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Abstract
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1 Introduction
In this paper we consider the fractional evolution equation of the form

Dqx(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ [0, T], (1.1)

subject to the initial condition

x(0) = x0, (1.2)

where Dq denotes the Caputo fractional derivative of order q ∈ (0, 1), A : D(A) → B is the
infinitesimal generator of a C0 semigroup {Q(t)}t≥0 of uniformly bounded linear operators
on Banach space B, f : [0, T] × B → B and x0 ∈ B. Here T > 0 and the domain D(A) is
defined as the set of u ∈ B for which the following limit exists:

Au = lim
t→0+

Q(t)u – u
t

.

For more details as regards semigroup theory of operators, see [1].
Fractional differential equations have been widely applied in many important areas, in-

cluding thermodynamics, porous media, plasma dynamics, cosmic rays, continuum me-
chanics, electrodynamics, quantum mechanics, biological systems and prime number the-
ory [2, 3]. In particular, the fractional diffusion equations have been successfully used in
modeling anomalous diffusion processes with continuous time random walks [4].
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Theoretical aspects for fractional evolution equations have been investigated by many
mathematicians. El-Borai [5–7] used a probability density function to obtain the solutions
to Cauchy problems for different fractional evolution equations. In 2010, Hernandez et
al. [8] proved that the concepts of mild solutions of fractional evolution equations con-
sidered in some previous papers were not appropriate. Based on the new definition of
a mild solution obtained by employing the Laplace transform, Zhou et al. [9–14] estab-
lished the existence and uniqueness results for mild solution of different kinds of frac-
tional evolution equations. Wang et al. [15] revisited the nonlocal Cauchy problem for
fractional evolution equations and relaxed the compactness and Lipschitz continuity on
the nonlocal item given in the previous existence results. Fan et al. [16] used the fixed
point theorem for condensing maps to obtain the existence results for Eqs. (1.1)–(1.2)
under the noncompactness condition. In [17] the authors established the local existence
and uniqueness of mild solution of Eqs. (1.1)–(1.2) under Lipschitz condition and proved
the continuous dependence of mild solution on the initial value and the fractional order.
Ge et al. [18] considered the approximate controllability of the fractional evolution equa-
tions with nonlocal and impulsive conditions. Chen et al. [19] studied the existence of
mild solutions for a nonautonomous fractional evolution equations with delay in Banach
space. Yang and Wang [20] established the existence and uniqueness of mild solutions of
fractional evolution equations involving the Hilfer derivative by using the noncompact
measure method. In [21–23], the authors investigated existence, uniqueness and asymp-
totic behavior of weak solutions of the initial boundary value problems for time fractional
diffusion equations by employing the spectral decomposition of the symmetric uniformly
elliptic operator. However, to the best of our knowledge, the existence and uniqueness of
mild solution of the initial value problem (1.1)–(1.2) under compact condition have not
been deeply investigated yet.

In the present paper, we use properties of the three-parametric Mittag–Leffler function
and fixed point theory to prove the existence and uniqueness of mild solution to Eqs. (1.1)–
(1.2). In particular, the uniqueness result for a mild solution is obtained when f satisfies a
condition weaker than Lipschitz condition.

This paper is organized as follows. In Sect. 2, a new property of the three-parametric
Mittag–Leffler function is established. In Sect. 3 we prove the existence of mild solutions
of Eqs. (1.1)–(1.2) by using the Schauder fixed point theorem and the new property of the
three-parametric Mittag–Leffler function. Section 4 deals with the uniqueness of the mild
solution. In Sect. 5, two examples are given for demonstration. Section 6 presents some
concluding remarks.

2 A property of the three-parametric Mittag–Leffler function
In this section we prove a new property of the three-parametric Mittag–Leffler function
which plays an important role in our investigation.

Definition 2.1 ([24]) Let β ≥ 0. The Riemann–Liouville integral operator of order β is
defined by I0 being the identity operator and

Iβy(t) =
1

�(β)

∫ t

0
(t – s)β–1y(s) ds for β > 0.
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Definition 2.2 ([24]) Let β ≥ 0. The Caputo fractional differential operator of order β is
defined by

Dβu = I�β�–βD�β�u,

where �·� is the ceiling function and D�β� is the classical differential operator of order
�β� ∈ N .

Definition 2.3 ([25]) Let c, d, e > 0. The three-parametric Mittag–Leffler function is de-
fined by

Ee
c,d(t) =

∞∑

i=0

(e)iti

i!�(ci + d)
,

where (e)i = e(e + 1) · · · (e + i – 1).

Lemma 2.4 ([25, 26]) Let c, d ∈ R, z ∈ C.

�(z + c)
�(z + d)

= zc–d
[

1 + O
(

1
z

)] (∣∣ arg(z + c)
∣
∣ < π ; |z| → ∞)

.

Lemma 2.5 ([25, 27]) Let c, d, e,γ > 0.

{
Iγ

[
Ee

c,d
(
λsc)sd–1]}(t) = td+γ –1Ee

c,d+γ

(
λtc).

