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Abstract
In this paper, the numerical stability of a partial differential equation with piecewise
constant arguments is considered. Firstly, the θ -methods are applied to approximate
the original equation. Secondly, the numerical asymptotic stability conditions are
given when the mesh ratio and the corresponding parameter satisfy certain
conditions. Thirdly, the conditions under which the numerical stability region
contains the analytic stability region are also established. Finally, some numerical
examples are given to demonstrate the theoretical results.
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1 Introduction
Recently, differential equations with piecewise constant arguments (EPCA) have received
much attention from a number of investigators [1–5] in such various fields as population
dynamics, physics, mechanical systems, control science and economics. The theory of
EPCA was initiated in 1983 and 1984 with the contributions of Cooke and Wiener [6], Shah
and Wiener [7], Wiener [8], and it has been developed by many authors [9–13]. In 1993,
Wiener, pioneer of EPCAs, recollects in the book [14] the investigation of EPCA until
that moment. Later, continuous efforts have been made devoted to considering various
properties of EPCA [15–18].

Generally speaking, in many cases analytic solutions of EPCA are hard to achieve and
we are forced to use numerical methods to approximate them. Nevertheless, compared
with the qualitative investigation of EPCA, the numerical study of EPCA is very late and
rare. The original work for this field should be attributed to Liu et al. [19]. We think that
it is the key step toward solving EPCA by numerical methods. Next, several results about
the convergence, the stability and the dissipativity of numerical solutions for EPCA have
been reported [20–24]. However, all of them are based on ordinary differential equations
(ODEs). To the best of the author’s knowledge, only few results were presented in the case
of numerical treatment of partial differential equations with piecewise constant arguments
(PEPCA) [25, 26]. In these two articles, the authors investigated the numerical stability of
θ -methods and Galerkin methods for a simple PEPCA, respectively. In contrast to [25,
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26], in the present paper we study a more complicated model and analyze the numerical
stability.

In this paper, we consider the following initial boundary value problem (IBVP):
⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx(x, 2[ t+1
2 ]), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = v(x),

(1)

where a, b, c ∈ R and a �= 0, u : � = [0, 1] × [0,∞) → R, v : [0, 1] → R, [·] signifies the
greatest integer function.

For the sake of the coming discussion, we derive the following stability conditions of (1)
by using the similar method in [27, 28].

Lemma 1 If the following conditions are satisfied:
⎧
⎨

⎩

(a2 + b + c)((a2 + b – c)e–a2π2j2 – (b – a2 – c)) > 0,

(a2 + b + c)((a2 + b + c)e–a2π2j2 – (b – a2 + c)) > 0,
(2)

where

c �= a2

e–a2π2j2 – 1
, a �= 0,

then the zero solution of the equation in (1) is asymptotically stable.

2 The stability of the numerical solution
In this section, we consider the numerical asymptotic stability of θ -methods for (1).

2.1 The difference equation
Let �t > 0 and �x > 0 be time and spatial stepsizes, respectively. We also assume that �t
satisfies �t = 1/m, where m ≥ 1 is an integer, and �x satisfies �x = 1/p for p ∈ N. Define
the mesh points

tn = n�t, n = 0, 1, 2, . . . ,

and

xi = i�x, i = 0, 1, 2, . . . , p.

Applying the θ -methods to (1), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
i –un

i
�t

= θ{a2 un+1
i+1 –2un+1

i +un+1
i–1

�x2 + b uh(xi+1,[tn+1])–2uh(xi ,[tn+1])+uh(xi–1,[tn+1])
�x2

+ c uh(xi+1,2[ tn+1+1
2 ])–2uh(xi ,2[ tn+1+1

2 ])+uh(xi–1,2[ tn+1+1
2 ])

�x2 }
+ (1 – θ ){a2 un

i+1–2un
i +un

i–1
�x2 + b uh(xi+1,[tn])–2uh(xi ,[tn])+uh(xi–1,[tn])

�x2

+ c uh(xi+1,2[ tn+1
2 ])–2uh(xi ,2[ tn+1

2 ])+uh(xi–1,2[ tn+1
2 ])

�x2 },
un

0 = un
p = 0, n = 0, 1, 2, . . . ,

u0
i = v(xi), i = 0, 1, 2, . . . , p,

(3)
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where un
i , uh(xi, 2[(tn + 1)/2]) and uh(xi, [tn]) are approximations to u(xi, tn), u(xi, 2[(tn +

