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Abstract
In this paper, we establish a discrete-time analog for coupled within-host and
between-host systems for an environmentally driven infectious disease with fast and
slow two time scales by using the non-standard finite difference scheme. The system
is divided into a fast time system and a slow time system by using the idea of limit
equations. For the fast system, the positivity and boundedness of the solutions, the
basic reproduction number and the existence for infection-free and unique virus
infectious equilibria are obtained, and the threshold conditions on the local stability
of equilibria are established. In the slow system, except for the positivity and
boundedness of the solutions, the existence for disease-free, unique endemic and
two endemic equilibria are obtained, and the sufficient conditions on the local
stability for disease-free and unique endemic equilibria are established. To return to
the coupling system, the local stability for the virus- and disease-free equilibrium, and
virus infectious but disease-free equilibrium is established. The numerical examples
show that an endemic equilibrium is locally asymptotically stable and the other one is
unstable when there are two endemic equilibria.
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1 Introduction
As is well known, viruses have caused abundant types of epidemic and occur almost ev-
erywhere on Earth, infecting humans, animals, plants, and so on. There are a large number
of diseases, for example: influenza, hepatitis, HIV, AIDS, SARS, Ebola, MERS, etc., which
are caused by viruses. Therefore, it is important to study viral infection, which can supply
theory evidence for controlling diseases breaking out.

In recent years, many authors have established and investigated the various kinds of
viral infection dynamical systems which are described by differential equations and dif-
ference equations. Many important and valuable results were established and success-
fully applied to viral infections in practice. See, for example, [1–22] and the references
therein.
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In [1–4], the authors proposed a coupled within-host and between-host continuous-
time dynamical system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A – βES – μS,
dI
dt = βES – (μ + α)I,
dE
dt = θ IV (1 – E) – γ E,
dT
dt = � – kVT – mT ,
dT∗
dt = kVT – (m + d)T∗,

dV
dt = g(E) + pT∗ – cV ,

(1)

where S, I , E, T , T∗ and V denote the numbers of susceptible and infectious individuals,
the level of environment contamination, the densities of healthy cells and infected cells,
and the parasite load, respectively. In system (1), the parameter A and � denote the re-
cruitment rate of susceptible and healthy cells, respectively. β is the infection rate of hosts
in a contaminated environment. μ is the natural mortality rate of host. θ is the rate of
contamination. γ is the clearance rate. k is the infection rate of cells. m and d denote the
natural and infection-induced mortality rates of infected cells, respectively. p is the para-
site reproduction rate by an infected cell. c is the within-host mortality rate of parasites. α
is the induced mortality rate of host. It is assumed that the rate of environment contam-
ination is proportional to the number of infected hosts and the parasite load V within a
host, which has the form θVI . The function g(E) denotes the rate at which an average host
is inoculated.

In [1], for system (1) the authors introduced a slow time variable τ = εt, where 0 < ε � 1.
In this case, t as a fast time variable. The authors further considered the parameters asso-
ciated with the dynamics at the population level to be small based on the assumption that
the between-host dynamics occur on a slower time scale than that of parasite-cell dynam-
ics within the host. Let � = ε�̃, β = εβ̃ , μ = εμ̃, α = εα̃, θ = εθ̃ and γ = εγ̃ . Then, under
the faster time variable t and the slower time variable τ , system (1) can be written as the
two singular perturbation systems, see systems (6) and (7) given in [1], respectively. Using
the techniques from the singular perturbation theory in [23], the authors in [1] analyzed
system (1) by analyzing the corresponding fast and slow dynamics, and the fast and slow
dynamics can be analyzed using the fast and slow time subsystems, see systems (8) and
(9) given in [1], respectively. Here, we see that the concepts of fast and slow time systems
were introduced in [23] early.

We easily see that system (1) also can be described by using fast and slow time variables
t and τ in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dτ

= A – βES – μS,
dI
dτ

= βES – (μ + α)I,
dE
dτ

= θ IV (1 – E) – γ E,
dT
dt = � – kVT – mT ,
dT∗
dt = kVT – (m + d)T∗,

dV
dt = g(E) + pT∗ – cV .

(2)
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From this system, by the transformations t = τ
ε

for the last three equations of system (2)
and τ = εt for the first three equations of system (2), we can easily obtain two similar
singular perturbation systems and two similar fast and slow time subsystems as systems
(6), (7) and systems (8), (9) proposed in [1].

In recent years, more and more attention was paid on the discrete-time epidemic mod-
els. The reasons are as follows. Firstly, because the statistic data about infectious disease
is collected by day, week, month, or year, so it is more direct, more convenient and more
accurate to describe the epidemic by using discrete-time models than continuous-time
models. Secondly, it is very difficult to solve a nonlinear differential equation with a given
initial condition to obtain the exact solution. Thus, for many practical requirements, such
as numerical calculation, it is often necessary to discretize a continuous model into the
corresponding discrete model. Therefore, we see that the discrete-time analog is also alike
important for studying coupled system (1). At the present time, there are various dis-
cretization methods to discretize a continuous model, including the standard methods,
such as the Euler method, the Runge–Kutta method, and some other standard finite dif-
ference schemes, and the non-standard finite difference scheme, which is originally devel-
oped by Mickens (see [24–26]).

