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Abstract
The periodic solution of the impulsive state feedback controls (ISFC) has been
investigated extensively in the last decades. However, if the ecosystem is exploited in
a period mode, what strategies are implemented to optimize the cost function at the
minimal cost? Firstly, under the hypothesis that the system has a periodic solution, an
optimal problem of ISFC is transformed into a parameter optimization problem in an
unspecified time with inequality constraints, and together with the constraint of the
first arrival threshold. Secondly, the rescaled time and a constraint violation function
are introduced to translate the above optimal problem to a parameter selection
problem in a specified time with the unconstraint. Thirdly, gradients of the objective
function on all parameters are given to compute the optimal value of the cost
function. Finally, three examples involving the marine ecosystem, computer virus, and
resource administration are illustrated to confirm the validity of our approaches.
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1 Introduction
The topic about impulsive state feedback controls (abbreviated as ISFC) has been investi-
gated extensively in the last decades due to its potential applications in culturing microor-
ganisms [1–3], pest integrated management [4–6], disease control [7, 8], fish harvesting
[9–11], and wildlife management [12, 13]. For example, [1] proposed a bioprocess model
with ISFC to acquire an equivalent stable output by the precise feeding. Ref. [4] explored
the periodic solution of an entomopathogenic nematode invading the insect model with
ISFC. Ref. [7] considered some vaccines into a disease by ISFC, and got the uniqueness of
order one periodic solution (OOPS) by geometric method. Ref. [12] formulated a white-
headed langur’s ISFC model with sparse effect and continuous delay to study the periodic
and artificial releasing. On ISFC models, scholars often pay close attention to the qualita-
tive analysis of OOPS. Ref. [11] proposed a phytoplankton–fish model with ISFC and then
formulated an optimal control problem (OCP, for short) and strived to find the appropriate
harvesting rates to maximize the cost function in an impulsive period. Here, the solvability
of the system in one period provides convenience for solving the OCP by Lagrange mul-
tiplier. But for the complicated ecosystem whose analytical solution cannot be expressed
explicitly, if it is exploited in a period mode, what period and strategies are implemented
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to optimize the cost function at the minimal cost? Furthermore, how to translate the OCP
of the ISFC to a problem with parameter optimization in one period is interesting. So far,
few researchers have paid attention to these tasks which are the focuses of our paper.

The utilizations of optimal control can be found almost in all applied science fields,
such as fishery model [14], iatrochemistry [15], switching powers [16], astrovehicle con-
trols [17], undersea vehicles [18], eco-epidemiology [19], and virus therapies [20]. The
Pontryagin principle and the Hamilton equation are the main theoretical tools to solve
continuous system control [21]. However, the hybrid optimization problems involving the
pulse threshold and system parameters are still sufficiently challenging and worth explor-
ing. The control parameter technique offers the feasibility for solving this problem [21].
Teo et al. described the detailed and basic theory of the control parameter method in [22].
Until now, many important results have been achieved in recent years. We will apply these
theories together with the constraint transcription technique [23] to resolve the above is-
sues.

The other components of this paper are as follows. In Section 2, an optimal problem
of state impulse feedback control is transformed into a parameter optimization problem
in an unspecified time with inequality constraint, and together with the constraint of the
first arrival threshold. In Section 3 we derive the required gradient formulas and present
an algorithm for solving the approximate OCP. In Section 4, we give three examples and
numerical simulations. Finally, a conclusion is provided in Section 5.

2 Problem statement and translation
Consider the ISFC system:

dŷ
dt

= f(ŷ, δ), φ(ŷ, δ) �= 0, (2.1)

�ŷ = I(ŷ,β), φ(ŷ, δ) = 0, (2.2)

where t ∈ R, ŷ ∈ R
n, f ∈ R

n is a given function, δ = (δ1, . . . , δm) and β = (β1, . . . ,βq) are the
control parameter vectors.

Denote by ŷ(t; 0, ŷ0, δ,β) the solution of (2.1) and (2.2) satisfying the initial value

ŷ
(
0+; 0, ŷ0, δ,β

)
= ŷ0.

For convenience, ŷ(t; 0, ŷ0, δ,β) is abbreviated to ŷ(t) or ŷ. I(ŷ,β) is the impulsive effect
and φ(ŷ, δ) = 0 is the impulsive set. In detail,

ŷ =

⎛

⎜⎜
⎝

ŷ1
...

ŷn

⎞

⎟⎟
⎠ , ŷ0 =

⎛

⎜⎜
⎝

ŷ10
...

ŷn0

⎞

⎟⎟
⎠ ,

f =

⎛

⎜⎜
⎝

f1(ŷ1, . . . , ŷn, δ)
...

fn(ŷ1, . . . , ŷn, δ)

⎞

⎟⎟
⎠ , I =

⎛

⎜⎜
⎝

I1(ŷ1, . . . , ŷn,β)
...

In(ŷ1, . . . , ŷn,β)

⎞

⎟⎟
⎠ .

Next, let us introduce the following assumptions.
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(H1) Assume that fi, φ, and I are continuously differentiable.
(H2) Denote the Euclidean norm by ‖ · ‖. Suppose that there exists a constraint k > 0

meeting |fi(ŷ)| ≤ k(1 + ‖ŷ‖) for all ŷ.
(H3) Assume that for fixed ŷ0, (2.1) and (2.2) have a unique OOPS �A→B possessing

period T , where A and B are the terminal and initial points of OOPS, respectively.
When the impulsive effect take places, the point A is mapped to B, namely

A
(
ŷ1(T) + I1

(
ŷ(T),β

)
, . . . , ŷn(T) + In

(
ŷ(T),β

)) → B(ŷ10, . . . , ŷn0).

