, the following equations hold for any matrices Li, Mi, Ni,
Oi (i = 1, 2, . . . , 4) of compatible dimensions:

0 = 2ηT
2 (t)̂L

[
e(t) – e(t – τ1) –

∫ t

t–τ1

ė(s) ds
]

, (34)

0 = 2ηT
2 (t)M̂

[
e(t – τ1) – e

(
t – τ (t)

)
–
∫ t–τ1

t–τ (t)
ė(s) ds

]
, (35)

0 = 2ηT
2 (t)N̂

[
e
(
t – τ (t)

)
– e(t – τ2) –

∫ t–τ (t)

t–τ2

ė(s) ds
]

, (36)

0 = 2ηT
2 (t)Ô

[
e(t) – e(t – τ2) –

∫ t

t–τ2

ė(s) ds
]

. (37)

By Assumption (H) we can be obtain the following inequalities for any X, Y , Z ≥ 0:

ηT
3 (t)�1η3(t) ≥ 0, ηT

3
(
t – τ (t)

)
�2η3

(
t – τ (t)

) ≥ 0, ηT
4 (t)�3η4(t) ≥ 0, (38)

where

η1(t) =
[
ėT (t) eT (t) eT (t – δ) eT (t – τ1) eT (t – τ (t)) eT (t – τ2)

]
,

η2(t) =
[
eT (t) eT (t – τ1) eT (t – τ (t)) eT (t – τ2)

]
,

η3(t) =
[
eT (t) f T (e(t))

]
, η4(t) =

[
ηT

3 (t) ηT
3 (t – τ (t))

]
,

�1 =

[
–F1X F2X

� –X

]

, �2 =

[
–F1Y F2Y

� –Y

]

,

�3 =

⎡

⎢⎢⎢
⎣

–F1Z F2Z F1Z –F2Z
� –Z –F2Z Z
� � –F1Z F2Z
� � � –Z

⎤

⎥⎥⎥
⎦

,

L̂ =
[L1 0 L2 L3 L4 0 . . . . . . . . . . . . 0︸ ︷︷ ︸

12 times

]
,

M̂ =
[M1 0 M2 M3 M4 0 . . . . . . . . . . . . 0︸ ︷︷ ︸

12 times

]
,

N̂ =
[N1 0 N2 N3 N4 0 . . . . . . . . . . . . 0︸ ︷︷ ︸

12 times

]
,

Ô =
[O1 0 O2 O3 O4 0 . . . . . . . . . . . . 0︸ ︷︷ ︸

12 times

]
,

X = diag{x11, x12, . . . , x1n}, Y = diag{y21, y22, . . . , y2n},

and

Z = diag{z31, z32, . . . , z3n}.

By combining from (9) to (38) we get

V̇
(
e(t), t

)
= –ζ T (t)�∗ζ (t), (39)
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where �∗ = –� > 0 with � = � + (τ2 – τ (t))JR–1
3 JT + (τ (t) – τ1)KR–1

3 KT , and we define the
augmented state vector

ζ T (t) =
[
eT (t) eT (t – δ) eT (t – τ1) eT(t – τ (t)

)
eT (t – τ2)

f T(e(t)
)

f T(e
(
t – τ (t)

)) ∫ t
t–τ1

e(s) ds
∫ t–τ1

t–τ (t) eT (s) ds
∫ t–τ (t)

t–τ2
eT (s) ds

∫ t
t–τ2

eT (s) ds
∫ 0

–τ1

∫ t
t+θ

eT (s) ds dθ

∫ –τ1
–τ (t)

∫ t
t+θ

eT (s) ds dθ
∫ –τ (t)

–τ2

∫ t
t+θ

eT (s) ds dθ
∫ 0

–τ2

∫ t
t+θ

eT (s) ds dθ

∫ t
t–δ

eT (s) ds ėT (t) ėT(t – h(t)
)]

. (40)

Thus, we can deduce that

V
(
e(t), t

)
+
∫ t

0
ζ T (s)�∗ζ (s) ds ≤ V

(
e(0), 0

)
, t ≥ 0. (41)

Moreover,

V
(
e(0), 0

) ≤
{

2λmax(P1)
(

1 + δ2 max
i∈�

)
+ δλmax(P2) + δ3λmax(P3)