In this paper, we propose a discrete-time analog for above continuous-time system (2) by
using discretization method of Micken’s non-standard finite difference scheme, the model
is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

S(t + 1) – S(t) = A – βE(t)S(t + 1) – μS(t + 1),

I(t + 1) – I(t) = βE(t)S(t + 1) – (μ + α)I(t + 1),

E(t + 1) – E(t) = θ I(t)V (s + 1)(1 – E(t + 1)) – γ E(t + 1),

(3)

and

⎧
⎪⎪⎨

⎪⎪⎩

T(s + 1) – T(s) = � – kV (s)T(s + 1) – mT(s + 1),

T∗(s + 1) – T∗(s) = kV (s)T(s + 1) – (m + d)T∗(s + 1),

V (s + 1) – V (s) = g(E(t + 1)) + pT∗(s + 1) – cV (s + 1),

(4)

where system (3) denotes the slow dynamics with slow time t, and system (4) denotes the
fast dynamics with fast time s. However, in slow system (3) there is a fast time term V (s+1),
and in fast system (4) there is a slow time term g(E(t + 1)). Therefore, systems (3) and (4)
form a coupled system.

It is clear that in order to study the dynamical properties of coupled systems (3)–(4)
we can firstly analyze the fast and slow two subsystems which are determined by two time
scales t and s. In other words, we can treat the within-host subsystem (4) as the fast system
and the between-host subsystem (3) as the slow system.

For fast time s and slow time t, we may assume that there exists a certain relation between
s and t. For example, it may be assumed that there is a large enough integer K such that
s = Kt in slow system (3) and t = [ s

K ] in fast system (4), where [ s
K ] denotes the maximum

integer which is not more than s
K . Thus, coupled systems (3)–(4) will acquire the following
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form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t + 1) – S(t) = A – βE(t)S(t + 1) – μS(t + 1),

I(t + 1) – I(t) = βE(t)S(t + 1) – (μ + α)I(t + 1),

E(t + 1) – E(t) = θ I(t)V (Kt + 1)(1 – E(t + 1)) – γ E(t + 1),

T(s + 1) – T(s) = � – kV (s)T(s + 1) – mT(s + 1),

T∗(s + 1) – T∗(s) = kV (s)T(s + 1) – (m + d)T∗(s + 1),

V (s + 1) – V (s) = g(E([ s
K ] + 1)) + pT∗(s + 1) – cV (s + 1).

(5)

However, since there are terms V (Kt + 1) and g(E([ s
K ] + 1)) in system (5), it is very difficult

to readily investigate system (5) theoretically.
Therefore, in this paper we firstly separate the coupled systems (3)–(4) into a fast system

and a slow system by using the idea of limit systems. For fast system (4), we assume that the
environmental contamination E keeps a constant owing to the faster time scale is enough
quick. For slow system (3), we can assume that V (s) steadies to an equilibrium V̂ (E). Thus,
coupled systems (3)–(4) are separated into the following two isolated subsystems:

⎧
⎪⎪⎨

⎪⎪⎩

T(s + 1) – T(s) = � – kV (s)T(s + 1) – mT(s + 1),

T∗(s + 1) – T∗(s) = kV (s)T(s + 1) – (m + d)T∗(s + 1),

V (s + 1) – V (s) = g(E) + pT∗(s + 1) – cV (s + 1),

(6)

and

⎧
⎪⎪⎨

⎪⎪⎩

S(t + 1) – S(t) = A – βE(t)S(t + 1) – μS(t + 1),

I(t + 1) – I(t) = βE(t)S(t + 1) – (μ + α)I(t + 1),

E(t + 1) – E(t) = θ I(t)V̂ (E(t + 1))(1 – E(t + 1)) – γ E(t + 1),

(7)

where V̂ (E) is given in Sect. 3.
In this paper, for fast system (6) we will investigate the dynamical behaviors, including

the positivity, boundedness, basic reproduction number, the existence of equilibria and
the local stability of equilibria by using the discretization method. For slow system (7), we
will investigate the dynamical properties, including the positivity, boundedness, the exis-
tence of disease-free equilibrium, only a unique endemic equilibrium, and two endemic
equilibria, and the local asymptotic stability for the disease-free and endemic equilibria.

Next, we will investigate the dynamical behaviors for the coupled systems (3)–(4) basing
on the research results obtained for the fast and slow subsystems. We will establish some
criteria on the local asymptotic stability for the infection- and disease-free equilibrium,
virus infectious but disease-free equilibrium and the endemic equilibrium. Furthermore,
for the special cases which there is a unique endemic equilibrium, and two endemic equi-
libria in coupled systems (3)–(4), by means of the numerical examples, we will indicate
that the unique endemic equilibrium may be locally asymptotically stable, and an endemic
equilibrium may be locally asymptotically stable but the other one may be unstable.

This paper is organized as follows. In Sects. 2 and 3, fast system (6) and slow system
(7) are discussed. Some criteria on the positivity, boundedness, existence of equilibria and
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local asymptotic stability are stated and proved. In Sect. 4, coupled systems (3)–(4) is dis-
cussed. Some criteria on the existence of equilibria and local asymptotic stability are stated
and proved. In Sect. 5, the numerical examples are given. Lastly, a discussion is presented
in Sect. 6.

2 The analysis of fast system
We firstly introduce the following lemmas on the quadratic and cubic polynomial equa-
tions which are given in [27].

Lemma 1 All roots λ of the quadratic equation f (λ) = λ2 – Aλ + B = 0 satisfy |λ| < 1 if and
only if the following conditions are satisfied:

B < 1, f (–1) = 1 + A + B > 0, f (1) = 1 – A + B > 0.

Lemma 2 All roots λ of the cubic equation f (λ) = λ3 + a2λ
2 + a1λ + a0 = 0 satisfy |λ| < 1 if

and only if the following conditions are satisfied:

f (1) > 0, (–1)3f (–1) > 0, |a0| < 1, |b0| > |b2|,

where b0 = a2
0 – 1 and b2 = a0a2 – a1.