Lemma 2.6 Let c, d, e,γ ,η, h, r > 0. Then there exists a real number λ > 0 such that, for
t ∈ [0, h],

tηEe
c,d+γ

(
λtc) < rEe

c,d
(
λtc). (2.1)

Proof Firstly we take an integer i0 ∈ N such that ci0 + d ≥ 2. We choose a real number
t0 > 0 such that, for t ≤ t0,

i0–1∑

i=0

(e)iλ
itci+η

i!�(ci + d + γ )
≤ r

�(d)
.

Set t1 = min{t0, r
1
η }. If t ≤ t1, then we have, for any λ > 0,

tηEe
c,d+γ

(
λtc) =

∞∑

i=0

(e)iλ
itci+η

i!�(ci + d + γ )
=

i0–1∑

i=0

(e)iλ
itci+η

i!�(ci + d + γ )
+

∞∑

i=i0

(e)iλ
itci+η

i!�(ci + d + γ )

<
r

�(d)
+

∞∑

i=i0

r(e)iλ
itci

i!�(ci + d)
< rEe

c,d
(
λtc).

Thus we need to find a real number λ > 0 that satisfies (2.1) for t ∈ [t1, h].
By Lemma 2.4, there exists an integer i1 ∈ N such that, for i ≥ i1,

�(ci + d)hη

�(ci + d + γ )
<

r
2

.
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There exists a real number λ0 > 0 such that

i1–1∑

i=0

(e)iλ0
ihci

i!�(ci + d + γ )
<

(e)i1λ0
i1 t1

ci1+h

i1!�(ci1 + d + γ )
.

Then we have, for any t ∈ [t1, h],

thEe
c,d+γ

(
λ0tc) =

i1–1∑

i=0

(e)iλ0
itci+h

i!�(ci + d + γ )
+

∞∑

i=i1

(e)iλ0
itci+h

i!�(ci + d + γ )

<
2(e)i1λ0

i1 tci1+h

i1!�(ci1 + d + γ )
+

∞∑

i=i1+1

(e)iλ0
itci+h

i!�(ci + d + γ )

<
r(e)i1λ0

i1 tci1

i1!�(ci1 + d)
+

∞∑

i=i1+1

r(e)iλ0
itci

2i!�(ci + d)
<

∞∑

i=0

r(e)iλ0
itci

i!�(ci + d)
= rEe

c,d
(
λ0tc),

which shows that λ0 satisfies (2.1) for t ∈ [0, h]. �

Theorem 2.7 Let c, e, h, r,γ > 0. If d < min{γ , 1}, then there exists a real number λ > 0 such
that for t ∈ [0, h],

{
Iγ

[
Ee

c,1–d
(
λsc)s–d]}(t) =

1
�(γ )

∫ t

0
(t – s)γ –1 Ee

c,1–d(λsc)
sd ds < rEe

c,1–d
(
λtc).

Proof By Lemma 2.5 and Lemma 2.6, we can easily prove this result. �

Remark 2.8 The above result is a generalization of the result for the two-parametric
Mittag–Leffler function obtained in [28].

For more details as regards the Mittag–Leffler functions, see [25, 29, 30].

3 Existence of mild solution
In this section we use the property of the three-parametric Mittag–Leffler function to
establish the existence results for mild solutions to the equation (1.1)–(1.2). Let | · | be the
norm of the Banach space B and C([0, T], B) be the Banach space of continuous functions
from [0, T] into B with the supremum norm ‖ · ‖. Let B∗ be the space of all bounded
linear operators from B to B with norm ‖F‖∗ = sup{|F(u)| : |u| = 1, u ∈ B} for F ∈ B∗. Set
M = supt∈[0,∞) ‖Q(t)‖∗.

Definition 3.1 ([9, 14]) By the mild solution of the fractional evolution equations (1.1)–
(1.2), we mean a function x ∈ C([0, T], B) satisfying

x(t) = Sq(t)x0 +
∫ t

0
(t – s)q–1Pq(t – s)f

(
s, x(s)

)
ds, t ∈ [0, T], (3.1)

where

Sq(t)u =
∫ ∞

0
Vq(s)Q

(
tqs

)
u ds, Pq(t)u =

∫ ∞

0
qsVq(s)Q

(
tqs

)
u ds, u ∈ B.
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Here Vq(s) is the Mainardi function defined by ([2, 31])

Vq(s) =
∞∑

n=1

(–s)n–1

(n – 1)!�(1 – qn)
, s ∈ C.

We recall some properties of the operators Sq(t) and Pq(t).

Lemma 3.2 ([10]) For any t > 0, Sq(t) and Pq(t) are bounded linear operators. Moreover,
for any u ∈ B,

∣
∣Sq(t)u

∣
∣ ≤ M|u|, ∣

∣Pq(t)u
∣
∣ ≤ M

�(q)
|u|.

