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Abstract
In this paper, a stochastic susceptible-infected-susceptible (SIS) epidemic model with
periodic coefficients is formulated. Under the assumption that the total population is
fixed by N, an analogue of the threshold RT0 is identified. If R

T
0 > 1, the model is proved

to admit at least one random periodic solution which is nontrivial and located in
(0,N)× (0,N). Further, the conditions for persistence and extinction of the disease are
also established, where a threshold is given in the case that the noise is small.
Comparing with the threshold of the autonomous SIS model, it is generalized to its
averaged value in one period. The random periodic solution is illuminated by
computer simulations.
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1 Introduction
Mathematical epidemiology has made a significant progress in better understanding of the
disease transmissions. Many epidemic models are described by the ordinary differential
equations. In the real world, epidemic dynamics is always affected by the environmental
noise, thus investigating the influence of the noises on dynamics of the epidemics is of
interest to the researchers. The stochastic population model is always formulated by con-
structing the discrete time Markov chain based on the deterministic model (see [1] for
example). By this way, the common SIR model with stochastic perturbations (see [2–6])
is like

⎧
⎪⎪⎨

⎪⎪⎩

dS = [μ(N – S) – βS] dt + σ0S dB0(t),

dI = [βS – (μ + ε + ε)]I dt + σ1I dB1(t),

dR = (εI – γ R) dt + σ2I dB2(t).

(1)

For model (1), Lin and Jiang [2] studied the existence of a positive and global solution, then
they showed sufficient conditions for the survival and extinction of the disease. Lahrouz
and Omari [3] proved the existence of stationary distribution, which indicates the disease
will continue to exist forever. Zhao [4] gave the threshold for this stochastic SIR epidemic

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1511-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1511-4&domain=pdf
mailto:Dianli-zhao@163.com


Zhao et al. Advances in Difference Equations  (2018) 2018:64 Page 2 of 9

model. Recently, by supposing the coefficients are periodic, Liu et al. [5] gave sufficient
conditions for the existence of a random periodic solution. For more about model (1) and
its extensions, one can refer to [6, 7] and the references therein.

Different from the method mentioned above and from the experimental point of view,
the parameters of the model are always estimated by using the regression method with
certain confidence intervals, which reveals that the parameters can exhibit random fluc-
tuations to some extent. Then, from the point of view of the parameter randomization,
many researchers formulated and studied the stochastic epidemic models with random-
ized parameters (see [8–12] for example). By supposing that the contact rate is affected by
the noise like

β → β + σ Ḃ,

Gray et al. [12] established a classical stochastic SIS epidemic model of the form

⎧
⎨

⎩

dS = [μ(N – S) – βS + δI] dt – σSI dB(t),

dI = [βS – (μ + δ)]I dt + σSI dB(t),
(2)

where S(t) represents the number of individuals susceptible to the disease at time t, and
I(t) represents the number of infected individuals. N is a constant input of new members
into the population per unit time; β is the transmission coefficient between compartments
S and I ; μ means the natural death rate; δ is the recovery rate from infectious individuals
to the susceptible; B(t) is a standard Brownian motion on the complete probability space
(�,F , (Ft)t≥0, P) with the intensity σ 2 > 0. The authors proved that this model has a unique
global positive solution and derived the existence of stationary distribution.

Inspired by the work of Capasso and Serio [13], Lin et al. [14] introduced a saturated
incidence rate βSI

1+aI into epidemic model (2), where a is a positive constant, and βI
1+aI mea-

sures the infection force of the disease with inhibition effect due to the crowding of the
infective. This model reads as follows:

⎧
⎨

⎩

dS = [μ(N – S) – βSI
1+aI + δI] dt – σSI

1+aI dB(t),

dI = [ βS
1+aI – (μ + δ)]I dt + σSI

1+a(t)I dB(t).
(3)

It is interesting to see that the authors gave a complete threshold for any size of noise.
Moreover, they proved that the model has the ergodic property and derived the expression
for its invariant density.