For coupled systems (3)–(4), function g(E) is assumed to satisfy the following basic as-
sumption.

(H) g(E) is defined for all 0 ≤ E ≤ 1 and is continuously differentiable, which satisfies
g(0) = 0, g(E) ≥ 0, g ′(E) > 0 and g ′′(E) ≤ 0 for all 0 ≤ E ≤ 1.

From the biological background of system (6), it is assumed that any solution (T(s), T∗(s),
V (s)) satisfies the following initial value:

T(0) > 0, T∗(0) > 0, V (0) > 0. (8)

Firstly, on the positivity and boundedness of the solutions and the existence of nonneg-
ative equilibria for system (6) we have the following results.

Lemma 3 The solution (T(s), T∗(s), V (s)) of system (6) with initial value (8) is positive for
all s ≥ 0 and ultimately bounded.

Proof System (6) is equivalent to the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T(s + 1) = �+T(s)
1+m+kV (s) ,

T∗(s + 1) = T∗(s)
1+m+d + kV (s)(�+T(s))

(1+m+d)(1+m+kV (s)) ,

V (s + 1) = g(E)
1+c + V (s)

1+c + pT∗(s)
(1+c)(1+m+d)

+ pkV (s)(�+T(s))
(1+c)(1+m+d)(1+m+kV (s)) .

(9)

If (8) is satisfied, then from system (9) it follows that (T(1), T∗(1), V (1)) exists and is posi-
tive. Hence, by induction, we see that (T(s), T∗(s), V (s)) exists and is positive for all s ≥ 0.



Wen et al. Advances in Difference Equations  (2018) 2018:69 Page 6 of 25

From the first equation of system (9), we have

T(s + 1) ≤ �

1 + m
+

1
1 + m

T(s).

Hence,

lim sup
s→∞

T(s) ≤ �

m
� T0. (10)

Particularly, when T(0) ≤ T0, we also have T(s) ≤ T0 for all s > 0.
From the second equation of system (9), we have

T∗(s + 1) ≤ T∗(s)
1 + m + d

+
� + T(s)
1 + m + d

.

By (10), we can obtain

lim sup
s→∞

T∗(s) ≤ T̄∗ � m + 1
m + d

T0. (11)

Particularly, we also can prove that when T(0) ≤ T0 and T∗(0) ≤ T̄∗, then T∗(s) ≤ T̄∗ for
all s > 0.

From the third equation of system (9), it follows that

V (s + 1) ≤ g(E)
1 + c

+
V (s)
1 + c

+
pT∗(s)

(1 + c)(1 + m + d)
+

p(� + T(s))
(1 + c)(1 + m + d)

.

By (10) and (11), we can obtain

lim sup
s→∞

V (s) ≤ V̄ � g(E)m(1 + m + d)(m + d) + 2p�(m + 1)
cm(1 + m + d)(m + d)

.

Similarly, we also can prove that V (s) ≤ V̄ for all s > 0 if T(0) ≤ T0, T∗(0) ≤ T̄∗ and
V (0) ≤ V̄ .

Therefore, solution (T(s), T∗(s), V (s)) with initial value (8) is ultimately bounded. This
completes the proof. �

Remark 1 Define a set as follows:


 =
{(

T , T∗, V
)

: 0 ≤ T ≤ T0, 0 ≤ T∗ ≤ T̄∗, 0 ≤ V ≤ V̄
}

.

Then from the proof of Lemma 3 we see that 
 is a positive invariable and globally attrac-
tive set for system (6).

We define the baseline within-host reproduction number as follows:

Rf =
kpT0

c(m + d)
.

Lemma 4 Let E = 0, then system (6) always has infection-free equilibrium B0(T0, 0, 0), and
when Rf > 1, system (6) has a unique infectious equilibrium B∗(T̆ , T̆∗, V̆ ).
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Proof Let E = 0. It is obvious that system (5) has a unique infection-free equilibrium
B0(T0, 0, 0). For infectious equilibrium B∗(T̆ , T̆∗, V̆ ), we have

⎧
⎪⎪⎨

⎪⎪⎩

� – kV̆ T̆ – mT̆ = 0,

kV̆ T̆ – (m + d)T̆∗ = 0,

pT̆∗ – cV̆ ∗ = 0.

Hence,

T̆∗ =
cm
pk

(Rf – 1), T̆ =
(m + d)c

kp
, V̆ =

pmT0

c(m + d)

(

1 –
1
Rf

)

.

This shows that, when Rf > 1, an infectious equilibrium B∗(T̆ , T̆∗, V̆ ) exists and is unique.
This completes the proof. �

Let E > 0 in system (6). If (T̆(E), T̆∗(E), V̆ (E)) is a nonnegative equilibrium of system (6),
then we have

⎧
⎪⎪⎨

⎪⎪⎩

� – kV̆ (E)T̆(E) – mT̆(E) = 0,

kV̆ (E)T̆(E) – (m + d)T̆∗(E) = 0,

g(E) + pT̆∗(E) – cV̆ (E) = 0.

(12)

We further have

V̆ (E) =
1
c
(
g(E) + pT̆∗(E)

)
, T̆∗(E) =

m
m + d

(
T0 – T̆(E)

)

and T̆(E) satisfies the following equation:

T̆2(E) – a1T̆(E) + a2 = 0, (13)

where

a1 =
g(E)(m + d)

pm
+ T0

(

1 +
1
Rf

)

> 0, a2 =
T2

0
Rf

> 0.