1)/2]) and u(xi, [tn]), respectively.
Denote n = km + l, k = 0, 1, 2, . . . , l = 0, 1, . . . , m – 1, by the same technique in [29], we can

define uh(xi, [tn +ηh]) � ukm
i , uh(xi, 2[(2k – 1 + lh +ηh + 1)/2]) � u2km

i and uh(xi, 2[(2k + lh +
ηh + 1)/2]) � u2km

i , where η ∈ [0, 1]. So the equation in (3) reduces to the following two
recurrence relations:

ukm+l+1
i – ukm+l

i
�t

= a2θ

(
ukm+l+1

i+1 – 2ukm+l+1
i + ukm+l+1

i–1
�x2

)

+ a2(1 – θ )
(

ukm+l
i+1 – 2ukm+l

i + ukm+l
i–1

�x2

)

+ (b + c)
(

ukm
i+1 – 2ukm

i + ukm
i–1

�x2

)

, (4)

when k is even and

ukm+l+1
i – ukm+l

i
�t

= a2θ

(
ukm+l+1

i+1 – 2ukm+l+1
i + ukm+l+1

i–1
�x2

)

+ a2(1 – θ )
(

ukm+l
i+1 – 2ukm+l

i + ukm+l
i–1

�x2

)

+ b
(

ukm
i+1 – 2ukm

i + ukm
i–1

�x2

)

+ c
(

u(k+1)m
i+1 – 2u(k+1)m

i + u(k+1)m
i–1

�x2

)

, (5)

when k is odd.
Basically, in each interval [n, n + 1), the equation in (1) can be seen as an original PDE, so

the θ -methods for (1) are convergent of O(�t + �x2) if θ �= 1/2, of O(�t2 + �x2) if θ = 1/2.
A more detailed analysis on the convergence of the θ -methods can be found in [30, 31].

Let r = �t/�x2, so (4) and (5) become

–a2θrukm+l+1
i+1 +

(
1 + 2a2θr

)
ukm+l+1

i – a2θrukm+l+1
i–1

= a2(1 – θ )rukm+l
i+1 +

(
1 – 2a2(1 – θ )r

)
ukm+l

i + a2(1 – θ )rukm+l
i–1

+ (b + c)r
(
ukm

i+1 – 2ukm
i + ukm

i–1
)

(6)

and

–a2θrukm+l+1
i+1 +

(
1 + 2a2θr

)
ukm+l+1

i – a2θrukm+l+1
i–1

= a2(1 – θ )rukm+l
i+1 +

(
1 – 2a2(1 – θ )r

)
ukm+l

i + a2(1 – θ )rukm+l
i–1

+ br
(
ukm

i+1 – 2ukm
i + ukm

i–1
)

+ cr
(
u(k+1)m

i+1 – 2u(k+1)m
i + u(k+1)m

i–1
)
, (7)

respectively. Moreover, let i = 1, 2, . . . , p – 1, (6) and (7) yield

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + 2a2θr –a2θr · · · 0 0
–a2θr 1 + 2a2θr · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 + 2a2θr –a2θr
0 0 · · · –a2θr 1 + 2a2θr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm+l+1
1

ukm+l+1
2

...

...
ukm+l+1

p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω a2(1 – θ )r · · · 0 0
a2(1 – θ )r ω · · · 0 0

...
...

. . .
...

...
0 0 · · · ω a2(1 – θ )r
0 0 · · · a2(1 – θ )r ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm+l
1

ukm+l
2
...
...

ukm+l
p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ (b + c)r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–2 1 · · · 0 0
1 –2 · · · 0 0
...

...
. . .

...
...

0 0 · · · –2 1
0 0 · · · 1 –2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm
1

ukm
2
...
...

ukm
p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + 2a2θr –a2θr · · · 0 0
–a2θr 1 + 2a2θr · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 + 2a2θr –a2θr
0 0 · · · –a2θr 1 + 2a2θr

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm+l+1
1

ukm+l+1
2

...

...
ukm+l+1

p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω a2(1 – θ )r · · · 0 0
a2(1 – θ )r ω · · · 0 0

...
...

. . .
...

...
0 0 · · · ω a2(1 – θ )r
0 0 · · · a2(1 – θ )r ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm+l
1

ukm+l
2
...
...

ukm+l
p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ br

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–2 1 · · · 0 0
1 –2 · · · 0 0
...

...
. . .