However, in the real word, many infectious diseases of humans, such as measles, mumps,
rubella, chickenpox, diphtheria, pertussis, and influenza, fluctuate over time with seasonal
variation [15]. This implies that the corresponding mathematical models may have the
periodic solutions. Therefore, it is important to investigate the periodic dynamics of epi-
demic models. For more about the periodic properties of the epidemic model, one can see
[16–19] and the references cited therein. At the same time, one can easily find that some
diseases mentioned above always do not have significant effects on the total population
size. Consequently, in this paper, the total population is assumed to be a positive constant,
denoted by N .
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Motivated by the above, we present a stochastic SIS epidemic model with periodic co-
efficients as follows:

⎧
⎨

⎩

dS(t) = [μ(t)(N – S(t)) – β(t)S(t)I(t)
1+a(t)I(t) + δ(t)I(t)] dt – σ (t)S(t)I(t)

1+a(t)I(t) dB(t),

dI(t) = [ β(t)S(t)
1+a(t)I(t) – (μ(t) + δ(t))]I(t) dt + σ (t)S(t)I(t)

1+a(t)I(t) dB(t).
(4)

The main concerns of this paper are as follows:
• What is the condition for the existence of a random periodic and positive solution of

this model?
• Under what conditions will the microorganism survive or will be washed out?
• Is there a threshold which more or less helps to determine the survival of the

microorganism?
For simplicity, we denote x∗ = supt≥0{x(t)} and x∗ = inft≥0{x(t)} for a function x(t) defined

on [0,∞). RT
0 =

1
T

∫ T
0 [β(t)N– σ2(t)N2

2 ] dt
1
T

∫ T
0 [μ(t)+δ(t)] dt

. One can easily check that 	 = {(S, x) ∈ R2
+ : S + x = N}

is the positive invariant set of model (4), which is a crucial property for the proof of a
periodic solution. In view of the biological meanings, we assume that the coefficients of
model (4) are continuous, positive, bounded, and T-periodic functions on [0,∞). Then
μ∗ > 0.

The existence of the uniquely positive solution can be proved by following the standard
procedure in [12], so we omit it. In the following, we mainly focus on finding the suit-
able condition for the existence of a random periodic solution, persistence, and extinction
of (4). Main contributions of this paper are as follows.

Theorem 1.1 If RT
0 > 1 holds, then model (4) has at least one random positive T-periodic

solution in 	.

The proof is located in Section 2. Here, we mainly illuminate Theorem 1.1 with an ex-
ample.

Example 1 Considering model (4), we choose N = 1, μ(t) = 0.3 + 0.2 cos t, β(t) = 0.7 +
0.3 sin t, δ(t) = 0.1, a(t) = 0.5 + 0.3 sin 2t, and σ (t) = 0.3 + 0.2 sin t with the initial value
(S(0), I(0)) = (0.6, 0.4). Clearly, the coefficients are all positive 2π-periodic functions. Com-
pute that RT

0 = 1.6125 > 1. Then Theorem 1.1 implies that model (4) has a 2π-periodic
solution which lies in (0, 1), see Figure 1.

Remark 1 Khasminskii [20] said that a Markov process X(t) is T-periodic if and only if
its transition probability function is T-periodic and the function P0(t, A) = P(X(t) ∈ A)
satisfies the equation

P0(s, A) =
∫

Rn
P0(s, dz)P(s, z, s + T , A) ≡ P0(s + T , A),

where A ∈ � and � is σ -algebra. This means that Figure 1 can show us the periodic be-
havior of model (4) under the meaning of distribution.