Since

a2
1 – 4a2 =

[
g(E)(m + d)

pm
+ T0

(

1 +
1

Rf

)]2

–
4T2

0
Rf

> T2
0

(

1 +
1
Rf

)2

–
4T2

0
Rf

≥ 0,

Eq. (13) has always two positive real solutions given by the following:

T̆±(E) =
1
2

(
a1 ±

√

a2
1 – 4a2

)
. (14)
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Note that a′
1(E) = g ′(E) m+d

pm > 0, and

T̆ ′
±(E) =

1
2

a′
1(E)

(

1 ± a1
√

a2
1 – 4a2

)

. (15)

Owing to a2 > 0, we have from (15) for any E ≥ 0, T̆ ′
+(E) > 0 and T̆ ′

–(E) < 0.
In (14), when E = 0, by calculating we obtain

T̆±(0) =
1
2

[

T0

(

1 +
1
Rf

)

±
√

T2
0

(

1 –
1

Rf

)2]

.

Therefore,

T̆+(0) =

⎧
⎨

⎩

T0, if Rf ≥ 1,
T0
Rf

, if Rf < 1,
(16)

and

T̆–(0) =

⎧
⎨

⎩

T0
Rf

, if Rf > 1,

T0, if Rf ≤ 1.
(17)

Since T̆ ′
+(E) > 0 and T̆+(0) ≥ T0 from (16), we obtain T̆+(E) > T0 for all E > 0. But, from the

first equation of (12), we have T̆+(E) ≤ T0. This leads to a contradiction. Since T̆ ′
–(E) < 0

and T̆–(0) ≤ T0 from (17), we obtain T̆–(E) < T̆–(0) ≤ T0 for all E ≥ 0. Therefore, when
E > 0, system (6) has a unique positive equilibrium B1(T̆(E), T̆∗(E), V̆ (E)), where

T̆(E) = T̆–(E), T̆∗(E) =
m

m + d
(
T0 – T̆(E)

)

and

V̆ (E) =
1
c

[

g(E) +
mp

m + d
(
T0 – T̆(E)

)
]

.

By calculating, we also have

T̆(E) =
T0

Rv(E)
, T̆∗(E) =

�

m + d

(

1 –
1

Rv(E)

)

and

V̆ (E) =
1
c

[

g(E) +
p�

m + d

(

1 –
1

Rv(E)

)]

,

where

Rv(E) =
2T0

a1 –
√

a2
1 – 4a2

.
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Furthermore, when E → 0+, from (14) and (17), by calculating we can obtain

B1
(
T̆(E), T̆∗(E), V̆ (E)

) →
⎧
⎨

⎩

B0(T0, 0, 0), if Rf ≤ 1,

B∗(T̆ , T̆∗, V̆ ), if Rf > 1.

Summarizing the above discussions, we finally get the following result.

Lemma 5 Let E > 0, then fast system (6) always has a unique infected equilibrium
B1(T̆(E), T̆∗(E), V̆ (E)), and

lim
E→0+

B1
(
T̆(E), T̆∗(E), V̆ (E)

)
=

⎧
⎨

⎩

B0(T0, 0, 0), if Rf ≤ 1,

B∗(T̆ , T̆∗, V̆ ), if Rf > 1.

Next, we discuss the stability of the infection-free equilibrium and infectious equilib-
rium for system (6). We have the following theorems.

Theorem 1 Let E = 0 in system (6).
(a) If Rf < 1, then infection-free equilibrium B0 is locally asymptotically stable.
(b) If Rf > 1, then B0 is unstable.

Proof The linearization system of system (6) at equilibrium B0 is

⎧
⎪⎪⎨

⎪⎪⎩

X(s + 1) = –kT0Z(s) – mX(s + 1) + X(s),

Y (s + 1) = kT0Z(s) – (m + d)Y (s + 1) + Y (s),

Z(s + 1) = pY (s + 1) – cZ(s + 1) + Z(s),

which is equivalent to the following:

⎧
⎪⎪⎨

⎪⎪⎩

X(s + 1) = 1
1+m X(s) – kT0

1+m Z(s),

Y (s + 1) = 1
1+m+d Y (s) + kT0

1+m+d Z(s),

Z(s + 1) = p
(1+c)(1+m+d) Y (s) + 1

1+c ( pkT0
1+m+d + 1)Z(s).

(18)

The characteristic equation of system (18) is

ϕ(λ) =
(

λ –
1

1 + m

)

f (λ) = 0,

where

f (λ) = λ2 –
(

1
1 + c

+
pkT0

(1 + m + d)(1 + c)
+

1
1 + m + d

)

λ +
1

(1 + d + m)(1 + c)
.

We have eigenvalues λ1 = 1
1+m , and λ2 and λ3 satisfying the equation f (λ) = 0. It is clear

that f (0) < 1, f (–1) > 0 and

f (1) = 1 –
(

1
1 + c

+
pkT0

(1 + m + d)(1 + c)
+

1
1 + m + d

)

+
1

(1 + d + m)(1 + c)

=
c(d + m) – pkT0

(1 + d + m)(1 + c)
.
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When Rf < 1, then f (1) > 0. By Lemma 1, it follows |λ2| < 1 and |λ3| < 1. Therefore, equi-
librium B0 is locally asymptotically stable.

When Rf > 1, then f (1) < 0. Since limλ→∞ f (λ) = +∞, we see that f (λ) = 0 has a root
λ3 ∈ (1, +∞). This implies that equilibrium B0 is unstable. This completes the proof. �

Theorem 2 Let E = 0 in system (6). If Rf > 1, then infectious equilibrium B∗ is locally
asymptotically stable.