Lemma 3.3 ([10]) {Sq(t)}t≥0 and {Pq(t)}t≥0 are strongly continuous. That is, for t2, t1 ∈ R
and u ∈ B, |Sq(t2)u – Sq(t1)u| → 0 and |Pq(t2)u – Pq(t1)u| → 0 as t2 → t1.

Lemma 3.4 ([10]) If Q(t) is a compact operator for any t > 0, then Sq(t) and Pq(t) are also
compact operators for any t > 0.

By considering the fixed point problem with J defined by

Jx(t) = Sq(t)x0 +
∫ t

0
(t – s)q–1Pq(t – s)f

(
s, x(s)

)
ds,

we study the existence and uniqueness of solutions to Eqs. (1.1)–(1.2). For the existence
theorem, we make the following hypotheses.

(H3-1) For any t > 0, Q(t) is a compact operator.
(H3-2) For a.e. t ∈ [0, T], the function f (t, ·) : B → B is continuous and for any

x ∈ C([0, T], B), the function f (·, x) : [0, T] → B is strongly measurable.
(H3-3) There exist T1 ∈ (0, T], l ∈ (T1, T), a1, a2, q1, q2 ∈ [0, q), p1, p2 ∈ (0, 1], b1, b2 > 0,

m1(t) ∈ L
1

q1 [0, T1], m2(t) ∈ L
1

q2 [T1, T] such that

∣∣f (t, u)
∣∣ ≤

{
b1
ta1 |u|p1 + m1(t) for t ∈ (0, T1] and u ∈ B,

b2
|t–l|a2 |u|p2 + m2(t) for t ∈ [T1, l) ∪ (l, T] and u ∈ B.

Lemma 3.5 Let Y be a bounded subset of C([0, T], B) and suppose that (H3-1), (H3-2),
(H3-3) hold. Then {Jx : x ∈ Y } is equicontinuous.

Proof Let H = supx∈Y ‖x‖. We have, for any x ∈ Y and 0 ≤ t1 < t2 ≤ T ,

∣
∣Jx(t2) – Jx(t1)

∣
∣ ≤ ∣

∣Sq(t2)x0 – Sq(t1)x0
∣
∣

+
∣∣
∣∣

∫ t2

0
(t2 – s)q–1Pq(t2 – s)f

(
s, x(s)

)
ds

–
∫ t1

0
(t1 – s)q–1Pq(t1 – s)f

(
s, x(s)

)
ds

∣∣∣
∣

≤ ∣∣Sq(t2)x0 – Sq(t1)x0
∣∣ +

∫ t2

t1

(t2 – s)q–1∣∣Pq(t2 – s)f
(
s, x(s)

)∣∣ds
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+
∫ t1

0
(t2 – s)q–1∣∣Pq(t2 – s)f

(
s, x(s)

)
– Pq(t1 – s)f

(
s, x(s)

)∣∣ds

+
∫ t1

0

(
(t1 – s)q–1 – (t2 – s)q–1)∣∣Pq(t1 – s)f

(
s, x(s)

)∣∣ds

= K0 + K1 + K2 + K3,

where

K0 =
∣
∣Sq(t2)x0 – Sq(t1)x0

∣
∣,

K1 =
∫ t2

t1

(t2 – s)q–1∣∣Pq(t2 – s)f
(
s, x(s)

)∣∣ds,

K2 =
∫ t1

0
(t2 – s)q–1∣∣Pq(t2 – s)f

(
s, x(s)

)
– Pq(t1 – s)f

(
s, x(s)

)∣∣ds,

K3 =
∫ t1

0

(
(t1 – s)q–1 – (t2 – s)q–1)∣∣Pq(t1 – s)f

(
s, x(s)

)∣∣ds.

By Lemma 3.3, it is clear that K0 → 0 as t2 – t1 → 0. Firstly we consider the case 0 < t1 <
t2 ≤ T1. From (H3-3), there exists a real number q3 > 0 such that a1 < q3 < q. By (H3-3),
Lemma 3.2 and the Hölder inequality, we have

K1 ≤ M
�(q)

∫ t2

t1

(t2 – s)q–1
(

b1

sa1

∣∣x(s)
∣∣p1 + m1(s)

)
ds

≤ b1MHp1

�(q)

(∫ t2

t1

(t2 – s)
q–1

1–q3 ds
)1–q3(∫ t2

t1

s– a1
q3 ds

)q3

+
M

�(q)

(∫ t2

t1

(t2 – s)
q–1

1–q1 ds
)1–q1

,

‖m1‖
L

1
q1 [t1,t2]

≤ b1MHp1

�(q)

(
1 – q3

q – q3

)1–q3( q3

q3 – a1

)q3

(t2 – t1)q–q3
(
t

q3–a1
q3

2 – t
q3–a1

q3
1

)q3

+
M

�(q)

(
1 – q1

q – q1

)1–q1

(t2 – t1)q–q1‖m1‖
L

1
q1 [t1,t2]

,

which implies that K1 → 0 as t2 – t1 → 0. By (H3-3), Lemma 3.2 and the Hölder inequality,
we have