Next, our aim is to formulate an optimal problem on one period under hypothesis (H3),
namely (2.1) and (2.2) possess an OOPS �A→B. Then system (2.1) is modified into

dŷ
dt

= f(ŷ, δ), t ∈ (0, T). (2.3)

By (H3) it is obtained that

ŷi0 = ŷi(T) + Ii
(

ŷ(T),β
)
, i = 1, . . . , n. (2.4)

In order to guarantee that T is the first positive time at which the solution ŷ(t) of (2.1)
intersects with the surface φ(ŷ(t), δ) = 0, ŷ(t) should be defined as follows:

(H4) ŷ(t) ∈ � , where

� =
{

ŷ(t) | φ(
ŷ(t), δ

) �= 0 for t ∈ (0, T) and φ
(

ŷ(T), δ
)

= 0
}

. (2.5)

Remark If T is not the first positive time at which the solution ŷ of (2.1) intersects with
the surface φ(ŷ(t), δ) = 0, then there exists 0 < T̆ < T such that φ(ŷ(T̆), δ) = 0. This appears
in contradiction to the definitions of (2.5).

Obviously, (2.5) is equivalent to

� =
{

ŷ(t) | φ(
ŷ(t), δ

)
> φ

(
ŷ(T), δ

)
or φ

(
ŷ(t), δ

)
< φ

(
ŷ(T), δ

)
for t ∈ (0, T)

}
. (2.6)

Together with (2.4), the solution which firstly arrives at the surface φ(ŷ(T), δ) = 0 at time
T from the initial point (0, ŷ0) (that is, the solution in (2.5) or (2.6)) is renewed by

� =
{
�

(
ŷ(t), ŷ0

)
< 0 and �∗(ŷ(t), ŷ(T)

)
< 0, t ∈ (0, T)

}
. (2.7)

Define admissible sets � and 	, which have respectively p and q dimensions, such that
δ ∈ �, β ∈ 	. Then, for each (δ,β) ∈ � × 	, the boundary condition of the mixed type
(2.4) is equivalently expressed as

�
(

ŷ0, ŷ(T |δ,β)
)

= 0, (2.8)

where � = (
1, . . . ,
n)T is an n-dimensional vector function. Clearly, the terminal time
T depends on the vector (δ,β), and hence is a variable. It is assumed that there is T̂ < ∞
such that it is the upper bound of all admissible T .
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(H5) Assume that 
i, � , and �∗ are continuously differentiable.
Next, we give the cost (objective) function:

J0 = 	0
(

ŷ(δ)(T),β
)

+
∫ T

0
L0

(
ŷ(δ)(t)

)
dt, (2.9)

where 	0 ∈ R
n → R defines the terminal cost and L0 defines the running cost. Equa-

tion (2.9) also can be called the objective function [21].
Assume that 	0 and L0 satisfy the following conditions.
(H6) 	0 is continuously differentiable.
(H7) Functions L0 are continuously differentiable concerning the component ŷ for each

t ∈ [0, T̂]. Additionally, there is a constraint l > 0 such that |L0(ŷ)| ≤ l(1 + ‖ŷ‖) for
all ŷ.

Now, an OCP is formulated officially as follows:
(P0) Subject to (2.3), seek a parameter vector (δ,β) ∈ � × 	 satisfying that the objective

function (2.9) is minimized over �×	. Here T is a period meeting conditions (2.7)
and (2.8).

In particular, if the solution ŷ(t) (t ∈ (0, T)) of (2.1) and (2.2) is monotonic, then (2.7) is
rewritten as

ŷi0 < ŷi(t) < ŷi(T) or ŷi(T) < ŷi(t) < ŷi0, i = 1, . . . , n, t ∈ (0, T), (2.10)

which ensures that T is the first positive time of the solution ŷ(t) arriving at the surface
φ(ŷ(t), δ) = 0. Correspondingly, combined with (2.4), (2.10) is equivalently adapted by

�i
(
ŷi(t), ŷi0

)
< 0, i = 1, . . . , n, �∗

j
(
ŷj(t), ŷj(T)

)
< 0, j = 1, . . . , n. (2.11)

3 Solving scheme
The variability of jump time increases the difficulty in solving the problem (P0). To cir-
cumvent this difficulty, we choose the time-scaling transformation technology called the
control parameter enhancing transform ( CPET, for short). Ref. [24] firstly preferred CPET
to ascertain optimal switching instants for time-optimal controls. Afterwards, we employ
CPET to project the variable jump times to fixed points by an updated time scale, thus an
updated optimal issue with the fixed jump times is yielded. For applying this method, we
introduce the rescaled time [24, 25]

s = t/T . (3.1)

Obviously, system (2.3) is rewritten as

dy
ds

= h(y, δ, T), (3.2)

where s ∈ (0, 1). Here we refer to T as an organic parameter which is a decision variable.
In addition,

y(s) = ŷ(Ts),

h
(

y(s), δ, T
)

= Tf
(

ŷ(Ts), δ
)
.
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Then (2.7) and (2.8) can be respectively expressed as

�
(

y(s), y0
)

< 0, �∗(y(s), y(1)
)

< 0, s ∈ (0, 1), (3.3)

and

�
(

y0, y(1),β
)

= 0. (3.4)

And the cost function (2.9) is equivalent to

J1 = 	0
(

y(1),β
)

+
∫ 1

0
L0

(
y(s), δ, T

)
ds, (3.5)

with

	0
(

y(1),β
)

= 	0
(

ŷ(δ)(T),β
)
, L0

(
y(s), δ, T

)
= TL0(ŷ(δ)(t).

Thus, we can change the problem (P0) into the following problem:
(P1) Given system (3.2), find a combined parameter vector (δ,β , T) ∈ � × 	 × (0, T̂) to

minimize the objective functional (3.5) and meanwhile satisfy (3.3) and (3.4).
By Theorems in [25] and [26], the next result is valid.

Lemma 3.1 The OCP (P0) ⇔ the problem (P1).