The proof of Theorem 2 will be given in Theorem 3 as the special case with E = 0. We
hence omit it here.

Theorem 3 Let E > 0 in system (6). Then infectious equilibrium B1(T̆(E), T̆∗(E), V̆ (E)) is
locally asymptotically stable.

Proof We will prove Theorem 3 in the case E ≥ 0, and when E = 0 we assume that Rf > 1
and B1(T̆(E), T̆∗(E), V̆ (E)) = B∗(T̆ , T̆∗, V̆ ). We first prove for all E ≥ 0

T̆(E) ≤ c(m + d)
pk

. (19)

In fact, from the third equation of (12) and g(E) ≥ 0, we have cV̆ (E) ≥ pT̆∗(E). From the
second equation of (12), then V̆ (E) = (m+d)T̆∗(E)

kT̆(E) . This shows that

c(m + d)T̆∗(E)
kT̆(E)

≥ pT̆∗(E).

Therefore, T̆(E) ≤ c(m+d)
pk .

For convenience, let T̆(E) = T̆ , T̆∗(E) = T̆∗ and V̆ (E) = V̆ . The linearization system of
system (6) at equilibrium B1 is

⎧
⎪⎪⎨

⎪⎪⎩

X(s + 1) = X(s) – kV̆ X(s + 1) – kT̆Z(s) – mX(s + 1),

Y (s + 1) = kT̆Z(s) + kV̆ X(s + 1) – (m + d)Y (s + 1) + Y (s),

Z(s + 1) = pY (s + 1) – cZ(s + 1) + Z(s).

(20)

The characteristic equation of system (20) is

g(λ) = λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = –
[

1
1 + c

+
1

1 + m + d
+

pkT̆(1 + m)
(1 + c)(1 + m + d)(1 + m + kV̆ )

+
1

1 + m + kV̆

]

,

a2 =
1

(1 + m + d)(1 + c)
+

1
(1 + m + kV̆ )(1 + c)

+
1

(1 + m + d)(1 + m + kV̆ )

+
pkT̆(1 + m)

(1 + c)(1 + m + d)(1 + m + kV̆ )2
+

pkV̆ kT̆
(1 + c)(1 + m + d)(1 + m + kV̆ )2

,

a3 = –
1

(1 + m + kV̆ )(1 + m + d)(1 + c)
.
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Obviously, |a3| < 1. According to (19), we obtain

g(1) =
c(m + d)(m + kV̆ ) – pkmT̆

(1 + c)(1 + m + d)(1 + m + kV̆ )
> 0.

Further, we have

(–1)3g(–1) = 1 +
1

1 + c
+

1
1 + m + d

+
pkT̆(1 + m)

(1 + c)(1 + m + d)(1 + m + kV̆ )

+
1

1 + m + kV̆
+

1
(1 + m + d)(1 + c)

+
1

(1 + m + kV̆ )(1 + c)

+
1

(1 + m + d)(1 + m + kV̆ )
+

pkT̆(1 + m)
(1 + c)(1 + m + d)(1 + m + kV̆ )2

+
kT̆pkV̆

(1 + c)(1 + m + d)(1 + m + kV̆ )2

+
1

(1 + m + kV̆ )(1 + m + d)(1 + c)
> 0.

Now, we prove |b0| + b2 > 0 and |b0| – b2 > 0, where b0 = 1 – a2
3 and b2 = a1a3 – a2.

Since

|b0| = 1 –
1

(1 + m + kV̆ )2(1 + m + d)2(1 + c)2
,

b2 =
1

(1 + m + kV̆ )(1 + m + d)(1 + c)

[
1

1 + c
+

1
1 + m + d

+
pkT̆(1 + m)

(1 + c)(1 + m + d)(1 + m + kV̆ )
+

1
1 + m + kV̆

]

–
1

(1 + m + kV̆ )

[
1

1 + c
+

1
1 + m + d

+
pkT̆(1 + m)

(1 + c)(1 + m + d)(1 + m + kV̆ )

]

–
1

(1 + m + d)(1 + c)
–

kT̆pkV̆
(1 + c)(1 + m + d)(1 + m + kV̆ )2

,

we have

|b0| – b2 = 1 –
1

(1 + m + kV̆ )2(1 + m + d)2(1 + c)2

+
1

(1 + m + d)(1 + c)

[

1 –
1

(1 + m + kV̆ )2

]

+
1

1 + m + kV̆

[
1

1 + c
+

1
1 + m + d

][

1 –
1

(1 + m + d)(1 + c)

]

+
pkT̆(1 + m)

(1 + c)(1 + m + d)(1 + m + kV̆ )2

[

1 –
1

(1 + m + d)(1 + c)

]

+
kT̆pkV̆

(1 + c)(1 + m + d)(1 + m + kV̆ )2
> 0,
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and according to (19), we further have

|b0| + b2 ≥ 1
(1 + m + kV̆ )2(1 + m + d)2(1 + c)2

[(
c + m + d + c(m + d)

)

× (1 + m + d)(1 + c)(1 + m + kV̆ )2 +
(
c + m + d + c(m + d)

)

–
(
c + m + d + c(m + d)

)
(2 + m + d + c)(1 + m + kV̆ )

– c(m + d)
(
m + c + d + c(m + d)

)
(1 + m + kV̆ ) – c(m + d)kV̆

]

=
1

(1 + m + kV̆ )2(1 + m + d)2(1 + c)2

[(
c + m + d + c(m + d)

)

× (1 + c)(1 + m + kV̆ )(m + kV̆ ) –
(
c + m + d + c(m + d)

)
(m + kV̆ )

+
(
c + m + d + c(m + d)

)
(m + d)(1 + c)(1 + m + kV̆ )(m + kV̆ )

– c(m + d)kV̆
]

> 0.