K3 ≤ M
�(q)

∫ t1

0

(
(t1 – s)q–1 – (t2 – s)q–1)

(
b1

sa1

∣∣x(s)
∣∣p1 + m1(s)

)
ds

≤ b1MHp1

�(q)

(∫ t1

0

(
(t1 – s)q–1 – (t2 – s)q–1) 1

1–q3 ds
)1–q3(∫ t1

0
s– a1

q3 ds
)q3

+
M

�(q)

(∫ t1

0

(
(t1 – s)q–1 – (t2 – s)q–1) 1

1–q1 ds
)1–q1

‖m1‖
L

1
q1 [0,t1]

≤ b1MHp1

�(q)

(
1 – q3

q – q3

)1–q3(
t

q–q3
1–q3
1 – t

q–q3
1–q3
2 + (t2 – t1)

q–q3
1–q3

)1–q3
(

q3

q3 – a1

)q3

tq3–a1
1

+
M

�(q)

(
1 – q1

q – q

)1–q1(
t

q–q1
1–q1
1 – t

q–q1
1–q1
2 + (t2 – t1)

q–q1
1–q1

)1–q1‖m1‖
L

1
q1 [0,t1]

,
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which implies that K3 → 0 as t2 – t1 → 0. By (H3-1) and Lemma 3.2, for ε ∈ (0, t1),

K2 ≤
∫ t1–ε

0
(t2 – s)q–1∣∣Pq(t2 – s) – Pq(t1 – s)

∣
∣
∣
∣f

(
s, x(s)

)∣∣ds

+
∫ t1

t1–ε

(t2 – s)q–1∣∣Pq(t2 – s) – Pq(t1 – s)
∣∣∣∣f

(
s, x(s)

)∣∣ds

≤ sup
s∈[0,t1–ε]

∣∣Pq(t2 – s) – Pq(t1 – s)
∣∣
∫ t1

0
(t2 – s)q–1

(
b1

sa1

∣∣x(s)
∣∣p1 + m1(s)

)
ds

+
2M
�(q)

∫ t1

t1–ε

(t2 – s)q–1
(

b1

sa1

∣
∣x(s)

∣
∣p1 + m1(s)

)
ds

≤ sup
s∈[0,t1–ε]

∣
∣Pq(t2 – s) – Pq(t1 – s)

∣
∣
∫ t1

0
(t2 – s)q–1

(
b1Hp1

sa1
+ m1(s)

)
ds

+
2M
�(q)

∫ t1

t1–ε

(t2 – s)q–1
(

b1Hp1

sa1
+ m1(s)

)
ds.

Similar to K1 and K3, by using Lemma 3.4 and the Hölder inequality, we can prove that
K2 → 0 as t2 –t1 → 0, ε → 0. Thus if 0 < t1 < t2 ≤ T1, then |Jx(t2)–Jx(t1)| → 0 as t2 –t1 → 0.
In the case t2 > T1 and the case t1 = 0, by using the same technique as above, we can
complete the proof. �

Lemma 3.6 Let Y be a bounded subset of C([0, T], B) and suppose that (H3-1), (H3-2),
(H3-3) hold. Then J is continuous on Y .

Proof Let H = supx∈Y ‖x‖ and {xn} ⊂ Y be a sequence such that limn→∞ xn = x in
C([0, T], B). By the continuity of f with respect to the seconde variable, for a.e. t ∈ [0, T],
limn→∞ f (t, xn(t)) = f (t, x(t)). Thus limn→∞(t – s)q–1f (s, xn(s)) = (t – s)q–1f (s, x(s)) for a.e.
t ∈ [0, T] and s ∈ [0, t]. From (H3-2), we have

(t – s)q–1∣∣f
(
t, xn(s)

)∣∣ ≤
{

b1(t–s)q–1

sa1 Hp1 + m1(t) for s ∈ (0, T1],
b2(t–s)q–1

|s–l|a2 Hp2 + m2(t) for s ∈ [T1, l) ∪ (l, T].

It is easy to prove that the right side of the above inequality is integrable for s ∈ [0, t]. We
have, for t ∈ [0, T],

∣
∣Jxn(t) – Jx(t)

∣
∣ ≤

∫ t

0
(t – s)q–1∣∣Pq(t – s)f

(
s, xn(s)

)
– Pq(t – s)f

(
s, x(s)

)∣∣ds

≤ M
�(q)

∫ t

0

∣∣(t – s)q–1f
(
s, xn(s)

)
– (t – s)q–1f

(
s, x(s)

)∣∣ds.

By the Lebesgue dominated convergence theorem, limn→∞ Jxn(t) = Jx(t) for any t ∈
[0, T]. �

Lemma 3.7 Let Y be a bounded subset of C([0, T], B) and suppose that (H3-1), (H3-2),
(H3-3) hold. Then, for any t ∈ [0, T], {Jx(t) : x ∈ Y } is relatively compact.
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Proof By using the same technique as Theorem 3.1 of [9], we can prove this result. �

Now we will prove the main result of this section.