Next, we recommend an exact penalty method to overcome the remaining difficulty that
the constraints (3.3) define a disjoint feasible region. Such constraints are referred to as
functional inequality or path constraints. The essential dilemma about these constraints
lies in the innumerable restriction on the state variables in the time scale [21].

Constraint (3.3) is a non-standard “open” state constraint. So we can approximate it as
follows:

�
(

y(s), y0
) ≤ ε̄, �∗(y(s), y(1)

) ≤ ε̄, s ∈ [δ, 1 – δ], (3.6)

where ε̄ > 0 and δ ∈ (0, 1
2 ) are adjustable parameters.

Then, we define a constraint violation function as

�(δ,β , T) =
[
�

(
y0, y(1),β

)]2

+ T
∫ 1

0

{[
max

{
ε̄,�

(
y(s), y0

)}]2 +
[
max

{
ε̄,�∗(y(s), y(1)

)}]2}ds. (3.7)

Note that �(δ,β , T) = 0 if and only if (3.3) and (3.4) hold. By the strategy presented in
[27–30], one sets up an exact penalty function

J2(δ,β , T , ε) =

⎧
⎪⎨

⎪⎩

J1(δ,β , T), if ε = 0 and �(δ,β , T) = 0,
J1(δ,β , T) + ε–α�(δ,β , T) + σεγ , if ε > 0,
+∞, otherwise,
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where σ > 0 is a positive penalty parameter. α > 0 and γ > 0 are constants meeting 1 ≤
γ ≤ α. The new decision variable ε satisfies

0 ≤ ε ≤ ε1, (3.8)

where ε1 is a small positive number. This method was first mentioned in [31].
Now we give the unconstrained control problem:
(P2) Optimize a combined parameter vector (δ,β , T) ∈ � × 	 × (0, T̂) and the new

decision variable ε ∈ [0, ε1] to minimize the transformed equivalent cost function
J2(δ,β , T , ε) subject to the dynamics given by (3.1) and (3.2) in the interval (0, 1).

According to the main convergence result of [29], when ε̄ and δ approach zero, the cost
of J2 approaches the optimal cost J1 of problem (P2).

Theorem 3.1 Let ι > 0 be an arbitrary fixed number. For any enough small δ > 0, we can
find a corresponding positive point ε̄1(δ) > 0 such that

|J2 – J1| < ι, ε̄ ∈ (0, ε̄1].

The above approximate problem is a nonlinear optimization one. For minimizing the
objective function which subjects to a group of constraints, the narrow decision variables
are selected. And for the decision vector, the cost and objective functions are implicit in
problem (P2). Then we can develop their gradients to produce search directions which
guide profitability for the search space [21]. For implementing these algorithms, it is es-
sential to compute the partial derivatives of the final cost function. A method for comput-
ing gradients is the so-called costate method. From Theorem 4.1 in [32] and Section 5.2
in [33], we define the corresponding Hamiltonian function

H
(
s, y(s), y(1),λ(s), δ, T , ε

)
= L0

(
y(s), δ,β , T

)
+ λT h(y, δ, T)

+ ε–νT
{[

max
{
ε̄,�

(
y(s), y0

)}]2

+
[
max

{
ε̄,�∗(y(s), y(1)

)}]2}, (3.9)

where λT (s) = (λ1(s), . . . ,λn(s)) and λi(s) is the corresponding costate for i = 1, 2, . . . , n. Fur-
thermore, λ(s) is determined by the following differential equations:

dλ

ds
= –

(
∂H(s, y(s), y(1),λ(s), δ, T , ε)

∂y

)T

, (3.10)

λT (1) =
∂	0

∂y(1)
+ 2ε–α�

(
y0, y(1),β

)2 ∂�

∂y(1)
+

∫ 1

0

∂H
∂y(1)

ds. (3.11)

Theorem 3.2 The gradients of J2 concerning T , δ, β as well as ε are awarded by

∂J2

∂T
=

∫ 1

0

∂H
∂T

ds, (3.12)

∂J2

∂δ
=

∫ 1

0

∂H
∂δ

ds, (3.13)
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∂J2

∂β
=

∂	0

∂β
+ 2ε–α�

(
y0, y(1),β

)∂�

∂β
, (3.14)

∂J2

∂ε
= –αε–α–1�(δ,β , T) + γ σεγ –1. (3.15)

Note that, instead of an initial condition, the costate systems (3.10) and (3.11) involve
a terminal value. So, we must integrate them from s = 1 to s = 0. Furthermore, in view of
equations (3.12)–(3.15), we address the algorithm about calculating J2 and its gradients as
follows.

Algorithm 1 Input a group (δ,β , T) ∈ � × 	 × (0, T̂),
(i) Solve systems (3.2), (3.10), and (3.11) to obtain y(s) and λ.

(ii) Use y(s) to compute J2.
(iii) Use y(s) and λ to compute ∂J2

∂T , ∂J2
∂δ

, and ∂J2
∂β

according to equations (3.12), (3.13),
and (3.14).

In the above, the methodology proposed involves transforming the periodic optimal
control problem into a standard optimal control problem, after which standard computa-
tional techniques can be applied. Similarly, the case of the first positive time T assured by
(2.11) can be derived.

4 Application
In this section, three examples are given to implement the above theories and approaches;
and furthermore, to verify the validity of our algorithm.

Example 4.1 (Phytoplankton–fish system) Consider the following impulsive system
[11]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dp
dt = (r – az)p,
dz
dt = (bp – u – dp

γ +p )z,

}

z < H ,

�p = p(T+) – p(T) = –e1p,
�z = z(T+) – z(T) = –e2z,

}

z = H ,

p(0) = p0 ≥ 0, z(0) = z0 ≥ 0.