Therefore, by Lemma 2 all roots λ of the equation g(λ) = 0 satisfy |λ| < 1. Thus, equilib-
rium B1 is local asymptotically stable. Particularly, when E = 0 we also see that equilibrium
B∗ is local asymptotically stable. This completes the proof. �

3 The analysis of slow system
Now, we consider slow system (7). We assume that fast system (6) has steadied at the
equilibrium B̂(T̂(E), T̂∗(E), V̂ (E)), where B̂(T̂(E), T̂∗(E), V̂ (E)) is defined as follows:

B̂
(
T̂(E), T̂∗(E), V̂ (E)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

B1(T̆(E), T̆∗(E), V̆ (E)), if E > 0,

B∗(T̆ , T̆∗, V̆ ), if E = 0, Rf > 1,

B0(T0, 0, 0), if E = 0, Rf ≤ 1.

It is clear that fast system (6) is locally asymptotically stable in equilibrium B̂, that is, when
E > 0 then by Theorem 3 B1(T̆(E), T̆∗(E), V̆ (E)) is local asymptotically stable, and when
E = 0 by Theorems 1 and 2 if Rf > 1 then B∗(T̆ , T̆∗, V̆ ) is local asymptotically stable and if
Rf < 1 then B0(T0, 0, 0) is local asymptotically stable. Therefore, we can choose V (t + 1) =
V̂ (E(t + 1)) in slow system (7).

From the biological background of system (7), we assume that any solution (S(t), I(t),
E(t)) of system (7) satisfies the initial value

S(0) > 0, I(0) ≥ 0, 0 ≤ E(0) ≤ 1. (21)

Firstly, on the positivity and boundedness of the solutions and the existence of nonneg-
ative equilibria for slow system (7) we have the following lemmas.

Lemma 6 The solution (S(t), I(t), E(t)) of system (7) with initial value (21) is positive for
all t ≥ 0 and ultimately bounded. Furthermore, 0 ≤ E(t) ≤ 1 for all t ≥ 0.
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Proof We know that system (7) is equivalent to the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(t + 1) = A+S(t)
1+μ+βE(t) ,

I(t + 1) = βE(t)S(t+1)+I(t)
1+μ+α

,

E(t + 1) = θ I(t)V̂ (E(t+1))+E(t)
1+γ +θ I(t)V̂ (E(t+1))

.

(22)

When t = 0, we prove that (S(1), I(1), E(1)) is positive. In fact, according to the first equa-
tion of system (22), we have S(1) = A+S(0)

1+μ+βE(0) > 0. Next, according to the second equations
of system (22) and S(1) > 0, we have I(1) = βE(0)S(1)+I(0)

1+μ+α
> 0. Furthermore, according to the

third equation of system (22), we have

E(1) =
θ I(0)V̂ (E(1)) + E(0)
1 + γ + θ I(0)V̂ (E(1))

.

Let x = E(1), then the above equality becomes f (x) = 0, where

f (x) = (1 + γ )x + θ I(0)V̂ (x)(x – 1) – E(0).

We have f (0) = –θ I(0)V̂ (0) – E(0) < 0 and f (1) = 1 + γ – E(0) > 0. Hence, f (x) = 0 has at
least one solution. We have

f ′′(x) = 2θ I(0)V̂ ′(x) + θ I(0)(x – 1)V̂ ′′(x).

When E > 0 we have

V̂ (E) = V̆ (E) =
1
c

[

g(E) +
mp

m + d
(
T0 – T̆(E)

)
]

.

Hence,

V̂ ′(x) =
1
c

[

g ′(x) –
mp

m + d
T̆ ′(x)

]

, V̂ ′′(x) =
1
c

[

g ′′(x) –
mp

m + d
T̆ ′′(x)

]

.

According to assumption (H), (15) and T̆(x) = T̆–(x), we know that V̂ ′(x) > 0 and

T̆ ′′(x) =
1
2

a′′
1(x)

(

1 –
a1

√
a2

1 – 4a2

)

–
1
2
(
a′

1(x)
)2

1 – a2
1

a2
1–4a2

√
a2

1 – 4a2
,

where a′′
1(x) = m+d

pm g ′′(x) < 0. This shows T̆ ′′(x) > 0, which leads to V̂ ′′(x) < 0. Therefore,
f ′′(x) > 0, this implies that f ′(x) = 0 has at most one solution. Hence, there is a unique x > 0
such that f (x) = 0. Therefore, (S(1), I(1), E(1)) exists uniquely and is positive. Furthermore,
from 0 ≤ E(0) ≤ 1 we also have 0 < E(1) < 1.

When t = 1, by a similar argument to above, we can prove that (S(2), I(2), E(2)) exists
uniquely and is positive. Owing to 0 < E(1) < 1, we also have 0 < E(2) < 1. Using induction,
for any t ≥ 0, we know that (S(t), I(t), E(t)) exists uniquely and is positive. Furthermore,
we finally have 0 < E(t) < 1 for all t ≥ 0.
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Now, we prove that (S(t), I(t), E(t)) is ultimately bounded. From the first equation of
system (22), we have

S(t + 1) ≤ A
1 + μ

+
1

1 + μ
S(t).

Hence, lim supt→∞ S(t) ≤ A
μ

. From the second equation of system (22), we have

I(t + 1) ≤ βA
μ(1 + μ + α)

+
1

1 + μ + α
I(t).