Theorem 3.8 Suppose that (H3-1), (H3-2), (H3-3) hold. Then the fractional evolution
equations (1.1)–(1.2) have a mild solution.

Proof Firstly, by using the new property of the three-parametric Mittag–Leffler function
obtained in Sect. 2, we will show that there exists a convex bounded closed subset G ∈
C([0, T], B) such that JG ⊂ G. By Theorem 2.7, there exist λ1,λ2,λ3 > 0 such that, for t ∈
[0, T],

{
Iq[E2

3,1–a1

(
λ1s3)s–a1

]}
(t) <

1
2b1M

E2
3,1–a1

(
λ1t3),

{
Iq–a2

[
E2

3,1
(
λ2s3)]}(t) <

�(q)
2b2M�(q – a2)

E2
3,1

(
λ2t3),

{
Iq[E2

3,1–a2

(
λ3s3)s–a2

]}
(t) <

1
2b2M

E2
3,1–a2

(
λ3t3).

We define a convex bounded closed subset G of C([0, T], B) as follows:

G =

⎧
⎪⎨

⎪⎩
x ∈ C

(
[0, T], B

)
:
∣∣x(t)

∣∣ ≤

⎧
⎪⎨

⎪⎩

2D1E2
3,1–a1 (λ1t3) for t ∈ [0, T1],

2D2E2
3,1(λ2t3) for t ∈ [T1, l],

2D3E2
3,1–a2 (λ3(t – l)3) for t ∈ [l, T],

⎫
⎪⎬

⎪⎭

where

D1 = �(1 – a1) max

{
1,

(
M|x0| +

M
�(q)

(
1 – q1

q – q1

)1–q1

T1
q–q1‖m1‖

L
1

q1 [0,T1]

)}
,

D2 = 2D1E2
3,1–a1

(
λ1T1

3) +
M

�(q)

(
1 – q2

q – q2

)1–q2

(l – T1)q–q2‖m2‖
L

1
q2 [T1,l]

,

D3 = �(1 – a2)
{

2D2E2
3,1

(
λ2l3) +

M
�(q)

(
1 – q2

q – q2

)1–q2

(T – l)q–q2‖m2‖
L

1
q2 [l,T]

}
.

By the Hölder inequality, we have, for any x ∈ G and t ∈ [0, T1],

∣∣Jx(t)
∣∣ ≤ ∣∣Sq(t)x0

∣∣ +
∫ t

0
(t – s)q–1∣∣Pq(t – s)f

(
s, x(s)

)∣∣ds

≤ M|x0| +
M

�(q)

∫ t

0
(t – s)q–1

(
b1

sa1

∣
∣x(s)

∣
∣p1 + m1(s)

)
ds

≤ M|x0| + 2b1MD1
{

Iq[E2
3,1–a1

(
λ1s3)s–a1

]}
(t)

+
M

�(q)

(∫ t

0
(t – s)

q–1
1–q1 ds

)1–q1

‖m1‖
L

1
q1 [0,T1]

≤ D1

�(1 – a1)
+ D1E2

3,1–a1

(
λ1t3) < 2D1E2

3,1–a1

(
λ1t3).
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We have, for any x ∈ G and t ∈ [T1, l],

∣∣Jx(t)
∣∣ ≤ ∣∣Sq(t)x0

∣∣ +
∫ T1

0
(t – s)q–1∣∣Pq(t – s)f

(
s, x(s)

)∣∣ds

+
∫ t

T1

(t – s)q–1∣∣Pq(t – s)f
(
s, x(s)

)∣∣ds

≤ 2D1E2
3,1–a1

(
λ1T1

3) +
M

�(q)

∫ t

T1

(t – s)q–1
(

b2

(l – s)a2

∣
∣x(s)

∣
∣p2 + m2(s)

)
ds

≤ 2D1E2
3,1–a1

(
λ1T1

3) +
M

�(q)

(∫ t

T1

(t – s)
q–1

1–q2 ds
)1–q2

‖m2‖
L

1
q2 [T1,l]

+
2b2M�(q – a2)

�(q)
D2

{
Iq–a2

[
E2

3,1
(
λ2s3)]}(t)

≤ 2D2E2
3,1

(
λ2t3).

We have, for any x ∈ G and t ∈ [l, T],

∣∣Jx(t)
∣∣ ≤ ∣∣Sq(t)x0

∣∣ +
∫ l

0
(t – s)q–1∣∣Pq(t – s)f

(
s, x(s)

)∣∣ds

+
∫ t

l
(t – s)q–1∣∣Pq(t – s)f

(
s, x(s)

)∣∣ds

≤ 2D2E2
3,1

(
λ2l3) +

M
�(q)

∫ t

l
(t – s)q–1

(
b2

(s – l)a2

∣
∣x(s)

∣
∣p2 + m2(s)

)
ds

≤ 2D2E2
3,1

(
λ2l3)

+
M

�(q)

∫ t

l
(t – s)q–1m2(s) ds +

M
�(q)

∫ t–l

0

b2

sa2
(t – l – s)q–1∣∣x(s + l)

∣∣p2 ds

≤ 2D2E2
3,1

(
λ2l3) +

M
�(q)

(∫ t

l
(t – s)

q–1
1–q2 ds

)1–q2

‖m2‖
L

1
q2 [l,T]

+ 2b2MD3
{

Iq[E2
3,1–a2

(
λ3s3)]}(t – l)

≤ 2D3E2
3,1–a2

(
λ3(t – l)3).