(4.1)

Here p0 and z0 present respectively the initial levels of phytoplankton and fish. From The-
orems 3.1 and 4.3 in [11], it is obtained that for fixed (p0, z0) system (4.1) has an OOPS
�A→B from A((1 – e1)p1, (1 – e2)H) to B(e1, H). Then Zhao et al. [11] formulated an OCP
and strived to seek the appropriate harvesting rates e∗

1 and e∗
2 to maximize the cost func-

tion J(e1, e2) = C1e1p1 + C2e2H in an impulsive period. C1 and C2 describe the prices per
unit biomass of the phytoplankton and fish, respectively.

In our paper, based on the periodic solution theory in [11], we know that the re-
sources are exploited in a period mode. Then, what strategies are implemented to op-
timize the cost function at the minimal cost? For this, we take the harvesting rates e1,
e2 and the harvest period T as control parameters to achieve the maximal revenue,
namely

min
e1,e2,T

{
J1(e1, e2)

}
= min

e1,e2,T
{–C1e1p1 – C2e2H}.
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Combined with the periodicity of harvesting, the solution (p(t), z(t)) of system (4.1) on
(0, T] meets the following conditions:

{
dp
dt = (r – az)p,
dz
dt = (bp – u – dp

γ +p )z,
t ∈ (0, T), (4.2)

p(T) =
p0

1 – e1
, z(T) = H =

z0

1 – e2
. (4.3)

Furthermore, together with the monotonicity of z(t), it is obtained

z(0) < z(t) < z(T), (4.4)

where T also is the first positive time such that (4.3) and (4.4) hold.
After the rescaled time transformation, (4.2), (4.3), and (4.4) can be rewritten as fol-

lows:

{
dp
ds = T(r – az)p .= f1,
dz
ds = T(bp – u – dp

γ +p )z .= f2,
for s ∈ (0, 1), (4.5)

p(1) =
p0

1 – e1
, z(1) = H =

z0

1 – e2
, (4.6)

z(0) < z(s) < z(1). (4.7)

Our cost function can be expressed as follows: subject to (4.5)–(4.7),

min
e1,e2,T

{
J2(e1, e2)

}
= min

e1,e2,T

{
–C1e1p(1) – C2e2z(1)

}
.

For system (4.5)–(4.7), define the violent function by

�(e1, e2, T) =
[
(1 – e1)p(1) – p0

]2 +
[
(1 – e2)z(1) – z0

]2

+ T
∫ 1

0

{[
max

{
ε̄, z(0) – z(s)

}]2 +
[
max

{
ε̄, z(s) – z(1)

}]2}. (4.8)

Noting that �(e1, e2, T) = 0 if and only if constraints (4.6) and (4.7) are satisfied, then our
cost function J2(e1, e2) turns into

J3(e1, e2) = –C1e1p(1) – C2e2z(1) + ε–v�(e1, e2, T) + σεw. (4.9)

After that, the corresponding Hamiltonian function is

H
(
s, p(s), z(s),λ1(s),λ2(s), T , ε

)
= λ1f1 + λ2f2

+ T
[
max

{
ε̄, z(0) – z(s)

}]2

+ T
[
max

{
ε̄, z(s) – z(1)

}]2, (4.10)
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where λ1(s) and λ2(s) are determined by the auxiliary system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1(s) = –T[λ1(r – az) + λ2z(b – dy
(γ +p)2 )],

λ̇2(s) = –T[–λ1ap + λ2(bp – u – dp
γ +p )]

– 2ε–vT max{ε̄, z(0) – z(s)} + 2ε–vT max{ε̄, z(s) – z(1)},
λ1(1) = –C1e1 + 2ε–v((1 – e1)p(1) – p0)(1 – e1),
λ2(1) = –C2e2 + 2ε–v((1 – e2)z(1) – z0)(1 – e2)

–
∫ 1

0 2ε–vT max{ε̄, z(s) – z(1)}ds.

(4.11)

The gradients of (4.9) with respect to T , e1, e2, and ε are addressed as follows:

∂J3

∂T
=

∫ 1

0

{
λ1(r – az)p + λ2

(
bp – u –

dp
γ + p

)
z

+ ε–v[max
{
ε̄, z(0) – z(s)

}]2 + ε–v[max
{
ε̄, z(s) – z(1)

}]2
}

ds, (4.12)

∂J3

∂e1
= –C1p1 – 2p1ε

–v[(1 – e1)p1 – p0
]
, (4.13)

∂J3

∂e2
= –C2H – 2z1ε

–v[(1 – e2)z1 – z0
]
, (4.14)

∂J3

∂ε
= –vε–v–1�(e1, e2, T) + wσεw–1. (4.15)

Next, we give the simulation of Example 4.1. Take e1, e2, T , and ε as control parameters.
The parameters are chosen as

r = 1.144, a = 0.2, b = 0.2, d = 0.5, γ = 2, u = 0.5,

v = 2, w=1.55, ε̄ = –1e–8, σ = 100, C1 = 3, C2 = 2,
(4.16)

with the initial values p0 = 7, z0 = 1. For the initial guesses T0 = 3, e10 = 0.7, e20 = 0.9, and
ε0 = 0.1, we obtain that the cost function J0 = 1634.15 and the threshold h0 = S(T0) = 13.64.
Furthermore, by the costate equations and transversality conditions in (4.5) as well as the
gradients (4.12)–(4.15), starting with the above initial values, we recover the optimal con-
trol scheme showed in Table 1. Apparently, the harvest period T is extended, harvesting
rates e1 and e2 are enlarged, and our final gains are also increased after our optimal con-
trol. Additionally, we adapt this set of data to plot the phase diagram of food and species
according to the optimal and initial controls, respectively (see Figure 1). The red circle

Table 1 Results of simulation 1

Set Non-optimal control Optimal control

1 T0 = 1.5, e10 = 0.7 T∗ = 1.6789, e∗1 = 0.6823
e20 = 0.9, ε0 = 0.1 e∗2 = 0.9075, ε∗ = 0.1
J3 = 7931.6, H0 = 11.23 J∗3 = 8140.94, H∗ = 14.49

