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Abstract
In this paper, we study global solutions to the following strongly coupled systems:

{
ut = ∇ · (D1∇u –χu∇v) + (a1 – b1u – c1v)u, x ∈ �, t > 0,

0 = D2�v + (a2 – b2u – c2v)v, x ∈ �, t > 0,

over � ⊂ R
N , N ≥ 2, subject to homogeneous Neumann boundary conditions and

nonnegative initial data. Here Di , ai , bi and ci , i = 1, 2, are positive constant. It is proved
that this system admits global and bounded classical solutions for all χ > 0. We also
prove the global well-posedness for its repulsive counterpart

{
ut = ∇ · (D1∇u +χu∇v) + (a1 – b1u – c1v)u, x ∈ �, t > 0,

0 = D2�v + (a2 – b2u – c2v)v, x ∈ �, t > 0,

provided that b1 >
a2b2χ (N–2)

c2D2N
. Our results extend (Discrete Contin. Dyn. Syst.

35:1239–1284, 2015) to higher dimensions and to its repulsive case.

Keywords: Lotka–Volterra competition system; Global solution; Uniform
boundedness

1 Introduction
This paper studies the existence and uniform boundedness of global solutions to the
following parabolic–elliptic quasilinear system over a bounded domain � in dimension
N ≥ 2:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (D1∇u – χu∇v) + (a1 – b1u – c1v)u, x ∈ �, t > 0,

0 = D2�v + (a2 – b2u – c2v)v, x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ �,

(1.1)

where u and v are functions of space x and time t. Di, ai, bi and ci, i = 1, 2, are positive
constants. n is the unit outer normal to the boundary ∂�. (1.1) is the parabolic–elliptic
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system of advective competition system studied in [1]. Here u(x, t) and v(x, t) represent the
population density of the two competing species at space–time location (x, t). In particular
when χ > 0, (1.1) describes the spatial–temporal dynamics of u and v such that the former
invades the latter to seek competition subject to Lotka–Volterra kinetics.

It is proved in [1] that, when N = 1, (1.1) and its fully parabolic counter-part admit global
classical solutions which are uniformly bounded, and when N ≥ 2, (1.1) admit global and
uniformly bounded classical solutions provided that χ < 0 and b1 is sufficiently large. In
this current work, we extend the results in [1] on the global existence and uniform bound-
edness of classical solutions to (1.1) and our first main result states as follows.

Theorem 1.1 Let � ⊂R
N , N ≥ 2 be a bounded domain and χ > 0 be an arbitrary positive

constant. Assumes that ai, bi, ci and Di, i = 1, 2, are positive constants. Then, for any non-
negative u0 ∈ C0(�̄), there exists one couple (u, v) of nonnegative functions which solve (1.1)
classically in � × (0,∞). Moreover, the solutions are uniformly bounded in the following
sense: 0 < v(x, t) < a2

c2
,∀(x, t) ∈ �× (0,∞) and ‖u(·, t)‖L∞ ≤ C,∀t ∈ (0,∞), for some positive

constant C.

Equation (1.1) is very similar to the Keller–Segel type chemotaxis system which models
the aggregated movement of cellular organisms towards the region high chemical concen-
tration [2]. However, they have quite different kinetics in light that, in chemotaxis models,
it is attraction that supports patterns, while here in (1.1) it is repulsion that supports pat-
terns, as suggested by the analysis in [1]. It is well known that large advection rate usually
supports blow-ups in chemotaxis system when there is no cellular growth [3]. On the
other hand, the logistic growth tends to inhibit solutions from blowing up in finite or in-
finite time, however, this may not be sufficient when the diffusion is weak or chemotaxis
is strong [4–6]. Theorem 1.1 shows that, for the attractive Lotka–Volterra competition
system, the solutions are uniformly bounded and blow up in finite or infinite time can-
not occur. It is worthwhile to mention that besides the competition model, the advection,
which is referred to as the prey–taxis, has been studied in predator–prey models by vari-
ous authors. See [7–14].

When the advection rate is positive, we have the following repulsive system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (D1∇u + χu∇v) + (a1 – b1u – c1v)u, x ∈ �, t > 0,

0 = D2�v + (a2 – b2u – c2v)v, x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ �,

(1.2)

where all the constants are assumed to be positive as in (1.1). In [1], it is proved that when
b1D2
b2χ

is sufficiently large, (1.2) admits global and bounded classical solutions. In this paper
we extend the result [1] to the following theorem.