The following theorems concern the persistence in mean and extinction of model (4).
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Figure 1 Simulations of S(t) and I(t) of Example 1. The red (solid) lines are the solutions of the stochastic
model, and the blue (dotted) lines are the paths of the corresponding deterministic model

Theorem 1.2 Let (S(t), I(t)) be the solution of (4) with the initial value (S(0), I(0)) ∈ R2
+. If

RT
0 > 1, then the disease will be persistent in mean, i.e.,

lim inf
t→∞

1
t

∫ t

0
I(s) ds ≥ (

β∗ + a∗ +
(
a∗)2N

)–1(RT
0 – 1

)
> 0. (5)

Theorem 1.3 Let (S(t), I(t)) be the solution of model (4) with the initial value (S(0), I(0)) ∈
R2

+. If one of the two assumptions holds
(A) supt≥0(σ 2(t)N – μ(t)) ≤ 0 and RT

0 < 1,
(B) 1

T
∫ T

0 [ [Nβ(s)–θ (μ(s)+δ(s))]2

2N2σ 2(s) – (1 – θ )(μ(s) + δ(s))] ds < 0 holds for any constant θ ∈ [0, 1),
then the disease I goes extinct exponentially, namely

lim sup
t→∞

1
t

log
I(t)
I(0)

≤ 1
T

∫ T

0

(
μ(t) + δ(t)

)
dt

(
RT

0 – 1
)

< 0 a.s. if (A) holds;

lim sup
t→∞

1
t

log
I(t)
I(0)

≤ 1
T

∫ T

0

[
[Nβ(s) – θ (μ(s) + δ(s))]2

2N2σ 2(s)
– (1 – θ )

(
μ(s) + δ(s)

)
]

ds < 0

a.s. if (B) holds.

Moreover, (S(t), I(t)) exponentially tends to (N , 0) as t → ∞.

Remark 2 From Theorems 1.2 and 1.3, under the assumption: supt≥0(σ 2(t)N – μ(t)) ≤ 0,
the disease is persistent if RT

0 > 1, while it goes extinct if RT
0 < 1. So we consider RT

0 as the
threshold of the stochastic model (4).

Remark 3 Let the coefficients of model (4) all be constants and θ = 0, then Theorems 1.2
and 1.3 are consistent with the related results in [12]. Thus, some known results are gen-
eralized and improved.

2 Proofs
First, we introduce some results concerning the periodic Markov process.

Definition 2.1 (see [20]) A stochastic process ξ (t) = ξ (t,ω), t ∈ R, is said to be periodic
with period T if, for every finite sequence of numbers t1, t2, . . . , tn, the joint distribution of
random variables ξ (t1 + h), . . . , ξ (tn + h) is independent of h, where h = kT (k = ±1,±2, . . .).
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Consider the stochastic differential equation

X(t) = X(t0) +
∫ t

t0

f
(
s, X(s)

)
ds +

∫ t

t0

g
(
s, X(s)

)
dB(s), X ∈ Rn. (6)

Lemma 2.2 (see [20]) Suppose that the coefficient of (6) is T-periodic in t and satisfies the
condition

∣
∣f (t, x) – f (t, y)

∣
∣ +

∣
∣g(t, x) – g(t, y)

∣
∣ ≤ B|x – y| and

∣
∣f (t, x)

∣
∣ +

∣
∣g(t, x)

∣
∣ ≤ B

(
1 + |x|)

for some constant B > 0 in every cylinder I × D; and suppose further that there exists a
function V (t, x) ∈ C2 in Rn which is T-periodic in t and satisfies the following conditions:

inf|x|≥r

{
V (t, x)

} → ∞ as r → ∞ and sup
|x|>R

LV (x) = –AR → –∞ as R → ∞,

where the operator L is given by L = ∂
∂t +

∑n
l=1 fl(t, x) ∂

∂xl
+ 1

2
∑n

i,j=1 gi(t, x)gj(t, x) ∂2

∂xi ∂xj
. Then

there exists a solution of (6) which is a T-periodic Markov process.

Proof of Theorem 1.1 Set (S(0), I(0)) ∈ 	, then (S(t), I(t)) ∈ 	 for all t > 0. Let y = ln N
N–I ,

then y(t) ∈ R+ such that

dy(t) = –
[

μ(t)ey(t) – μ(t) –
β(t)N(ey(t) – 1)

(1 + Na(t))ey(t) – Na(t)

–
σ 2(t)N2(ey(t) – 1)2

2[(1 + Na(t))ey(t) – Na(t)]2

]

dt

– δ(t)
(
ey(t) – 1

)
dt +

σ (t)N(ey(t) – 1)
(1 + Na(t))ey(t) – Na(t)

dB(t). (7)

Note that S(t) + I(t) ≡ N , we have only to prove (7) admits the periodic solution in the
sequel. Obviously, the coefficients of (7) are all periodic. Denote

λ(t) = β(t)N – μ(t) – δ(t) –
(p + 1)σ 2(t)N2

2
.