2 T0 = 1.5, e10 = 0.4 T∗ = 1.8038, e∗1 = 0.4285
e20 = 0.8, ε0 = 0.1 e∗2 = 0.8429, ε∗ = 0.1
J3 = 6291.7, H0 = 11 J∗3 = 7592.98, H∗ = 16.44

3 T0 = 1, e10 = 0.7 T∗ = 1.8364, e∗1 = 0.7127
e20 = 0.9, ε0 = 0.1 e∗2 = 0.9665, ε∗ = 0.1
J3 = 5333.51, H0 = 13.64 J∗3 = 8041.65, H∗ = 16.84
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Figure 1 Phase portrait of (4.1) with optimal and
non-optimal controls on one period (0, T ]

represents the trajectories of populations on the basis of the optimal scheme, whereas the
blue solid line represents the trajectory under the initial scheme. From Figure 1, we also
notice that the threshold of plankton also increases, which is consistent with the results
in Table 1. Summarily, our optimal tactics not only delay the harvest but also magnify the
harvesting threshold and benefit, which are desirable for human exploitation.

Example 4.2 (Computer virus propagation under media coverage) In this section, a new
computer virus model with state impulsive control [8, 34, 35] is utilized to exemplify our
algorithm and approach:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ds
dt = g – ds + ni – (b1 – b2

i
m+i )si,

di
dt = (b1 – b2

i
m+i )si – ni – di,

}

i < H ,

�s = –e1s,
�i = –e2i,

}

i = H ,
(4.17)

where n denotes the recovery rate from an infected computer to a susceptible one due to
the application of antivirus software. b1 denotes the contact rate at which the susceptible
computer gets infected before media alert, b2 is the maximum reduction of contact rate
through media coverage, and m > 0 represents the effect of media coverage.

For (4.17), the existence together with stability of OPS have been showed in [8]. Then, in
the following, we analogously formulate an optimal state pulse control problem of system
(4.17) on a period (0, T]:

{
ds
dt = g – ds + ni – (b1 – b2

i
m+i )si,

di
dt = (b1 – b2

i
m+i )si – ni – di,

}

t ∈ (0, T), (4.18)

where s(t) and i(t) satisfy the inequality constraint

i(t) < i(T), (4.19)

and equality constraints

s(T) =
s0

1 – e1
, i(T) =

i0

1 – e2
. (4.20)

Here T is also the first positive time such that (4.20) holds.
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Next we build the cost function. Namely, subject to (4.18)–(4.20), find the appropriate
b2, T , e1, and e2 to minimize the objective function

J0(b2, T , e1, e2) = p1e1s(T) + p2e2i(T) – ωT +
∫ T

0
i(t) dt, (4.21)

where p1 and p2 denote the cost of susceptible and infected computers and ω is the weight
factor.

Utilizing the time scale transformation and the violent violation function, the optimal
solution of the above control problem is determined by the following system:

{
ds
dx = T[g – ds + ni – (b1 – b2

i
m+i )si],

di
dx = T[(b1 – b2

i
m+i )si – ni – di],

}

x ∈ (0, 1), (4.22)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ̇1(x) = –T[λ1(–d – (b1 – b2
i

m+i )i) + λ2(b1 – b2
i

m+i )i)],
λ̇2(x) = –2ε–vT max{ε̄, i(s) – i(1)} – T[λ1(n – (b1 – b2

i
m+i ))s – si(– m

(m+i)2 )]
– λ2T[(b1 – b2

i
m+i )s + si(– m

(m+i)2 ) – n – d] – T ,
λ1(1) = p1e1 + 2ε–v((1 – e1)s(1) – s0)(1 – e1),
λ2(1) = p2e2 + 2ε–v((1 – e2)i(1) – i0)(1 – e2) – 2

∫ 1
0 ε–vT max{ε̄, i(x) – i(1)}dx,

(4.23)

and the derivatives of J1 on T , b2, e1, e2, and ε are administrated by

∂J1

∂T
=

∫ 1

0

{
λ1

(
g – ds + ni –

(
b1 – b2

i
m + i

))
+ λ2

(
b1 – b2

i
m + i

)
si – ni – di)

+ ε–v[max
{
ε̄, i(x) – i(1)

}]2 + (I – ω)
}

dx, (4.24)

∂J1

∂b2
=

∫ 1

0

[
(λ1 – λ2)T

si2

m + i

]
dx, (4.25)

∂J1

∂e1
= –p1s(1) – 2s(1)ε–v[(1 – e1)s(1) – s0

]
, (4.26)

∂J1

∂e2
= –p2H – 2i(1)ε–v[(1 – e2)i(1) – i0

]
, (4.27)

∂J1

∂ε
= –vε–v–1�(e1, e2, T) + wσεw–1, (4.28)

where

�(e1, e2, T) =
(
(1 – e1)s(1) – s(0)

)2 +
(
(1 – e2)i(1) – i(0)

)2

+ T
∫ 1

0

[
max

{
ε̄, i(x) – i(1)

}]2 dx, (4.29)

J1 = p1e1s(1) + p2e2i(1) +
∫ 1

0

(
–ωT + Ti(x)

)
dx + ε–v�(e1, e2, T) + σεw. (4.30)

Next, we give the simulation of Example 4.2. In system (4.17), a set of parameter values is
chosen as

g = 0.3, d = 0.18, n = 0.18, b1 = 0.65, m = 3, v = 2,

w = 1.55, ε̄ = –1e–8, σ = 100, p1 = 1, p2 = 2, ω = 0.5
(4.31)
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Table 2 Results of simulation 2