It follows that lim supt→∞ I(t) ≤ βA
μ(μ+α) . This completes the proof. �

Noticing the slow system (7) and the quick system (6) is linked by the terms V (s) and
g(E). Then if Rf > 1, there are the steadied infectious equilibrium in the quick system (6).
In this case, we give the basic reproduction number Rs for slow system (7):

Rs =
pmT0

c(m + d)

(

1 –
1

Rf

)
θβA

γμ(μ + α)
.

Obviously, we see that if Rf < 1 then Rs < 0, if Rf = 1 then Rs = 0 and if Rf > 1 then Rs > 0.
Furthermore, when Rs ≥ 1 then we must have Rf > 1. We denote the functions as fol-
lows:

F(E) = (1 – E)V̂ (E), G(E) =
γ (μ + α)E

θA
+

γ (μ + α)μ
θAβ

and

H(E) = F(E) – G(E), HM = max
0≤E≤1

{
H(E)

}
.

Based on the reproduction number Rs, we have the following lemma.

Lemma 7
(i) System (7) always has a disease-free equilibrium P0( A

μ
, 0, 0).

(ii) System (7) has a unique endemic equilibrium P∗(S̄, Ī, Ē) if and only if one of the
following conditions holds:
(a) Rs = 1 and HM > 0;
(b) Rs > 1.

(iii) System (7) has two endemic equilibria P1(S1, I1, E1) and P2(S2, I2, E2) if and only if
the following condition holds:
(c) Rs < 1 and HM > 0.

(iv) System (7) has only disease-free equilibrium P0( A
μ

, 0, 0) if and only if one of the
following conditions holds:
(d) HM < 0;
(e) Rs = 1 and HM = 0.
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Proof It is obvious that system (7) has disease-free equilibrium P0( A
μ

, 0, 0). The endemic
equilibrium P∗(S̄, Ī, Ē) satisfies equation

⎧
⎪⎪⎨

⎪⎪⎩

A – βĒS̄ – μS̄ = 0,

βĒS̄ – (μ + α)Ī = 0,

θ ĪV̂ (Ē)(1 – Ē) – γ Ē = 0.

Hence, we have

S̄ =
A

βĒ + μ
, Ī =

AβĒ
(μ + α)(βĒ + μ)

and

(1 – Ē)V̂ (Ē) =
γ (μ + α)Ē

θA
+

γμ(μ + α)
θAβ

,

which is equivalent to H(Ē) = 0. By calculating, we have

H(0) =

⎧
⎨

⎩

– γ (μ+α)μ
θAβ

, if Rf ≤ 1,
p�

c(m+d) (1 – 1
Rf

) – γ (μ+α)μ
θAβ

, if Rf > 1,

and H(1) = – γ (μ+α)
θA – γ (μ+α)μ

θAβ
< 0. It is clear that when Rs < 1 then H(0) < 0, when Rs > 1

then H(0) > 0 and when Rs = 1 then H(0) = 0.
Furthermore, by calculating we see that, when 0 < E ≤ 1,

H ′′(E) = –
2
c

[

g ′(E) –
mp

m + d
T̆ ′(E)

]

+
1 – E

c

[

g ′′(E) –
mp

m + d
T̆ ′′(E)

]

.

Hence, H ′′(E) < 0 for all 0 < E ≤ 1. This shows that H(E) is as above a convex function.
If condition (a) holds, then from H(0) = 0 and HM > 0, we easily see that H(E) = 0 has a

unique positive root Ē. Hence, endemic equilibrium P∗(S̄, Ī, Ē) exists and is unique.
If condition (b) holds, then from H(0) > 0, it follows that H(E) = 0 has a unique positive

root Ē, and hence endemic equilibrium P∗(S̄, Ī, Ē) also exists and is unique.
Assume that condition (c) holds, then owing to H(0) < 0 and HM > 0, H(E) = 0 has only

two positive roots. Hence, system (7) has only two endemic equilibria P1 and P2.
Lastly, we prove that system (7) has only disease-free equilibrium P0( A

μ
, 0, 0) if one of

the conditions (d) and (e) holds. In fact, when HM < 0 we see that H(E) = 0 has no root.
When Rs = 1, then H(0) = 0. Therefore, by HM = 0 there is only disease-free equilibrium
P0( A

μ
, 0, 0). This completes the proof. �

Remark 2 From the proof of Lemma 7, we further see that when system (7) has a unique
endemic equilibrium P∗(S̄, Ī, Ē), then since H(E) is a above convex function for 0 ≤ E ≤ 1,
we also have H ′(Ē) ≤ 0.

Next, we discuss the stability of the disease-free equilibrium and endemic equilibrium
for system (7). We have the following theorems.
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Theorem 4
(a) If Rs ≤ 1, then disease-free equilibrium P0 of system (7) is locally asymptotically

stable.
(b) If Rs > 1 then equilibrium P0 is unstable.

Proof The linearization part of system (22) is

⎧
⎪⎪⎨

⎪⎪⎩

X(t + 1) = 1
1+μ

X(t) – βA
μ(1+μ) Z(t),

Y (t + 1) = 1
1+μ+α

Y (t) + βA
μ(1+μ+α) Z(t),

Z(t + 1) = θV̂ (0)
1+γ

Y (t) + 1
1+γ

Z(t).

(23)

The characteristic equation of system (23) is

p(λ) =
(

λ –
1

1 + μ

)

f (λ) = 0,

where

f (λ) = λ2 –
(

1
1 + μ + α

+
1

1 + γ

)

λ +
μ – βθAV̂ (0)

μ(1 + μ + α)(1 + γ )
.