Thus JG ⊂ G. By Lemma 3.5, Lemma 3.7 and the Ascoli theorem, {Jx : x ∈ G} is relatively
compact. Lemma 3.6 and relatively compactness of {Jx : x ∈ G} imply that J is a com-
pact operator. Thus, from the Schauder fixed point theorem, J has at least one fixed point
in G. �

Remark 3.9 The condition (H3-3) of Theorem 3.8 can be replaced by the following con-
dition. There exist n ∈ N , 0 = T0 < T1 < · · · < Tn = T , li ∈ (Ti–1, Ti) for i = 2, . . . , n, aj, qj ∈
[0, q), pj ∈ (0, 1], bj > 0, mj(t) ∈ L

1
qj [Tj–1, Tj] for j = 1, . . . , n such that

∣
∣f (t, u)

∣
∣ ≤

{
b1
ta1 |u|p1 + m1(t) for t ∈ (0, T1] and u ∈ B,

bi
|t–li|ai |u|pi + mi(t) for t ∈ [Ti–1, li) ∪ (li, Ti] and u ∈ B,

where i = 2, . . . , n.
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4 Uniqueness of mild solution
This section discusses the uniqueness of mild solutions of (1.1)–(1.2). For the uniqueness
theorem, we make the following hypotheses.

(H3-2)′ f : [0, T] × B → B is continuous.
(H3-3)′ There exist constants a1, a2 ∈ [0, q), b1, b2 > 0, T1 ∈ (0, T], l ∈ (T1, T), such that

∣∣f (t, u) – f (t, v)
∣∣ ≤

{
b1
ta1 |u – v| for t ∈ (0, T1], u, v ∈ B,

b2
|t–l|a2 |u – v| for t ∈ [T1, l) ∪ (l, T], u, v ∈ B.

Theorem 4.1 Suppose that (H3-1), (H3-2)′ and (H3-3)′ hold. Then the fractional evolu-
tion equations (1.1)–(1.2) have a unique mild solution.

Proof From the conditions (H3-2)′ and (H3-3)′, we can easily prove that (H3-3) holds.
Thus, by Theorem 3.8, the fractional evolution equations (1.1)–(1.2) have at least one mild
solution. By using the method of proof by contradiction, we will establish a uniqueness
result for mild solutions of Eqs. (1.1)–(1.2). Assume that (1.1)–(1.2) have two solutions.
Then the operator J has also two fixed points x, y such that ‖x – y‖ > 0. By Theorem 2.7,
there exists a real number λ1 > 0 such that, for t ∈ [0, T],

{
Iq[E2

3,1–a1

(
λ1s3)s–a1

]}
(t) <

1
b1M

E2
3,1–a1

(
λ1t3).

We define W1 and L1 as follows:

W1 = inf
{

w :
∣∣x(t) – y(t)

∣∣ ≤ wE2
3,1–a1

(
λ1t3), t ∈ [0, T1]

}
,

L1 = inf
{

t ∈ [0, T1] :
∣∣x(t) – y(t)

∣∣ = W1E2
3,1–a1

(
λ1t3)}.

If W1 �= 0, then we have

W1E2
3,1–a1

(
λ1L1

3) =
∣
∣x(L1) – y(L1)

∣
∣

≤
∫ L1

0
(L1 – s)q–1Pq(L1 – s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

≤ M
�(q)

∫ L1

0
(L1 – s)q–1 b1

sa1

∣∣x(s) – y(s)
∣∣ds

≤ b1M
�(q)

∫ L1

0
(L1 – s)q–1 1

sa1
W1E2

3,1–a1

(
λ1s3)ds

< W1E2
3,1–a1

(
λ1L1

3),

which implies that W1 = 0. Therefore x(t) = y(t), t ∈ [0, T1]. By Theorem 2.7, there exists a
real number λ2 > 0 such that, for t ∈ [0, T],

{
Iq–a2

[
E2

3,1
(
λ2s3)]}(t) <

�(q)
b2M�(q – a2)

E2
3,1

(
λ2t3).