Set Non-optimal control Optimal control

1 T = 8, b2 = 0.6, ε0 = 0.1 T∗ = 6.5499, b∗
2 = 0.6214, ε∗ = 4.521e–5

e1 = 0.8, e2 = 0.9 e∗1 = 0.1613, e∗2 = 0.4572
J1 = 69.4267, H = 0.7347 J∗ = 1.36176, H∗ = 0.6632

2 T = 7, b2 = 0.55, ε0 = 0.1 T∗ = 6.1392, b∗
2 = 0.6345, ε∗ = 1.61e–6

e1 = 0.7, e2 = 0.6 e∗1 = 0.1703, e∗2 = 0.4371
J1 = 53.4043, H = 0.7005 J∗ = 0.7111, H∗ = 0.6396

3 T = 6, b2 = 0.5, ε0 = 0.1 T∗ = 5.9094, b∗
2 = 0.5386, ε∗ = 0.441e–7

e1 = 0.2, e2 = 0.4 e∗1 = 0.1553, e∗2 = 0.4422
J1 = 32.5521, H = 0.6578 J∗ = 0.6984, H∗ = 0.6454

Figure 2 Phase portrait of system (4.17) with
optimal and non-optimal controls on one period
(0, T ]

with the initial value s0 = 0.68 and i0 = 0.36. In Table 2, we give three sets of parameter ini-
tial values to compute the minimal cost function J∗ and to find the appropriate parameters.
From Table 2, we find that after optimal control the contact rate b2 through media cover-
age is increased, while the period T is shortened, the number of the infected computers is
maintained at a low level H∗ and the cost is reduced. That is, increasing the influence of
media and taking regular anti-virus measures for a computer will reduce the cost of pre-
vention and control of computer viruses. Furthermore, we display the dynamic behavior
of susceptible and infected computers and the optimal threshold H∗ in Figure 2 with the
first set of Table 2. All of the red cycles illustrate the behaviors of susceptible and infected
computers when optimal control action is taken, while all of the blue solid lines present
the habit of susceptible and infected computers when non-optimal control is taken.

Example 4.3 (Species-food system) After our little sojourn in the simple examples, it is
time to return to a complex example. Consider the following system in [36]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx
dt = –γ xy,
dy
dt = –y(ε – δx),

}

if x �= x1,

�x(τk) = λ,

�y(τk) =

{
0, if k is not divisible by n,
–αy(τk), if k is divisible by n,

⎫
⎪⎬

⎪⎭
if x = x1,

(4.32)

x(t) and y(t) denote the absolute or relative quantities of the food A and the species B at
moment t. Let n > 0 be an integer and assume that the quantity of food increases by λ

unit each impulse effect, while the population of the species decreases by jumps only at
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the moments of the impulse effect τk whose ordinal number k is a multiple of n. We also
assumed that λ > 0 and 0 < α < 1.

Based on the research of the period solution in [36], we propose our optimal problem
on the condition that (4.32) admits a periodic solution with period T . According to the
theory in Section 2, we can rewrite system (4.32) on one period (0, T) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = –γ xy,
dy
dt = –y(ε – δx),

}

if t �= τk , k = 1, 2, . . . , n, k ∈ Z+, τk ∈ (0, T],

�x = λ,
�y = 0,

}

if t = τk , k = 1, 2, . . . , n – 1,

�x = λ,
�y = –αy,

}

if t = τn,

(4.33)

where n is a positive integer representing the number of releasing food. Furthermore, the
populations of the food and the species meet the following restraints on (0, T]:

{
x(τ+

k–1) > x(t) > x(τk), k = 1, 2, . . . , n,
y(τ+

k–1) < y(t), k = 1, 2, . . . , n,
(4.34)

x(τk) + λ = x0, k = 1, 2, . . . , n, y(T) = y(τn) =
y0

1 – α
, (4.35)

where τn is also the first positive time such that (4.35) holds. Thus, our OCP can be written
as follows.

Problem (P0): In order to minimize the cost of the total releasing food and maximize the
quality of species at the terminal time, we would like to find λ and α to minimize the cost
function

Jn
0 = p1nλ – p2αy(T),

where p1 and p2 denote the market prices of the food and species.
First, the time scaling transformation is utilized to project the impulsive moments

t = 0, τ1, τ2, . . . , τn into s = 0, 1, 2, . . . , n in a new time horizon. Define the required trans-
formation:

dt(s)
ds

= v(s) (4.36)

with t(0) = 0. v(s) is the time scaling control function and is discontinuous at s = 1, 2, . . . , n.
That is,

v(s) =
n∑

k=1

τ̄kχ(k–1,k)(s), (4.37)

where τ̄k = τk – τk–1 is the duration which satisfies the following condition:

n∑

k=1

τ̄k = T . (4.38)
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Define the indicator function of I by

χI(s) =

{
1, if s ∈ I,
0, otherwise.

(4.39)

By time scaling transformation, systems (4.33)–(4.35) turn into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
ds = v(s)(–γ xy),
dy
ds = v(s)[–y(ε – δx)],

}

s ∈ (0, n),

�x = λ,
�y = 0,

}

s = 1, 2, . . . , n – 1,

�x = λ,
�y = –αy,

}

s = n,

(4.40)

{
x((k – 1)+) > x(s) > x(k), k = 1, 2, . . . , n,
y((k – 1)+) < y(s), k = 1, 2, . . . , n,

(4.41)

x(k) + λ = x0, k = 1, 2, . . . , n, y(n) = y(T) =
y0

1 – α
. (4.42)

Thus we can change problem (P0) into the next problem.
Problem (P1): Minimize the transformed cost function

Jn
1 = p1nλ – p2αy(n)

by selecting λ and α.
This optimal problem has multi-jump times, which differs from the first two examples

and is difficult to solve. For this, time translation transformation will be introduced [37].
Define

xi(s) = x(s + i – 1), yi(s) = y(s + i – 1), τi(s) = t(s + i – 1), s = 1, 2, . . . , n. (4.43)

Then (4.40) becomes
⎧
⎪⎪⎨

⎪⎪⎩

dxi
ds = τ̄i(–γ xiyi)

.= f i
1 ,

dyi
ds = τ̄i[–yi(ε – δxi)]

.= f i
2 ,

s ∈ (0, 1), and i = 1, 2, . . . , n,

dτi(s)
ds = τ̄i.