Theorem 1.2 Let all the conditions in Theorem 1.1 hold. Suppose further that b1 >
a2b2χ (N–2)

c2D2N . Then (1.2) admits global and bounded classical solutions and the statements
in Theorem 1.1 hold true for (1.2).

Remark 1 We would like to point out that when N = 2, Theorem 1.2 holds for any b1 > 0,
and then this fact, together with Theorem 1.1, implies that both (1.1) and (1.2) admit global
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and uniformly bounded classical solutions regardless of the sign and size of the advection
rate χ . We note that fully parabolic system of (1.2) was studied by [15] recently, and global
existence and boundedness were established provided that the sensitivity function decays
super linearly with respect to v. A bifurcation analysis is performed to establish nontrivial
patterns.

2 Preliminaries
Our proof of the global existence of (1.1) and (1.2) starts with the local existence and its
extensibility criterion due to the classical theory of Amann [16] (Theorem 3.5). Indeed,
it is obvious that (1.1) and (1.2) are strictly parabolic systems, therefore both admit lo-
cally classical solutions in � × Tmax, where Tmax ∈ (0,∞] is the so called maximal exis-
tence time. Moreover, Tmax = ∞ if ‖u(·, t)‖L∞ < C for each t ∈ (0, Tmax), or Tmax < ∞ and
limt→T–

max ‖u(·, t)‖L∞ = ∞. We first collect some important properties of local solutions
(u, v) to (1.1) or (1.2) in � × (0, Tmax).

Lemma 2.1 Suppose that u0 ≥ 0, �≡ 0 in �̄. Let (u, v) be a classical nonnegative solution of
(1.1)/(1.2) in � × (0, Tmax). Then there exists a positive constant C1 dependent on ‖u0‖L1

such that∫
�

u(x, t) dx ≤ C1, ∀t ∈ (0, Tmax) (2.1)

and

0 ≤ v(x, t) ≤ a2

c2
, ∀(x, t) ∈ � × (0, Tmax). (2.2)

Proof First of all, we see that (2.2) is immediate from standard maximum principles for
elliptic equations. To verify (2.1), we integrate the u-equation in (1.1) over � to get

d
dt

∫
�

u = a1

∫
�

u – b1

∫
�

u2 – c1

∫
�

uv ≤ a1

∫
�

u – b1

∫
�

u2. (2.3)

Since (a1 + 1)
∫
�

u ≤ b1
∫
�

u2 + (a1+1)2

4b1
|�| by Young’s inequality, we find that

d
dt

∫
�

u +
∫

�

u ≤ (a1 + 1)2

4b1
|�|,

then we conclude from Grönwall’s lemma that
∫

�

u ≤ max

{∫
�

u0,
4b1

(a1 + 1)2|�|
}

,

from which (2.1) follows. Here we have not used the sign of χ ; hence the arguments carry
over for (1.2). �

3 Proof of Theorem 1.1
In order to prove Theorem 1.1, we shall see that it suffices to show the uniform bounded-
ness of ‖u(·, t)‖L∞ for t ∈ (0,∞). To this end, we first prove the boundedness of ‖u(·, t)‖Lp

for each finite p, then we can send p to ∞ by the Moser–Alikakos iteration [17].
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Lemma 3.1 For each p ∈ [2,∞), there exists a positive constant Cp which depends on
‖u0‖Lp and the system parameters such that

∫
�

up(x, t) ≤ Cp, ∀t ∈ (0, Tmax). (3.1)

Proof Testing the u-equation in (1.1) by up–1 and then integrating it over � by parts, we
obtain

1
p

d
dt

∫
�

up

=
∫

�

D1up–1�u – χ

∫
�

up–1∇ · (u∇v) +
∫

�

(a1 – b1u – c1v)up

= –(p – 1)D1

∫
�

up–2|∇u|2 +
p – 1

p
χ

∫
�

∇up · ∇v +
∫

�

(a1 – b1u – c1v)up

= –
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2 –

p – 1
p

χ

∫
�

up�v +
∫

�

(a1 – b1u – c1v)up. (3.2)

From the v-equation in (1.1) we have

�v =
b2

D2
uv –

(
a2

D2
–

c2

D2
v
)

v. (3.3)

By substituting (3.3) into (3.2), we derive

1
p

d
dt

∫
�

up +
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2

= –
p – 1

p
χ

∫
�

up
(

b2

D2
uv –

(
a2

D2
–

c2

D2
v
)

v
)