+ τ2λmax(Q1) + τ1λmax(Q2) + τ2λmax(Q3) + τρλmax(Q4) + hλmax(Q5)

+ τ 3
1 λmax(U) + τ 3

2 λmax(V ) + τ 3
ρ λmax(D) + τ 3

1 λmax(R1) + τ 3
2 λmax(R2)

+ τ 2
ρ λmax(R3) + τ 2

1 λmax(R1) + τ 2
ρ λmax(R2) + τ 2

2 λmax(R3)

+
τ 3

1
2

λmax(T1) +
τ 3

2
2

λmax(T2) +
(

τ 3
2 – τ 3

1
2

)
λmax(T3)

+
τ 4

1
6

λmax(U1) +
τ 4

2
6

λmax(U2) +
(

τ 4
2 – τ 4

1
6

)
λmax(U3)

}
‖φ‖2

r

< ∞, (42)

and the norm is defined by ‖φ‖r = max{supr≤s≤0 ‖φ(s)‖, sup–r≤s≤0 ‖φ̇(s)‖}. From the defi-
nition of V2(e(t), t) and Lemma 2.1 we know that

∥
∥∥
∥

∫ t

t–δ

e(s) ds
∥
∥∥
∥

2

=
[∫ t

t–δ

e(s) ds
]T[∫ t

t–δ

e(s) ds
]

≤ δ

∫ t

t–δ

eT (s)e(s) ds ≤ δ

λmin(P2)

∫ t

t–δ

eT (s)e(s) ds

≤ δ

λmin(P2)
V
(
e(t), t

) ≤ δ

λmin(P2)
V
(
e(0), 0

)
,

which, together with the definition of V1(e(t), t), yields

∥
∥e(t)

∥
∥ ≤

∥∥
∥∥

∫ t

t–δ

e(s) ds
∥∥
∥∥ +

√
V1(e(t), t)
λmin(P2)

≤
∥∥
∥∥

∫ t

t–δ

e(s) ds
∥∥
∥∥ +

√
V1(e(0), 0)
λmin(P2)

≤
{√√
√√

n∑

i=1

ai
δ

λmin(P2)
+

√
1

λmin(P2)

}√
V
(
e(0), 0

)
.
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This implies that the equilibrium point of model (1) is locally stable. Therefore, along the
same proof with [42], we will prove that ‖e(t)‖ → 0 as t → ∞. First, for any constant
θ ∈ [0, 1], from (40), (41), and Lemma 2.1 it follows that

∥
∥e(t + θ ) – e(t)

∥
∥2 =

[∫ t+θ

t
ė(s) ds

]T[∫ t+θ

t
ė(s) ds

]

≤ θ

∫ t+θ

t
ėT (s)ė(s) ds ≤

∫ t+θ

t
ėT (s)ė(s) ds

≤ 1
λmin(�∗)

∫ t+1

t
ζ T (s)�∗ζ (s) ds → 0 as t → ∞,

which implies that, for any ε > 0, there exists K1 = K1(ε) > 0 such that

∥∥e(t + θ ) – e(t)
∥∥ <

ε

2
, θ ∈ [0, 1]. (43)

Otherwise, from (41) we get

∥∥
∥∥

∫ t+1

t
e(s) ds

∥∥
∥∥

2

=
[∫ t+θ

t
e(s) ds

]T[∫ t+θ

t
e(s) ds

]

≤
∫ t+1

t
eT (s)e(s) ds

≤ 1
λmin(�∗)

∫ t+1

t
ζ T (s)�∗ζ (s) ds → 0 as t → ∞,

which implies that, for any ε > 0, there exists K2 = K2(ε) > 0 such that

∥∥
∥∥

∫ t+1

t
e(s) ds

∥∥
∥∥ <

ε

2
, t > K2.