(4.44)

with the initial condition x1(0) = x0 and y1(0) = y0. Then constraints (4.41) and (4.42) are
rewritten by

{
xi(0) > xi(s) > xi(1), i = 1, 2, . . . , n, s ∈ (0, 1),
yi(0) < yi(s), i = 1, 2, . . . , n,

(4.45)

xi(1) + λ = x0, k = 1, 2, . . . , n, yn(1) =
y0

1 – α
. (4.46)

Further, the cost function Jn
1 is rewritten as follows:

Jn
2 = p1nλ – p2αyn(1).
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In view of (3.7), we define a constraint violation function

�(λ,α, τ̄ ) =
n∑

i=1

[
xi(1) – x0 + λ

]2 +
[
(1 – α)yn(1) – y0

]2

+
∫ 1

0

{[
max

{
xi(s) – x0, ε̄

}]2 +
[
max

{
xi(1) – xi(s), ε̄

}]2

+
[
max

{
yi(s) – yi(0), ε̄

}]2}ds. (4.47)

Denote τ̄ = (τ̄1, τ̄2, . . . , τ̄n). Then problem (P2) is given as follows:
Optimize parameters λ,α, the vector τ̄ together with the decision variable ε ∈ [0, ε1] to

minimize the transformed equivalent cost function

Jn
3 = p1nλ – p2αyn(1) + ε–a� + σεb

subject to (4.44)–(4.46) as well as the restraints 0 < α < 1 and λ > 0.
Next, according to Theorem 4.1 in [38] and [32], we define the corresponding Hamilto-

nian function

Hi = ε–aτ̄i
{[

max
{

xi(s) – xi(0), ε̄
}]2 +

[
max

{
xi(1) – xi(s), ε̄

}]2

+
[
max

{
yi(0) – yi(s), ε̄

}]2} + li
1f i

1 + li
2f i

2 for i = 1, 2, . . . , n, (4.48)

where li
1 and li

2 are determined by the auxiliary system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dli1
ds = –τ̄i{2ε–a[max{xi(s) – xi(0), ε̄} – max{xi(1) – xi(s), ε̄}]

– li
1γ yi + li

2δyi},
dli2
ds = –τ̄i{–li

1γ xi – li
2ε + li

2δxi

– 2ε–a[max{yi(0) – yi(s), ε̄}]2},

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

i = 1, . . . , n,

li
1(1) = 2ε–a{(xi(1) – x0 + λ) +

∫ 1
0 τ̄i max{xi(1) – xi(s), ε̄}ds}

+ li+1
1 (0),

li
2(1) = li+1

2 (0),

⎫
⎪⎬

⎪⎭
i = 1, . . . , n – 1,

ln
1(1) = 2ε–a{(xn(1) – x0 + λ) +

∫ 1
0 τ̄n max{xn(1) – xn(s), ε̄}ds,

ln
2(1) = –p2α + 2ε–a(1 – α)((1 – α)yn(1) – y0),

}

i = n.

(4.49)

Now we give the derivatives of Jn
3 on τ̄ , λ, α as well as ε by

∇τ Jn
3 =

n∑

i=1

∫ 1

0

{
ε–a{[max

{
xi(s) – x0, ε̄

}]2 +
[
max

{
xi(1) – xi(s), ε̄

}]2

+
[
max

{
yi(0) – yi(s), ε̄

}]2} – li
1γ xiyi – li

2
[
yi(ε – δxi)

]}
ds, (4.50)

∇λJn
3 = p1n + 2

n∑

i=1

ε–a(xi(1) – x0 + λ
)

+
n∑

i=2

li
1(0), (4.51)

∇αJn
3 = –p2yn(1) – 2ε–ayn(1)

(
(1 – α)yn(1) – y0

)
, (4.52)

∇εJn
3 = –aε–a–1�(λ,α, τ̄ ) + bσεb–1. (4.53)
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Table 3 Results of simulation for n = 5

Set Non-optimal control Optimal control

1 τ1 = 3.23, τ2 = 1.98, τ3 = 1.44 τ ∗
1 = 2.99, τ ∗

2 = 1.77, τ ∗
3 = 1.26

τ4 = 1.13, τ5 = 0.94 τ ∗
4 = 0.98, τ ∗

5 = 0.81
λ = 4.51, α = 0.8773, ε0 = 0.1 λ∗ = 4.4, α∗ = 0.89, ε∗ = 6.581e–5
J53 = 18.2467, x1 = 0.49 J5∗3 = 14.1559, x∗1 = 0.6

2 τ1 = 2.35, τ2 = 1.27, τ3 = 0.88 τ ∗
1 = 2.34, τ ∗

2 = 1.26, τ ∗
3 = 0.876

τ4 = 0.67, τ5 = 0.54 τ ∗
4 = 0.67, τ ∗

5 = 0.54
λ = 4, α = 0.9028, ε0 = 0.1 λ∗ = 3.99, α∗ = 0.9029, ε∗ = 71e–5
J53 = 13.5705, x1 = 1 J5∗3 = 10.6311, x∗1 = 4

3 τ1 = 4.77, τ2 = 3.82, τ3 = 3.2 τ ∗
1 = 4.74, τ ∗

2 = 3.80, τ ∗
3 = 3.17

τ4 = 2.76, τ5 = 2.44 τ ∗
4 = 2.73, τ ∗

5 = 2.40
λ = 4.8, α = 0.7724, ε0 = 0.1 λ∗ = 4.79, α∗ = 0.7274, ε∗ = 21e–4
J53 = 24.2191, x1 = 0.2 J5∗3 = 21.30982, x∗1 = 0.21

Next, the simulation of Example 4.3 is given. Choose (x0, y0) = (5, 0.5). The parameter
values are taken as

γ = 0.6, ε = 0.4, δ = 0.3, a = 2, b = 1.55,

ε̄ = –1e–8, σ = 100, p1 = 1, p2 = 2, λ = 4.5, α = 0.8773.
(4.54)

The optimal problem is solved by using a Matlab program and the above computational
approach.