+
∫

�

(a1 – b1u – c1v)up

= –
(p – 1)b2χ

pD2

∫
�

vup+1 +
p – 1

p
χ

∫
�

(
a2

D2
–

c2

D2
v
)

vup

+
∫

�

(a1 – c1v)up –
∫

�

b1up+1

= –
∫

�

(
b1 +

(p – 1)b2χ

pD2
v
)

up+1 +
∫

�

(
a1 – c1v +

p – 1
p

χ

(
a2

D2
–

c2

D2
v
)

v
)

up

≤ –b̃1

∫
�

up+1 + ã1

∫
�

up, (3.4)

where ã1 and b̃1 are both positive constants. Solving this differential inequality by Grön-
wall’s lemma gives rise to (3.1). �

Proof of Theorem 1.1 Choosing p = N + 1 in (3.1), we conclude from (2.2) and the ellip-
tic regularity argument that ‖v‖W 2,N+1 ≤ C for some positive constant C independent of t,
then we conclude from the embedding (for ∇v) W 1,N+1(�) ↪→ L∞(�) or Morrey’s inequal-
ity (e.g., p. 280 of [18])that ‖∇v‖L∞ < C.

For simplicity of notations and without loss of generality, we assume that ‖∇v‖L∞ < 1.
Indeed, in the coming analysis, we can set χ̃ := χ‖∇v‖L∞ , and by skipping the tilde we can



Zhang Advances in Difference Equations  (2018) 2018:52 Page 5 of 8

proceed the same way as we shall do. Now, similar to (3.2), for each p > 2 we obtain

1
p

d
dt

∫
�

up ≤ –
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2 +

2(p – 1)χ
p

∫
�

u
p
2
∣∣∇u

p
2
∣∣ + a1

∫
�

up

≤ –
2D1(p – 1)

p2

∫
�

|∇u
p
2 |2 +

(
(p – 1)χ2

2D1
+ a1

)∫
�

up, (3.5)

where the last inequality follows from Young’s inequality. Now the rest of the arguments
follow from the standard Moser–Alikakos Lp-iteration and we shall sketch the main parts.
We recall from Gagliardo–Nirenberg–Sobolev inequality that, for any u ∈ H1 and any
ε > 0

∥∥u
p
2
∥∥2

L2(�) ≤ ε
∥∥∇u

p
2
∥∥2

L2(�) + C
∥∥u

p
2
∥∥2

L1(�),

and where C is a positive constant dependent on � and ε. Let ε = 2D2
1(p–1)

p2((p–1)χ2+2a1D1) , then
D1(p–1)

p2ε
= (p–1)χ2

2D1
+ a1 and we have from (3.5) that for p large there exists C2 (independent

of p) such that

d
dt

∫
�

up ≤ –
(

p(p – 1)χ2

2D1
+ pa1

)∫
�

up +
2p(p – 1)C2χ

2(1 + pχ

D1
)

D1

(∫
�

u
p
2

)2

.

Solving this inequality with κ = p(p–1)χ2

2D1
+ pa1, we obtain

∫
�

up ≤ e–κt
∫

�

up
0 + 4C2

(
1 +

pχ

D1

)
sup

t∈(0,T)

(∫
�

u
p
2

)2

.

Let M(p) = max{‖u0‖L∞ , supt∈(0,T) ‖u(·, t)‖Lp}, it follows that for p large there exists C3 in-
dependent of p

M(p) ≤
(

C3 +
C3pχ

D1

) 1
p

M(p/2).

Choosing p = 2i and then sending i → ∞, we can apply a Moser–Alikakos iteration [16]
to obtain the boundedness of M(∞), therefore ‖u(·, t)‖L∞ is uniformly bounded in (0, T)
for each T ∈ (0,∞). Therefore we must have Tmax = ∞ and the solution (u, v) is globally
bounded. Finally, one can apply standard elliptic and parabolic regularity theory to show
that the solution is classical. �

4 Proof of Theorem 1.2
We proceed to prove Theorem 1.2. First we present the following result parallel to
Lemma 3.1.

Lemma 4.1 Let (u, v) be a solution of (1.2) in � × (0, Tmax). Let p∗ > 1 be given by

p∗ =

⎧⎪⎨
⎪⎩

a2b2χ
c2D2

a2b2χ
c2D2

–b1
if b1 < a2b2χ

c2D2
,

∞ if b1 ≥ a2b2χ

c2D2
.
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Then, for each p ∈ (1, p∗), there exists a positive constant Cp dependent on ‖u0‖Lp(�) such
that