It should be noted that e(s) is continuous on [t, t + 1], t > 0. Using the integral mean
value theorem, we get that there exists a vector ϑt = (ϑt1, . . . ,ϑtn)T ∈ R

n, ϑtj ∈ [t, t + 1]
(j = 1, . . . , n), such that

∥
∥e(ϑt)

∥
∥ =

∥∥
∥∥

∫ t+1

t
e(s) ds

∥∥
∥∥ <

ε

2
, t > K2. (44)

By (43) and (44) we obtain that, for any ε > 0, there exists K = max{K1,K2} > 0 such that
t > K implies

∥
∥e(t)

∥
∥ ≤ ∥

∥e(t) – e(ϑt)
∥
∥ +

∥
∥e

(
ϑ(t)

)∥∥ ≤ ε

2
+

ε

2
= ε.

Therefore, we conclude that model (1) has a unique equilibrium point, which is asymp-
totically stable. From (39) we have

V̇
(
e(t), t

) ≤ ζ T (t)
{
� +

(
τ2 – τ (t)

)
JR–1

3 JT +
(
τ (t) – τ1

)
KR–1

3 KT}ζ (t) < 0.

We can see that if τ (t) ∈ [τ1, τ2], then

� +
(
τ2 – τ (t)

)
JR–1

3 JT +
(
τ (t) – τ1

)
KR–1

3 KT < 0. (45)
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Then by Lemma 2.6 we get the following inequalities:

� + (τ2 – τ1)JR–1
3 JT < 0, (46)

� + (τ2 – τ1)KR–1
3 KT < 0. (47)

By Schur complement [43] on (46) and (47) we can obtain (5) and (6). This completes the
proof. �

Remark 3.1 When W3 = 0, system (1) reduces to the following NN:

ė(t) = –Ae(t – δ) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
,

e(t) = φ(t), t ∈ [
– max{δ, τM}, 0

]
.

(48)

For the deterministic delayed NN (48), we can derive the stability conditions immediately
from Theorem 3.1. The details are omitted here, since they are implied by Theorem 3.1 by
setting W3 = Q5 = 0 and removing the 18th row and column in Theorem 3.1. So we have
the following corollary.

Corollary 3.1 Assume that Assumption (H) is holds. For given positive scalars δ, τ1, τ2, and
μ, the NN described by (48) is asymptotically stable for any time-varying delay τ (t) satisfy-
ing (2) if there exist symmetric positive definite matrices Pi (i = 1, 2, 3), Qi (i = 1, 2, 3, . . . , 4),

U =

[
U11 U12

� U22

]

, V =

[
V11 V12

� V22

]

, D =

[
D11 D12

� D22

]

,

Ri (i = 1, 2, 3), Ri (i = 1, 2, 3), Ti (i = 1, 2, 3), Ui (i = 1, 2, 3), diagonal matrices X, Y , and
Z, any matrices Gi (i = 1, 2, . . . , 6) of appropriate dimensions, and any appropriate dimen-
sional matrices Li, Mi, Ni, Oi (i = 1, 2, . . . , 4) such that the following LMIs hold:

[
D E
� D

]

≥ 0, (49)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�
√

τ1L √
τρM √

τρN √
τ2O τρK̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< 0, (50)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�
√

τ1L √
τρM √

τρN √
τ2O τρ J̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< 0, (51)

where � = (�i,j)17×17 and terms are the same as in Theorem 3.1.
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Remark 3.2 When δ = 0, system (1) reduces to the following NN:

ė(t) = –Ae(t) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
+ W3ė

(
t – h(t)

)
,

e(t) = φ(t), t ∈ [
– max{τM, h}, 0

]
.

(52)

For the deterministic delayed NN (52), we can derive the stability conditions immediately
from Theorem 3.1. The details are omitted here, since they are implied by Theorem 3.1 by
setting in (7) P2 = P3 = 0, removing the 2nd and 16th columns and rows in Theorem 3.1.
So we have the following corollary.