Since RT
0 > 1, we can choose p > 0 such that 1

T
∫ T

0 λ(t) dt > 0. Define a C2-function V :
[0,∞) × R2

+ → R by

V
(
t, y(t)

)
=

γ (t)
p

[
N(ey(t) – 1)

ey(t)

]–p

+
ey(t)

N
,

where γ (t) = p 1
T

∫ T
0 λ(t) dt

∫ t+T
t ep

∫ t
s λ(u) du ds

1–e–p
∫ T
0 λ(s) ds

is the uniquely positive T-periodic solution of the
equation

dγ (t)
dt

= pλ(t)γ (t) – p
1
T

∫ T

0
λ(t) dt. (8)
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Applying the Itô formula to model (7), we get

dV
(
t, y(t)

)
= LV

(
t, y(t)

)
dt

+
{

σ (t)N[ N(ey(t)–1)
ey(t) ]

–p

(1 + Na(t))ey(t) – Na(t)
–

σ (t)N(ey(t) – 1)ey(t)

N[(1 + Na(t))ey(t) – Na(t)]

}

dB(t),

where

LV
(
t, y(t)

)
= –

[
N(ey(t) – 1)

ey(t)

]–p(
β(t)N

(1 + Na(t))ey(t) – Na(t)
–

(
μ(t) + δ(t)

)
)

γ (t)

–
1
p

dγ (t)
dt

–
[

N(ey(t) – 1)
ey(t)

]–p (p + 1)σ 2(t)N2

2[(1 + Na(t))ey(t) – Na(t)]2 γ (t) –
μ(t)e2y(t)

N

–
δ(t)ey(t)(ey(t) – 1)

N

+
ey(t)

N

[

μ(t) +
β(t)N(ey(t) – 1)

(1 + Na(t))ey(t) – Na(t)
+

σ 2(t)N2(ey(t) – 1)2

[(1 + Na(t))ey(t) – Na(t)]2

]

= –
[

N(ey(t) – 1)
ey(t)

]–p[(

β(t)N –
(
μ(t) + δ(t)

)
–

(p + 1)σ 2(t)N2

2

)

γ (t)

–
1
p

dγ (t)
dt

]

–
μ(t)e2y(t)

2N
+ H(t). (9)

Here,

H(t) ≤
[

N(ey(t) – 1)
ey(t)

]–p
β(t)N2a(t)(ey(t) – 1)

(1 + Na(t))ey(t) – Na(t)
–

μ(t)e2y(t)

2N
–

δ(t)ey(t)(ey(t) – 1)
N

+
ey(t)

N

[

μ(t) +
β(t)N(ey(t) – 1)

(1 + Na(t))ey(t) – Na(t)
+

σ 2(t)N2(ey(t) – 1)2

[(1 + Na(t))ey(t) – Na(t)]2

]

≤ –
μ(t)e2y(t)

2N
+

ey(t)

N
[
μ(t) + β(t)N + σ 2(t)N2] + β(t)N3–pa(t)

≤ L0 =: sup
x≥0

{

–
μ∗x2

2N
+

x
N

[
μ∗ + β∗N +

(
σ ∗)2N2] + β∗N3–pa∗

}

.

In view of (8), we obtain

LV
(
t, y(t)

) ≤ –
1
T

∫ T

0
λ(t) dt

[
N(ey(t) – 1)

ey(t)

]–p

–
μ∗e2y(t)

2N
+ L0.