...
...

0 0 · · · –2 1
0 0 · · · 1 –2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ukm
1

ukm
2
...
...

ukm
p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ cr

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–2 1 · · · 0 0
1 –2 · · · 0 0
...

...
. . .

...
...

0 0 · · · –2 1
0 0 · · · 1 –2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(k+1)m
1

u(k+1)m
2

...

...
u(k+1)m

p–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

respectively, where ω = 1 – 2a2(1 – θ )r.
Introducing un = (un

1, un
2, . . . , un

p–1)T , n = 0, 1, 2, . . . , v(x) = (v(x1), v(x2), . . . , v(xp–1))T and
the (p – 1) × (p – 1) triple-diagonal matrix F = diag(–1, 2, –1), then (3) becomes

⎧
⎨

⎩

(I + a2θrF)ukm+l+1 = (I – a2(1 – θ )rF)ukm+l – (b + c)rFukm,

u0 = v(x),
(8)
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when k is even, and
⎧
⎨

⎩

(I + a2θrF)ukm+l+1 = (I – a2(1 – θ )rF)ukm+l – brFukm – crFu(k+1)m,

u0 = v(x),
(9)

when k is odd.

2.2 Stability analysis
From (8), we obtain

ukm+l+1 = Rukm+l + Sukm, (10)

where

R =
(
I + a2θrF

)–1(I – a2(1 – θ )rF
)
,

S = –(b + c)r
(
I + a2θrF

)–1F.

By (9), we also obtain

ukm+l+1 = Rukm+l + S1ukm + S2u(k+1)m, (11)

where

R =
(
I + a2θrF

)–1(I – a2(1 – θ )rF
)
,

S1 = –br
(
I + a2θrF

)–1F,

S2 = –cr
(
I + a2θrF

)–1F.

Iteration of (10) gives

ukm+l+1 =
(
Rl+1 +

(
Rl+1 – I

)
(R – I)–1S

)
ukm, (12)

in the same way, from (11) we have

ukm+l+1 =
(
Rl+1 +

(
Rl+1 – I

)
(R – I)–1S1

)
ukm +

(
Rl+1 – I

)
(R – I)–1S2u(k+1)m. (13)

Thus we get

un =

⎧
⎪⎪⎨

⎪⎪⎩

(Rl + (Rl – I)(R – I)–1S)ukm, k is even,

(Rl + (Rl – I)(R – I)–1S1)ukm

+ (Rl – I)(R – I)–1S2u(k+1)m, k is odd.

(14)

So

un =

⎧
⎪⎪⎨

⎪⎪⎩

(Rl + (Rl – I)(R – I)–1S)u2jm, n = 2jm + l,

(Rl + (Rl – I)(R – I)–1S1)u(2j–1)m

+ (Rl – I)(R – I)–1S2u2jm, n = (2j – 1)m + l.

(15)
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Let l = m – 1 in (15) gives

⎧
⎨

⎩

u(2j+1)m = (Rm + (Rm – I)(R – I)–1S)u2jm, j = 0, 1, . . . ,

u2jm = (I – (Rm – I)(R – I)–1S2)–1(Rm + (Rm – I)(R – I)–1S1)u(2j–1)m, j = 1, 2, . . . .

Hence we have u(2j+1)m = Mu(2j–1)m, where

M =
(
Rm +

(
Rm – I

)
(R – I)–1S

)(
Rm +

(
Rm – I

)
(R – I)–1S1

)(
I –

(
Rm – I

)
(R – I)–1S2

)–1.

Therefore

un =

⎧
⎪⎪⎨

⎪⎪⎩

(Rl + (Rl – I)(R – I)–1S)Mju0, n = 2jm + l, j = 0, 1, . . . ,

(Rl + (Rl – I)(R – I)–1S1)Mj–1u1

+ (Rl – I)(R – I)–1S2NMju0, n = (2j – 1)m + l, j = 1, 2, . . . ,

(16)

where u1 = Nu0, N = Rm + (Rm – I)(R – I)–1S and l = 0, 1, . . . , m – 1.