Corollary 3.2 Assume that Assumption (H) is holds. Then for given positive scalars τ1,
τ2, μ, h, and hD, the NN described by (52) is asymptotically stable for any time-varying
delay τ (t) and h(t) satisfying (2) if there exist symmetric positive definite matrices P1,
Qi (i = 1, 2, 3, . . . , 5),

U =

[
U11 U12

� U22

]

, V =

[
V11 V12

� V22

]

, D =

[
D11 D12

� D22

]

,

Ri (i = 1, 2, 3), Ri (i = 1, 2, 3), Ti (i = 1, 2, 3), Ui (i = 1, 2, 3), diagonal matrices X, Y , and
Z, any matrices Gi (i = 1, 3, . . . , 6) of appropriate dimensions, and any appropriate dimen-
sional matrices Li, Mi, Ni, Oi (i = 1, 2, . . . , 4) such that the following LMIs hold:

[
D E
� D

]

≥ 0, (53)

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

�̃
√

τ1L √
τρM √

τρN √
τ2O τρK̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

< 0, (54)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

�̃
√

τ1L √
τρM √

τρN √
τ2O τρ J̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< 0, (55)

where �̃ = (�̃i,j)16×16 and the other terms are the same as in Theorem 3.1.

Remark 3.3 When δ = 0 and W3 = 0, system (1) reduces to the following NN (56). How-
ever, for the general NN, we have achieved some results in [8–13, 16]. We have

ė(t) = –Ae(t) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
,

e(t) = φ(t), t ∈ [
– max{τM}, 0

]
.

(56)
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For the deterministic delayed NN (56), we can derive the stability conditions immediately
from Corollary 3.1. The details are omitted here, since they are implied by Corollary 3.1,
by removing the 2nd and 16th columns and rows of LMIs in Corollary 3.1. So we have the
following corollary.

Corollary 3.3 Assume that Assumption (H) is holds. Then for given positive scalars τ1, τ2,
and μ, the NN described by (56) is asymptotically stable for any time-varying delay τ (t)
satisfying (2) if there exist symmetric positive definite matrices P1, Qi (i = 1, 2, 3, . . . , 4),

U =

[
U11 U12

� U22

]

, V =

[
V11 V12

� V22

]

, D =

[
D11 D12

� D22

]

,

Ri (i = 1, 2, 3), Ri (i = 1, 2, 3), Ti (i = 1, 2, 3), Ui (i = 1, 2, 3), diagonal matrices X, Y , and
Z, any matrices Gi (i = 1, 3, . . . , 6) of appropriate dimensions, and any appropriate dimen-
sional matrices Li, Mi, Ni, Oi (i = 1, 2, . . . , 4) such that the following LMIs hold:

[
D E
� D

]

≥ 0, (57)

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

̂̂�
√

τ1L √
τρM √

τρN √
τ2O τρK̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

< 0, (58)

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

̂̂�
√

τ1L √
τρM √

τρN √
τ2O τρ J̄

� –R1 0 0 0 0
� � –R2 0 0 0
� � � –R2 0 0
� � � � –R3 0
� � � � � –R3τρ

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (59)

where ̂̂� = (̂̂�i,j)15×15 and the terms are the same as in Corollary 3.1.

Remark 3.4 It is highly pointed out that, in the previous literature [8–13, 16, 19, 20], the
condition F–

j ≤ fj(α)
α

≤ F+
j with α2 = 0, which is a particular case of F–

j ≤ fj(α1)–fj(α2)
α1–α2

≤ F+
j ,

j = 1, 2, . . . , n, was usually employed to reduce conservatism. It is worth mentioning that
the assumption used in this paper not only considers the terms F–

j ≤ fj(e(t))
e(t) ≤ F+

j and F–
j ≤

fj(e(t–τ (t)))
e(t–τ (t)) ≤ F+

j , but also the term F–
j ≤ fj(e(t))–fj(e(t–τ (t)))

f (e(t))–fj(e(t–τ (t))) ≤ F+
j has been taken into account in

(38), which is helpful to reduce conservatism.

Remark 3.5 So far, in the proof of Theorem 3.1, we have utilized WSII to estimate the
derivatives of the LKFs such as

∫ 0
–τ1

∫ t
t+θ

ẋT (s)R1ẋ(s) ds dθ ,
∫ 0

–τ2

∫ t
t+θ

ẋT (s)R2ẋ(s) ds dθ , and
∫ –τ1

–τ2

∫ t
t+θ

ẋT (s)R3ẋ(s) ds dθ . This technique was initially developed by [38], and it was shown
to be more tighter than those used in [8–13, 16, 19, 20].
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Remark 3.6 Recently, WDII technique was proposed by [40] to reduce conservatism ef-
fectively for time-delay systems. Motivated by this study, the developed method of [40] is
applied in this paper. Therefore, this may lead to less conservative results.