∫
�

up(x, t) ≤ Cp, ∀t ∈ (0, Tmax). (4.1)

Proof Similar to (3.2) we test the u-equation in (1.2) by up–1 and then integrate it over �

by parts to have

1
p

d
dt

∫
�

up +
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2

≤ –
∫

�

(
b1 –

(p – 1)b2χ

pD2
v
)

up+1 +
∫

�

(
a1 +

(p – 1)c2χ

pD2
v2

)
up

≤ –
(

b1 –
(p – 1)a2b2χ

pc2D2

)∫
�

up+1 +
(

a1 +
(p – 1)a2

2χ

pc2D2

)∫
�

up. (4.2)

It is obvious that μ := b1 – (p–1)a2b2χ

pc2D2
is positive thanks to the condition on p. We can use

Young’s inequality and Hölder’s inequality to find that for some positive constant C4

1
p

d
dt

∫
�

up +
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2

≤ –
μ

2

∫
�

up+1 + C4 ≤ –
μ

2|�| 1
p

(∫
�

up
) p+1

p
+ C4, (4.3)

from which (4.1) follows thanks to the Grönwall lemma. �

Lemma 4.2 Let (u, v) be a nonnegative local solution of (1.2) in �× (0, Tmax). Suppose that
the following condition holds:

b1 >
a2b2χ (N – 2)

c2D2N
. (4.4)

Then, for each p ∈ [1,∞), there exists a positive constant Cp dependent on ‖u0‖Lp(�) such
that

∫
�

up(x, t) ≤ Cp, ∀t ∈ (0, Tmax). (4.5)

Proof Thanks to (4.4) there always exists p0 ∈ ( N
2 , p∗) such that b1 > (p0–1)a2b2χ

p0c2D2
, which, in

the light of Lemma 4.1, implies that

∫
�

up0 (x, t) ≤ Cp0 , ∀t ∈ (0,∞). (4.6)

Now each for p > p0, similar to (3.5) we obtain

1
p

d
dt

∫
�

up +
4(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2 ≤ C5

(∫
�

up+1 + 1
)

(4.7)
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from (4.2) where C5 is a positive constant independent of p. To further estimate (4.7), we
use Gagliardo–Nirenberg interpolation inequality and Young’s inequality to estimate that

∫
�

up+1 =
∥∥u

p
2
∥∥ 2(p+1)

p

L
2(p+1)

p (�)

≤ C6
∥∥∇u

p
2
∥∥ 2(p+1)

p h
L2(�) · ∥∥u

p
2
∥∥ 2(p+1)

p (1–h)

L
2p0

p (�)
+ C6

∥∥u
p
2
∥∥2

L
2p0

p (�)

≤ C7
∥∥∇u

p
2
∥∥ 2(p+1)

p h
L2(�) + C7, (4.8)

where

h =
p

2(p+1) – p
2p0

1
2 – 1

N – p
2p0

∈ (0, 1) (4.9)

and we have applied the fact that ‖u(·, t)‖Lp0 is bounded thanks to (4.6). Moreover, because
of p > p0 > N

2 , we note that

2(p + 1)
p

h =
1 – p+1

2p0
1
2 – 1

N – p
2p0

< 2

and this implies that

∫
�

up+1 ≤ ε
∥∥∇u

p
2
∥∥2

L2(�) + Cε .

Finally, we conclude from (4.7)–(4.9) that

1
p

d
dt

∫
�

up +
2(p – 1)D1

p2

∫
�

∣∣∇u
p
2
∣∣2 ≤ –C8

(∫
�

up
) p+1

p
+ C9. (4.10)

This gives rise to (4.5) and the proof of Lemma 4.2 completes. �

Proof of Theorem 1.2 By choosing p > N + 1 fixed in (4.5), we have ‖∇v(·, t)‖L∞ < C for all
t ∈ (0,∞). Then by the same arguments as in (3.5) we can show the uniform boundedness
of ‖u(·, t)‖L∞ for all t ∈ (0,∞). Therefore Tmax = ∞ and the local solution (u, v) is global.
Moreover, one can apply the standard regularity theory to show that both u and v are
classical in �̄ × (0,∞). �
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