Take n = 5 which implies that the food is released five times and the species is harvested
one time on one period (0, T]. Then the simulation results of system (4.32) are listed in
Table 3 for various parameters. Here, the optimal time intervals τ ∗

1 , τ ∗
2 , τ ∗

3 , τ ∗
4 , and τ ∗

5 are
shortened, which consequently gives rise to the shortness of period T . Also the optimal
increment of food λ∗ is decreased slightly, meanwhile the optimal harvesting rate α∗ keeps
invariable and the cost value J5∗

3 is reduced. Also Figure 3(c) visualizes the optimal control
strategy that less food is released at every impulsive time and more amount of species is
acquired at the terminal time. We plot the time evolutions of food and species according
to the optimal and non-optimal control laws with the first set of Table 3 (see Figures 3(a)
and (b)). The black line means the dynamic behavior of non-optimal control and the red
line means the dynamic behavior of optimal control. Obviously, the optimal tactics partly
promotes the level of the species, which is desirable from the protection population.

Next, we consider the case of n = 1, which implies that the food is released and the
species is harvested one time on one period (0, T], respectively. The results obtained are
shown in Table 4 for three sets of parameters. For given initial interval T , initial recruit-
ment rate α, our goal is to compute the minimal cost function J1∗

3 with time interval T∗,
release amount λ∗ and the capture rate α∗. We explore that control policy not only drops
the level of the cost function, but also boosts the numbers of species at the terminal time.
Meanwhile, the time interval is shortened too. Graphical output in Figure 4(c) directly
displays our optimal control strategy expressed by (4.32) with n = 1. All of the black lines
illustrate the behaviors of non-optimal control while all of the red lines mean the dynamic
behavior of optimal control. When optimal control strategy is implemented, the trajecto-
ries of food and species are drawn in Figures 4(a) and (b). It shows that the level of species
is higher in an optimal mode than in a non-optimal one at the terminal time.

In order to compare the two optimal control modes (namely n = 1 and n = 5), we com-
pute 5J1∗

3 in view of Table 4, which represents that the mode n = 1 is performed five times.
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(a) (b)

(c)

Figure 3 Comparisons of system (4.32) with optimal and non-optimal controls on one period (0, T ] with
n = 5. (a) and (b) are the time series of food and species, (c) is the phase portrait

Table 4 Results of simulation for n = 1

Set Non-optimal control Optimal control

1 T = 3.23, λ = 4.51 T∗ = 2.93, λ∗ = 4.37
α = 0.5881, ε = 0.1 α∗ = 0.62, ε∗ = 1.57e–4
J13 = 3.65, x1 = 0.49 J1∗3 = 2.77, x∗1 = 0.63

2 T = 2.35, λ = 4 T∗ = 2.31, λ∗ = 3.96
α = 0.6501, ε = 0.1 α∗ = 0.65, ε∗ = 9e–5
J13 = 2.71, x1 = 1 J1∗3 = 2.01, x∗1 = 1.04

3 T = 4.77, λ = 4.8 T∗ = 4.42, λ∗ = 4.76
α = 0.2952, ε = 0.1 α∗ = 0.41, ε∗ = 2.64e–4
J13 = 4.94, x1 = 0.2 J1∗3 = 4.05, x∗1 = 0.24

Compared with J5∗
3 , which represents that the mode n = 5 is executed one time, it indi-

cates that the cost function 5J1∗
3 is slightly less than J5∗

3 . This result implies that the control
mode of frequent releasing food and frequent harvest species is superior to that of fre-
quent releasing food and infrequent harvest species.

5 Discussions
The topic about ISFC has been investigated extensively in the last decades due to its po-
tential applications. Many authors have made every endeavor to explore the periodic so-
lution of various systems including population, ecology, chemostat, epidemic, and so on.
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(a) (b)

(c)

Figure 4 Comparisons of system (4.32) with optimal and non-optimal controls when n = 1. (a) and (b) are the
time series of food and species, (c) is the phase portrait

However, if the system is exploited in a period mode, what strategies are implemented to
achieve the objective of optimal management? So far, few researchers keep a watchful eye
on this task which has been our focus in the above sections. In summary, our approaches
are concluded by the following three procedures. (1) Under the hypothesis that the ISFC
system has a periodic solution, an optimal problem of ISFC is transformed into a parame-
ter optimization problem in an unspecified time with inequality constraint, and together
with the constraint of the first arrival threshold. (2) The rescaled time and a constraint
violation function are introduced to translate the above optimal problem to a parameter
selection problem in a specified time with the unconstraint. (3) The gradients of the ob-
jective function on all of parameters are given to compute the optimal value of the cost
function. Finally, three examples involving the marine ecosystem, computer virus control,
and resource administration are illustrated to confirm the validity of our approaches. In
these examples, the parameters of the impulse and system on continuous systems and a
hybrid system are optimized respectively.

Despite some endeavors in this paper, it may be beneficial to investigate a wider variety
of topics in the future: (1) The actual data is necessary to achieve effective state feedback
impulsive control. (2) Exploring other means to solve the OCP of the state dependent
impulsive systems. (3) Applying this method to other fields. (4) For the optimal problems
of the hybrid system in Example 4.3, the number of impulsive effect happens is worth
exploring.
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