Remark 3.7 Recently, most of the existing results concerning the stability of delayed NNs
of neutral type have not considered time delay in the leakage term. In contrast to the mod-
els studied in [8–13, 16, 19, 20], without or with constant delay in the leakage term, we can
find that their results cannot be applicable to system (1).

Remark 3.8 In recent years, obtaining better results for time-delay systems has been still
ongoing research topic, and it has been received more attention from the researchers. For
this purpose, constructing better LKFs and estimating their derivatives by an improved
integral inequality technique is the main challenge in the field of time-delay systems. The
stability criteria proposed in this paper are obtained from the constructions of several
Lyapunov functionals, and, as a result, the proposed LMI conditions are also more com-
plicated and of high computational complexity. To overcome these requirements, recently,
some new works have been developed with another type of Lyapunov functions, which is
more effective to reduce the computational burden while maintaining less conservative
results (see [44, 45]). In the future work, we use this type of new Lyapunov functionals to
reduce conservatism together with simple LMI conditions. Therefore, the methods pro-
posed in [44, 45] will be more helpful to reduce the conservatism and computational bur-
den of the time-delay systems with novel Lyapunov functionals.

4 Numerical examples
This section is dedicated to displaying interesting numerical examples to illustrate the
effectiveness and applicability of the developed method for the addressed NNs.

Example 4.1 Consider the following NNs of neutral type with time-varying delays. The
parametric coefficients are given by

ė(t) = –Ae(t) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
+ W3ė

(
t – h(t)

)
,

where

A =

[
2 0
0 2

]

, W1 =

[
α 0.3

0.3 0.5

]

, W2 =

[
0.2 0.1
0.1 0.2

]

, W3 =

[
0.15 0

0 0.15

]

.

The activation functions are taken as f1(e) = f2(e) = tanh(e). We can verify that Assump-
tion (H) is satisfied with F–

1 = 0, F+
1 = 1, F–

2 = 0, F+
2 = 1. Thus, F1 = diag(0, 0), F2 =

diag(0.5, 0.5). For μ = 0.9, τ1 = 0.5, τ2 = 2.0, solving LMIs in Corollary 3.2, we obtain that
the upper bound of α is 3.94. We apply criteria in [19, 20], and in this work, the maximum
value of α for the stability of NN (52) is listed in Table 1. It is easy to see that the proposed
stability criterion is much less conservative than that in [19, 20]. Also, it should be highly
pointed out that the aforementioned methods and results are demands and not applicable
for the cases of hD = 0.8, hD ≥ 1, which indicates the merits of the results obtained in this
paper.
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Table 1 The maximum upper bound of α when τm = 0.5, τM = 2.0 in Example 4.1

Methods α (hD = 0.5) α (hD = 0.8) α (hD ≥ 1)

[19] 1.65 – –
[20] 2.66 – –
Corollary 3.2 3.94 3.52 3.43

Table 2 The MADBs of τM when τm = 1 for different μ in Example 4.2

Methods μ = 0.8 μ = 0.9 μ ≥ 1

[9] 2.5967 2.0443 1.9621
[16] (m = 2) 3.8359 2.9234 2.7532
[13] (m = 2) 4.0414 3.0250 2.8573
[11] 4.8688 3.8047 3.6001
[12], Theorem 1 5.8868 4.1791 3.9230
[12], Theorem 2 6.1527 4.3379 4.0518
Corollary 3.3 7.2376 5.7526 5.2247

Example 4.2 Consider the following NNs with interval time-varying delays:

ė(t) = –Ae(t) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
,

where

A =

[
2 0
0 2

]

, W1 =

[
1 1

–1 –1

]

, W2 =

[
0.88 1

1 1

]

,

F1 =

[
0 0
0 0

]

, F2 =

[
0.4 0
0 0.8

]

.

With these parameters, we solve the LMIs in Corollary 3.3. Our aim is to obtain the maxi-
mum allowable delay bounds (MADBs) of τ2 when τ1 = 1 with different μ for such system
(56) to be asymptotically stable. Comparing the results listed in Table 2 with those in the
recent literature, we crisply see that the proposed results have less conservatism in this
example. Therefore, the resulting stability criterion in this paper is truly much better than
those of [9, 11–13, 16].