Lemma 2 If the coefficients a, b and c satisfy

∣
∣
∣
∣

βm + b
a2 (βm – 1)

1 – c
a2 (βm – 1)

∣
∣
∣
∣ < 1 (17)

and
∣
∣
∣
∣β

m +
b + c

a2

(
βm – 1

)
∣
∣
∣
∣ < 1, (18)

then the zero solution of the equation in (3) is asymptotically stable, where

β =
1 – a2(1 – θ )rλF

1 + a2θrλF
. (19)

Proof From (16) and [25], we know that the largest eigenvalue (in modulus) of the matrix
M is

λM =
(βm + b

a2 (βm – 1))(βm + b+c
a2 (βm – 1))

1 – c
a2 (βm – 1)

,

where β is defined in (19). The zero solution of the equation in (3) is asymptotically stable
if and only if |λM| < 1. So (17) and (18) are got. �

Theorem 1 Under the conditions of Lemma 2, if the conditions

(
a2 + b + c

)(
βm – 1

)((
a2 + b – c

)
βm –

(
b – a2 – c

))
< 0 (20)

and

(
a2 + b + c

)(
βm – 1

)((
a2 + b + c

)
βm –

(
b – a2 + c

))
< 0 (21)
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are satisfied, where c �= a2/(βm – 1), a �= 0, then the zero solution of the equation in (3) is
asymptotically stable.

Proof If a �= 0, (17) and (18) are equivalent to

(
βm + b

a2 (βm – 1)
1 – c

a2 (βm – 1)
+ 1

)(
βm + b

a2 (βm – 1)
1 – c

a2 (βm – 1)
– 1

)

< 0

and
(

βm +
b + c

a2

(
βm – 1

)
+ 1

)(

βm +
b + c

a2

(
βm – 1

)
– 1

)

< 0.

After some derivations we can get (20) and (21). The proof is completed. �

Definition 1 The set of all points (a, b, c) which satisfies (2) is called an asymptotic stabil-
ity region denoted by H .

Definition 2 The set of all points (a, b, c) at which the θ -methods for (1) which satisfies
(20) is asymptotically stable is called an asymptotic stability region denoted by S.

For convenience, we divide the region H into three parts:

H0 =
{

(a, b, c) ∈ H :
(
a2 + b + c

)(
a2 + b – c

)
= 0

}
,

H1 =
{

(a, b, c) ∈ H :
(
a2 + b + c

)(
a2 + b – c

)
> 0

}
,

H2 =
{

(a, b, c) ∈ H :
(
a2 + b + c

)(
a2 + b – c

)
< 0

}
.

In the similar way, we denote

S0 =
{

(a, b, c) ∈ S :
(
a2 + b + c

)(
a2 + b – c

)
= 0

}
,

S1 =
{

(a, b, c) ∈ S :
(
a2 + b + c

)(
a2 + b – c

)
> 0

}
,

S2 =
{

(a, b, c) ∈ S :
(
a2 + b + c

)(
a2 + b – c

)
< 0

}
.

It is easy to see that H = H0 ∪ H1 ∪ H2, S = S0 ∪ S1 ∪ S2, Hi ∩ Hj = 
, Si ∩ Sj = 
 and
Hi ∩ Sj = 
, i �= j, i, j = 0, 1, 2.

Theorem 2 Under the constraints

b – a2 – c
b + a2 – c

≤ 0 (22)

and

b – a2 + c
b + a2 + c

≤ 0, (23)

if the following conditions are satisfied:
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r �= 1/(a2λF(1 – θ )) and

⎧
⎨

⎩

r < min 2
a2λF(1–2θ ) , 0 ≤ θ < 1/2,

r > 0, 1/2 ≤ θ ≤ 1,
(24)

for m is even, and

r < min
1

a2λF(1 – θ )
, (25)

for m odd, then H1 ⊆ S1.

Proof By the definition of H1 we know that (2) is satisfied when (22) and (23) hold. In the
same way, according to the definition of S1 we know that (20) is satisfied when (22) and
(23) hold and 0 < βm < 1, where β is defined in (19), then we can get H1 ⊆ S1. Therefore,
(24) and (25) can be obtained from 0 < βm < 1. The proof is completed. �

Theorem 3 Under the constraints

b – a2 – c
b + a2 – c

≥ 1 (26)

and

b – a2 + c
b + a2 + c

≤ 0, (27)

if the following conditions are satisfied:
r �= 1/(a2λF(1 – θ )) and

⎧
⎨

⎩

r < min 2
a2λF(1–2θ ) , 0 ≤ θ < 1/2,

r > 0, 1/2 ≤ θ ≤ 1,

for m even, and

r < min
1

a2λF(1 – θ )
,

for m odd, then H2 ⊆ S2.