We define W2 and L2 as follows:

W2 = inf
{

w :
∣∣x(t) – y(t)

∣∣ ≤ wE2
3,1

(
λ2t3), t ∈ [T1, l]

}
,

L2 = inf
{

t ∈ [T1, l] :
∣∣x(t) – y(t)

∣∣ = W2E2
3,1

(
λ2t3)}.
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If W2 �= 0, then we have

W2E2
3,1

(
λ2L2

3) =
∣∣x(L2) – y(L2)

∣∣

≤
∫ L2

0
(L2 – s)q–1Pq(L2 – s)

∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

≤ M
�(q)

∫ L2

T1

(L2 – s)q–1 b2

(l – s)a2

∣
∣x(s) – y(s)

∣
∣ds

≤ b2M
�(q)

∫ L2

0
(L2 – s)q–a2–1W2E2

3,1
(
λ2s3)ds

< W2E2
3,1

(
λ2L2

3),

which implies that W2 = 0. Therefore x(t) = y(t), t ∈ [0, l]. By Theorem 2.7, there exists a
real number λ3 > 0 such that, for t ∈ [0, T],

{
Iq[E2

3,1–a2

(
λ3s3)s–a2

]}
(t) <

1
b2M

E2
3,1–a2

(
λ3t3).

We define W3 and L3 as follows:

W3 = inf
{

w :
∣
∣x(t) – y(t)

∣
∣ ≤ wE2

3,1–a2

(
λ3(t – l)3), t ∈ [l, T]

}
,

L3 = inf
{

t ∈ [l, T] :
∣
∣x(t) – y(t)

∣
∣ = W3E2

3,1–a2

(
λ3(t – l)3)}.

From the assumption ‖x – y‖ > 0, it is clear that W3 �= 0. Then we have

W3E2
3,1–a2

(
λ3(L3 – l)3) =

∣
∣x(L3) – y(L3)

∣
∣

≤
∫ L3

l
(L3 – s)q–1Pq(L3 – s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

≤ M
�(q)

∫ L3

l
(L3 – s)q–1 b2

(s – l)a2

∣
∣x(s) – y(s)

∣
∣ds

≤ b2M
�(q)

∫ L3–l

0
(L3 – l – s)q–1 1

sa2
W3E2

3,1–a2

(
λ3s3)ds

< W3E2
3,1–a2

(
λ3(L3 – l)3).

This contradiction shows that Eqs. (1.1)–(1.2) have a unique mild solution. �

Remark 4.2 The condition (H3-2)′ of Theorem 4.1 can be replaced by the following condi-
tion. There exists a real number q1 ∈ [0, q) such that |f (·,	)| ∈ L

1
q1 [0, T] and (H3-2) holds.

Here 	 is the zero vector of the Banach space B.

Remark 4.3 The condition (H3-3)′ of Theorem 4.1 can be replaced by the following con-
dition. There exist n ∈ N , 0 = T0 < T1 < · · · < Tn = T , li ∈ (Ti–1, Ti) for i = 2, . . . , n, aj ∈ [0, q),
bj > 0 for j = 1, . . . , n such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤

{
b1
ta1 |u – v| for t ∈ (0, T1] and u, v ∈ B,

bi
|t–li|ai |u – v| for t ∈ [Ti–1, li) ∪ (li, Ti] and u, v ∈ B,

where i = 2, . . . , n.
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Remark 4.4 If the exponential function is used instead of the Mittag–Leffler function in
proving the uniqueness result, we can only establish the uniqueness result when f satisfies
the Lipschitz condition. Theorem 3.8 and Theorem 4.1 can be proved only if the Mittag–
Leffler function is employed.

5 Applications
In this section we discuss existence and uniqueness of mild solutions of time fractional
diffusion equations as an application of main results. The existence of solutions of the
following equations cannot be proved by previous results.

Example Consider the fractional diffusion equation of the form

⎧
⎪⎨

⎪⎩

D0.7
t x(t, u) = �x(t, u) + 3x0.8(t,u)

t0.5 , 0 < t ≤ T , 0 ≤ u ≤ 3,
x(t, 0) = x(t, 3) = 0, t ∈ [0, T],
x(0, u) = 0, u ∈ [0, 3].

(5.1)

Define the operator A by A = ∂2

∂u2 with the domain D(A) = {x(·) ∈ B : x, x′ are absolutely
continuous, x′′ ∈ B, and x(0) = x(3) = 0} where B = L2[0, 3]. Then the operator A generates
a strongly continuous semigroup. For more details as regards this conclusion, please refer
to [1]. Since f (t, y) = 3y0.8

t0.5 and q = 0.7 > 0.5, by Theorem 3.8, Eq. (5.1) has a mild solution
in C([0, T], L2[0, 3]).

Example Consider the fractional diffusion equation of the form

⎧
⎪⎨

⎪⎩

D0.8
t x(t, u) = �x(t, u) + 8x(t,u)

t0.2 , 0 < t ≤ T , u ∈ �,
x(t, u)|u∈∂� = 0, t ∈ [0, T],
x(0, u) = x0(u), u ∈ �,

(5.2)

where � is a bounded domain with smooth boundary ∂� in R3 and x0 ∈ H2(�) ∩ H1
0 (�).