Example 4.3 Consider the following NN with interval time-varying delays:

ė(t) = –Ae(t) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
,

where

A =

⎡

⎢
⎢⎢
⎣

1.2769 0 0 0
0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

⎤

⎥
⎥⎥
⎦

,

W1 =

⎡

⎢
⎢⎢
⎣

–0.0373 0.4852 –0.3351 0.2336
–1.6033 0.5988 –0.3224 1.2352
0.3394 –0.0860 –0.3824 –0.5785

–0.1311 0.3253 –0.9534 –0.5015

⎤

⎥
⎥⎥
⎦

,
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Table 3 The MADBs of τ2 with τ1 = 3 for different μ in Example 4.3

Methods μ = 0.1 μ = 0.5 μ = 0.9 μ ≥ 1

[8] (m = 2) 3.65 3.32 3.26 3.24
[8] (m = 4) 3.71 3.36 3.29 3.28
[10] (m = 2) 3.78 3.45 3.39 3.38
[11] 4.1967 3.6246 3.5961 3.5952
[12], Theorem 1 4.3351 3.7706 3.7323 3.7211
[12], Theorem 2 4.3361 3.7723 3.7329 3.7212
Corollary 3.3 5.4735 4.5487 4.4882 4.4531

Figure 1 Schematic representation of the QTPS.
Source: [46]

W2 =

⎡

⎢
⎢⎢
⎣

0.8674 –1.2405 –0.5325 0.0220
0.0474 –0.9164 0.0360 0.9816
1.8495 2.6117 –0.3788 0.8428

–2.0413 0.5179 1.1734 –0.2775

⎤

⎥
⎥⎥
⎦

,

F2 =

⎡

⎢
⎢⎢
⎣

0.1137 0 0 0
0 0.1279 0 0
0 0 0.7994 0
0 0 0 0.2368

⎤

⎥
⎥⎥
⎦

.

With F1 = diag{0, 0, 0, 0}, by solving LMIs in Corollary 3.3, the purpose of this example is to
calculate the MADBs of τ2 such that the considered delayed system (56) is asymptotically
stable for given τ1 and μ. The comparison of results derived in this paper and those ob-
tained in [8, 10–12] are listed in Table 3. It is clear that the upper bounds τ2 of the proposed
criteria are larger than in those results, which implies that our results are less conservative
than those of [8, 10–12]. Furthermore, our proposed method is less conservative than that
in [8, 10], and the reduction in the conservatism of the developed method mainly comes
from the use of the triple integral term V7(e(t), t) and augment term V5(e(t), t) in the LKFs.

Example 4.4 Artificial NNs can be expressed in terms of real biological neurons that are
functionally associated with a nervous system. On the other hand, NNs can express not
only biological neurons but also other practical system, namely, the quadruple-tank pro-
cess system (QTPS) as shown in Figure 1.
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The setup consists of four interacting tanks, two water pumps and two valves. The two
process inputs are the voltages υ1 and υ2 supplied to the two pumps. Tank 1 and tank 2
are placed below tank 3 and tank 4 to receive water flow by the action of gravity. As shown
in Figure 1, the QTPS can be expressed clearly using the NN model (see, e.g., [31, 33, 34,
46, 47]). The differential equation for the mass balances in the QTPS can be expressed as
follows:

˙̄x(t) = Â0̂x(t) + Â1̂x(t – τ̃1) + B̂0û(t – τ̃2) + B̂1û(t – τ̃3), (60)

where

Â0 =

⎡

⎢
⎢⎢
⎣

–0.0021 0 0 0
0 –0.0021 0 0
0 0 –0.0424 0
0 0 0 –0.0424

⎤

⎥
⎥⎥
⎦

,

Â1 =

⎡

⎢⎢
⎢
⎣

0 0 0.0424 0
0 0 0 0.0424
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎥
⎦

,

B̂0 =

[
0.1113γ1 0 0 0

0 0.1042γ2 0 0

]T

,

B̂1 =

[
0 0 0 0.1113(1 – γ1)
0 0 0.1042(1 – γ2) 0

]T

,

γ1 = 0.333, γ2 = 0.307,

û = K̂x(t), K̂ =

[
–0.1609 –0.1765 –0.0795 –0.2073
–0.1977 –0.1579 –0.2288 –0.0772

]

.