Proof Similar to the proof of Theorem 2, we can omit it. �

Theorem 4 Under the constraints

b + a2 – c
b + a2 + c

= 0, (28)

b – a2 – c
b + a2 + c

< 0, (29)
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and

b – a2 + c
b + a2 + c

≤ 0, (30)

if the following conditions are satisfied:
r �= 1/(a2λF(1 – θ )) and

⎧
⎨

⎩

r < min 2
a2λF(1–2θ ) , 0 ≤ θ < 1/2,

r > 0, 1/2 ≤ θ ≤ 1,

for m even, and

r < min
1

a2λF(1 – θ )
,

for m odd, then H0 ⊆ S0.

Proof Follows directly from the proof of Theorem 2. �

Remark 1 If θ = 1, then the corresponding fully implicit finite difference scheme is asymp-
totically stable unconditionally.

3 Numerical experiments
To demonstrate our theoretical result, some numerical examples are adopted in this sec-
tion. Consider the following two problems:

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = uxx(x, t) + 1
2 uxx(x, [t]) + 1

4 uxx(x, 2[ t+1
2 ]), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(πx),

(31)

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = uxx(x, t) – 2uxx(x, [t]) + 2uxx(x, 2[ t+1
2 ]), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(πx).

(32)

In Tables 1–4 we list the absolute errors AE(1/m, 1/p), AE(1/4m, 1/2p) and AE(1/2m,
1/2p) at x = 1/2, t = 1 of the θ -methods for (31) and (32), the ratio of AE(1/m, 1/p) over
AE(1/4m, 1/2p) in Tables 1, 3 and the ratio of AE(1/m, 1/p) over AE(1/2m, 1/2p) in Ta-
bles 2, 4. We can see from these tables that the numerical methods conserve their orders
of convergence.

Table 1 Errors of (31) with θ = 0

m p AE(1/m, 1/p) AE(1/4m, 1/2p) AE(1/m, 1/p)/AE(1/4m, 1/2p)

210 23 9.9920e–006 2.4180e–006 4.1323
212 24 2.4180e–006 5.9963e–007 4.0325
214 25 5.9963e–007 1.4960e–007 4.0082
216 26 1.4960e–007 3.7382e–008 4.0019
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Table 2 Errors of (31) with θ = 1/2

m p AE(1/m, 1/p) AE(1/2m, 1/2p) AE(1/m, 1/p)/AE(1/2m, 1/2p)

210 24 3.8741e–006 9.5800e–007 4.0439
211 25 9.5800e–007 2.3885e–007 4.0109
212 26 2.3885e–007 5.9671e–008 4.0028
213 27 5.9671e–008 1.4915e–008 4.0007

Table 3 Errors of (32) with θ = 0

m p AE(1/m, 1/p) AE(1/4m, 1/2p) AE(1/m, 1/p)/AE(1/4m, 1/2p)

210 23 8.2800e–002 2.0000e–002 4.1400
212 24 2.0000e–002 5.0000e–003 4.0000
214 25 5.0000e–003 1.2000e–003 4.1667
216 26 1.2000e–003 3.0971e–004 3.8746

Table 4 Errors of (32) with θ = 1/2

m p AE(1/m, 1/p) AE(1/2m, 1/2p) AE(1/m, 1/p)/AE(1/2m, 1/2p)

210 24 3.2100e–002 7.9000e–003 4.0633
211 25 7.9000e–003 2.0000e–003 3.9500
212 26 2.0000e–003 4.9437e–004 4.0456
213 27 4.9437e–004 1.2357e–004 4.0007

Figure 1 The numerical solution of (31) with θ = 0,
m = 6400, p = 20 and r = 1/16

Figure 2 The numerical solution of (31) with θ = 0.5,
m = 128, p = 16 and r = 2

In Figures 1–4, we draw the numerical solutions of the θ -methods. It is easy to see that
the numerical solutions are asymptotically stable. In Figures 5 and 6, we draw the error
figures for the numerical solutions with θ = 1. It can be seen that the numerical method is
of high accuracy.
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Figure 3 The numerical solution of (32) with θ = 0,
m = 6400, p = 20 and r = 1/16

Figure 4 The numerical solution of (32) with
θ = 0.5,m = 128, p = 16 and r = 2

Figure 5 Errors of (31) with θ = 1,m = 1024, p = 32
and r = 1

Figure 6 Errors of (32) with θ = 1,m = 1024, p = 32
and r = 1
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