Define a bounded closed setD = [ 1
r , r], where r is a sufficiently large positive number. Then

LV
(
t, y(t)

)

≤ max

{

–
1
T

∫ T

0
λ(t) dt

[
N

(
1 – e– 1

r
)]–p

+ L0, –
μ∗e2r

2N
+ L0

}

→ –∞ as r → ∞.
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On the other hand,

inf
y≥r

{
V (t, y)

} ≥ er

N
→ ∞ and inf

0<y≤ 1
r

{
V (t, y)

} ≥ γ∗
p

[
N

(
1 – e

1
r
)]–p → ∞ as r → ∞.

By Lemma 2.2, (7) has at least one positive periodic solution. Thus, (4) has the periodic
solution which lies in 	. The proof is complete. �

Remark 4 The proofs of Theorem 1.2 and (A) in Theorem 1.3 are similar to those in [12],
and hence are omitted.

Proof of (B) in Theorem 1.3 By the Itô formula, from (4) we have

d ln I(t) =
[

β(t)S(t)
1 + a(t)I(t)

–
(
μ(t) + δ(t)

)
–

σ 2(t)S2(t)
2[1 + a(t)I(t)]2

]

dt +
σ (t)S(t)

1 + a(t)I(t)
dB(t)

≤
[

[Nβ(t) – θ (μ(t) + δ(t))]S(t)
N[1 + a(t)I(t)]

– (1 – θ )
(
μ(t) + δ(t)

)
–

σ 2(t)S2(t)
2[1 + a(t)I(t)]2

]

dt

+
σ (t)S(t)

1 + a(t)I(t)
dB(t)

≤
[

[Nβ(t) – θ (μ(t) + δ(t))]2

2N2σ 2(t)
– (1 – θ )

(
μ(t) + δ(t)

)
]

dt +
σ (t)S(t)

1 + a(t)I(t)
dB(t).

After taking integration, we get

1
t

ln
I(t)
I(0)

≤ 1
t

∫ t

0

[
[Nβ(s) – θ (μ(s) + δ(s))]2

2N2σ 2(s)
– (1 – θ )

(
μ(s) + δ(s)

)
]

ds +
M(t)

t
,

where M(t) =
∫ t

0
σ (s)S(s)

1+a(s)I(s) dB(s) is a local continuous martingale such that limt→∞ M(t)
t = 0

due to the strong law of large numbers for martingales. Then we conclude

lim sup
t→∞

1
t

ln
I(t)
I(0)

≤ 1
T

∫ T

0

[
[Nβ(s) – θ (μ(s) + δ(s))]2

2N2σ 2(s)
– (1 – θ )

(
μ(s) + δ(s)

)
]

ds < 0.

The proof is complete. �

3 Concluding remarks
In this paper, a stochastic SIS epidemic model with periodic coefficients is formulated and
studied. First, we define a parameter RT

0 . Under assumption that the total population is
fixed by N , we show that the model has at least one random periodic solution which is
nontrivial and located in (0, N) × (0, N) if RT

0 > 1. These may give better understanding
of how the periodic seasonal variation affects the disease. Then, several conditions for
persistence in mean and extinction of the disease are also established. In detail,

• When RT
0 < 1, the disease will go extinct with probability 1 under extra mild

conditions.
• When RT

0 > 1, the disease will be persistent in mean.
In case that the noise is small, it is clear that RT

0 is the threshold of model (4) which can be
used easily to determine whether the disease will survive or not.
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Let σ ≡ 0, we have RT =
1
T

∫ T
0 [β(t)N] dt

1
T

∫ T
0 [μ(t)+δ(t)] dt

, which is the threshold of the corresponding

deterministic SIS model. Clearly, RT
0 < RT , this means that the disease may go extinct due

to the noises, while the deterministic SIS model predicts its survival. (B) in Theorem 1.3
shows that large noise can lead the disease to die out. In general, the noise has negative
effects on persistence of the disease.

Comparing with the autonomous SIS model [12, 13], the threshold RT
0 (see [13]) is re-

placed by its averaged value in one period, and thus the result is generalized.
Finally, we want to address one conjecture on extinction of the disease, i.e.,
• When RT

0 < 1, the disease modeled by (4) will almost surely go extinct without any
extra condition.
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