The differential equations describing the mass balances in the delayed equations. Trans-
port delays are usually included with the delay phenomena in the tank water inlets. Ad-
ditionally, the transport delays between tanks and valves vary with respect to time. To
develop a more interesting realistic problem, leakage delay can be easily added in QTPS
by the inlet of water to the tanks and are meaningful in our practical life. However, until
now, this has not been explored in the previous literature (see, e.g., [31, 33, 34, 46, 47]).
Moreover, in this example, transport delays between valves and tanks being interval time-
varying, the following aspects are also taken into account. For clarity, we assumed that
τ̃1 = 0, τ̃2 = 0, and τ̃3 = τ (t) (since τ1 ≤ τ (t) ≤ τ2). Here, the control input û(t) means the
amount of water supplied by pumps. Therefore, it is obvious that û(t) has a threshold
value due to the constrained area of the hose and the capacity of the pumps. Therefore, it
is reasonable to consider û(t) as a nonlinear function:

û(t) = K̂ f̂
(
ê(t)

)
,

û
(
t – τ (t)

)
= K̂ f̂

(
ê
(
t – τ (t)

))
,
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Figure 2 State responses of QTPS (61) in Example 4.4

f̂
(
ê(t)

)
=
[
f̂1
(
ê1(t)

)
, . . . , f̂4

(
ê4(t)

)]T ,

f̂i
(
êi(t)

)
= 0.01

(∣∣êi(t) + 1
∣
∣ –

∣
∣êi(t) – 1

∣
∣), i = 1, . . . , 4.

Therefore, the QTPS (60) can be rewritten to the form of system (61) as follows:

ė(t) = –Ae(t – δ) + W1f
(
e(t)

)
+ W2f

(
e
(
t – τ (t)

))
,

e(t) = φ(t), t ∈ [
– max{τM}, 0

]
,

(61)

where A = –Â0 – Â1, W1 = B̂0K̂ , W2 = B̂1K̂ , and f (·) = f̂ (·). In addition, F1 = diag{0, 0, 0, 0}
and F2 = diag{0.01, 0.01, 0.01, 0.01} with these parameters; we choose τ1 = 1, τ2 = 5, and
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μ = 0.5 for various δ that secure the feasibility of the LMIs in Corollary 3.1. Using MAT-
LAB LMI control Toolbox and solving the LMIs in Corollary 3.1, we have found that the
QTPS (61) is globally asymptotically stable for a small amount of leakage delay as shown
in Figure 2 (see Figures 1(a)–1(k)). Taking a large amount of leakage delay δ, we have found
that the QTPS (61) is actually unstable and the state trajectories of the QTPS do not con-
verge to the zero equilibrium point as shown in Figure 2 (see Figures 1(l)–1(p)). Therefore,
the leakage delay has a significant effect on the dynamical behavior of the QTPS.

5 Conclusions
In this paper, we investigated an improved stability criterion for neutral-type NNs with
interval time-varying delay signal and leakage delay. For obtaining less conservative re-
sults, some suitable LKFs under the weaker assumptions of neuron activation functions
were used to enlarge the feasible region of proposed stability criteria via new technique.
In the first place, we derived an improved delay-dependent stability criterion by using the
new integral inequality approach. Secondly, we constructed some newly constructed LKFs
with triple- and four-integral terms and established less conservative stability criteria in
terms of LMIs. Then, the feasibility and applicability of the proposed methods have been
shown by numerical simulations. Additionally, the proposed approach is demonstrating
the numerical simulation of the QTPS that takes into account transport time delay signals
and leakage delay, showing the feasibility on a realistic problem. Therefore, our results
have an important significance in theory and in practical applications of NNs with time
delays. In addition, the proposed method in this paper can be extendable to many famous
dynamical systems, such as cellular NNs [8], state estimation problem [14, 15], filtering
problem [48], impulsive problem [49, 50], Markovian jump NNs [34], and sampled data
control problem [47]. This will occur in the near future.
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