We denote A = ∂2

∂u2
1

+ ∂2

∂u2
2

+ ∂2

∂u2
3

and B = L2(�). Then the operator –A is a strongly elliptic
operator defined in H2(�) ∩ H1

0 (�) and the operator A generates an analytic semigroup
on L2(�) (see [1]). By Theorem 4.1, Eq. (5.2) has a unique mild solution in C([0, T], L2(�)).

6 Conclusion
In this paper the existence and uniqueness of mild solutions of the initial value problems
of fractional evolution equations are proved under some appropriate conditions by using
a fantastic property of the Mittag–Leffler function. In particular, the uniqueness result of
mild solution is established when f satisfies the condition close to Nagumo-type condi-
tion. In the future, we will investigate the initial value problems for different fractional
differential equations by employing the proof technique used in the present paper.

Acknowledgements
The authors would like to thank referees for their valuable advices for the improvement of this article.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SCS, HCI and GCK participated in obtaining the main results of this manuscript and drafted the manuscript. All authors
read and approved the final manuscript.



Sin et al. Advances in Difference Equations  (2018) 2018:61 Page 13 of 13

Author details
1Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea. 2Institute of
Mechanical Enginerring, Academy of Sciences, Pyongyang, Democratic People’s Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 October 2017 Accepted: 7 February 2018

References
1. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
2. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)
3. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)
4. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.

339, 1–77 (2000)
5. El-Borai, M.M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos

Solitons Fractals 14, 433–440 (2002)
6. El-Borai, M.M.: Semigroups and some nonlinear fractional differential equations. Appl. Math. Comput. 149, 823–831

(2004)
7. El-Borai, M.M., El-Nadi, K.E., El-Akabawy, E.G.: On some fractional evolution equations. Comput. Math. Appl. 59,

1352–1355 (2010)
8. Hernandez, E., O’Regan, D., Balachandran, K.: On recent developments in the theory of abstract differential equations

with fractional derivatives. Nonlinear Anal., Theory Methods Appl. 73, 3462–3471 (2010)
9. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal., Real World Appl. 11,

4465–4475 (2010)
10. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59,

1063–1077 (2010)
11. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal., Real World Appl. 12,

262–272 (2011)
12. Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal., Theory Methods

Appl. 74, 5929–5942 (2011)
13. Zhou, Y., Shen, X.H., Zhang, L.: Cauchy problem for fractional evolution equations with Caputo derivative. Eur. Phys. J.

Spec. Top. 222, 1749–1765 (2013)
14. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
15. Wang, R., Yang, Y.: On the Cauchy problems of fractional evolution equations with nonlocal initial conditions. Results

Math. 63, 15–30 (2013)
16. Fan, H., Mu, J.: Initial value problem for fractional evolution equations. Adv. Differ. Equ. 2012, Article ID 49 (2012)
17. Chen, P., Zhang, X., Li, Y.: A note on the initial value problem of fractional evolution equations. Adv. Differ. Equ. 2015,

Article ID 155 (2015)
18. Ge, F., Zhou, H., Kou, C.: Approximate controllability of semilinear evolution equations of fractional order with

nonlocal and impulsive conditions via an approximating technique. Appl. Math. Comput. 275, 107–120 (2016)
19. Chen, P., Zhang, X., Li, Y.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl.

73, 794–803 (2017)
20. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal

conditions. Fract. Calc. Appl. Anal. 20, 679–705 (2017)
21. Liu, Y.: Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse

source problem. Comput. Math. Appl. 73, 96–108 (2017)
22. Li, Z., Liu, Y., Yamamoto, M.: Analyticity of solutions to a distributed order time-fractional diffusion equation and its

application to an inverse problem. Comput. Math. Appl. 73, 1041–1052 (2017)
23. Luchko, Y., Yamamoto, M.: On the maximum principle for a time-fractional diffusion equation. Fract. Calc. Appl. Anal.

20, 1131–1145 (2017)
24. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
25. Gorenflo, R., Kilbas, A.A., Mainardi, F, Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer,

Berlin (2014)
26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
27. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
28. Sin, C., Zheng, L.: Existence and uniqueness of global solutions of Caputo-type fractional differential equations. Fract.

Calc. Appl. Anal. 19, 765–774 (2016)
29. Soubhia, A.L., Camargo, R.F., Oliveira, E.C., Vaz, J.: Theorem for series in the three-parameter Mittag–Leffler function.

Fract. Calc. Appl. Anal. 13, 9–20 (2010)
30. Sin, C., Ri, G., Kim, M.: Analytical solutions to multi-term time-space Caputo–Riesz fractional diffusion equations on an

infinite domain. Adv. Differ. Equ. 2017, Article ID 306 (2017)
31. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. In: Kertesz, J.,

Kondor, I. (eds.) Econophysics: An Emerging Science. Kluwer, Dordrecht (2000)


	Existence and uniqueness of mild solutions to initial value problems for fractional evolution equations
	Abstract
	MSC
	Keywords

	Introduction
	A property of the three-parametric Mittag-Lefﬂer function
	Existence of mild solution
	Uniqueness of mild solution
	Applications
	Conclusion
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