When Rf ≤ 1, we have V̂ (0) = 0. Hence f (λ) = 0 has roots λ1 = 1
1+μ+α

and λ2 = 1
1+γ

. This
implies that disease-free equilibrium E0 is locally asymptotically stable.

When Rf > 1, we have V̂ (0) = V ∗. Owing to Rs ≤ 1, by calculating we obtain

f (0) =
1 – Rsγ (μ + α)

(1 + μ + α)(1 + γ )
< 1,

f (1) = 1 –
1 + γ + 1 + μ + α

(1 + μ + α)(1 + γ )
+

1 – Rsγ (μ + α)
(1 + μ + α)(1 + γ )

>
(1 + μ + α)(1 + γ ) – (1 + γ ) – (1 + μ + α) + 1 – γ (μ + α)

(1 + μ + α)(1 + γ )
= 0,

f (–1) = 1 +
1 + γ + 1 + μ + α

(1 + μ + α)(1 + γ )
+

1 – Rsγ (μ + α)
(1 + μ + α)(1 + γ )

> 0.

We see that by Lemma 1 two roots λ1 and λ2 of f (λ) = 0 satisfy |λ1| < 1 and |λ2| < 1. There-
fore, disease-free equilibrium P0 is locally asymptotically stable.

When Rs > 1, we have

f (1) = 1 –
1 + γ + 1 + μ + α

(1 + μ + α)(1 + γ )
+

1 – Rsγ (μ + α)
(1 + μ + α)(1 + γ )

<
(1 + μ + α)(1 + γ ) – (1 + γ ) – (1 + μ + α) + 1 – γ (μ + α)

(1 + μ + α)(1 + γ )
= 0

and limλ→∞ f (λ) = ∞, there is a λ̄ > 1 such that f (λ̄) = 0. Therefore, P0 is unstable. �

In order to discuss the stability of unique endemic equilibrium P∗(S̄, Ī, Ē) of system (7),
we need to introduce the following assumption.
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(A) (ϕ + 1)(n + 1)(w – 1)M + (1 + 2r + ϕ)N > 0, where M = ϕw + ϕn + nw + nwϕ + r(1 +
μ)ϕ – 2, N = wϕ + nϕ + nw + 2(ϕ + n + w) + 2 – rϕ, ϕ = μ + α, w = γ – θ ĪF ′(Ē) and
n = μ + βĒ.

Theorem 5 Assume that (A) holds and one of conditions (a) and (b) in Lemma 7 holds.
Then unique endemic equilibrium P∗(S̄, Ī, Ē) of system (7) is locally asymptotically stable.

Proof The linearization part of system (22) is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X(t + 1) = 1
1+μ+βĒ X(t) – βS̄

1+μ+βĒ Z(t),

Y (t + 1) = βĒ
(1+μ+α)(1+μ+βĒ) X(t) + 1

1+μ+α
Y (t)

+ (1+μ)βS̄
(1+μ+α)(1+μ+βĒ) Z(t),

Z(t + 1) = θV̂ (Ē)(1–Ē)
1+γ –θ ĪF ′(Ē) Y (t) + 1

1+γ –θ ĪF ′(Ē) Z(t).

(24)

Here, by calculating we have

1 + γ – θ ĪF ′(Ē) = 1 + γ –
γβĒ

βĒ + μ
– θ ĪH ′(Ē) > 1.

The characteristic equation of system (24) is

f (λ) = λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = –
[

1
1 + μ + βĒ

+
1

1 + μ + α
+

1
1 + γ – θ ĪF ′(Ē)

]

,

a2 =
(1 + μ)(1 – γ (μ + α)) + βĒ + (1 + μ + α) + (1 + γ – θ ĪF ′(Ē))

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))
,

a3 = –
1 – γ (μ + α)

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))
.

Obviously, |a3| < 1. By calculating, we can obtain

f (1) =
(μ + α)(μ + βĒ)(γ – θ ĪF ′(Ē)) – γμ(μ + α)
(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))

> 0.

Further, we have

(–1)3f (–1) = 1 +
[

1
1 + μ + βĒ

+
1

1 + μ + α
+

1
1 + γ – θ ĪF ′(Ē)

]

+
(1 + μ)(1 – γ (μ + α)) + βĒ + (1 + μ + α) + (1 + γ – θ ĪF ′(Ē))

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))

+
1 – γ (μ + α)

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))
> 0.
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Now, we prove |b0| + b2 > 0 and |b0| – b2 > 0, where b0 = 1 – a2
3 and b2 = a1a3 – a2. Since

|b0| = 1 –
(1 – γ (μ + α))2

(1 + μ + α)2(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē))2
,

b2 =
1 – γ (μ + α)

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))

[
1

1 + μ + βĒ
+

1
1 + μ + α

+
1

1 + γ – θ ĪF ′(Ē)

]

–
(1 + μ)(1 – γ (μ + α))

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))

–
βĒ + (1 + μ + α) + (1 + γ – θ ĪF ′(Ē))

(1 + μ + α)(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))
,

by calculating we can obtain

|b0| – b2 = 1 –
(1 – γ (μ + α))2

(1 + μ + α)2(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē))2

+
1

(1 + μ + βĒ)(1 + γ – θ ĪF ′(Ē))

[

1 –
1 – γ (μ + α)
(1 + μ + α)2

]

+
1

(1 + μ + βĒ)(1 + μ + α)

[

1 –
1 – γ (μ + α)

(1 + γ – θ ĪF ′(Ē))2

]

+
[(1 + μ)(1 – γ (μ + α)) + βĒ][1 + μ + βĒ] – 1 + γ (μ + α)

(1 + μ + α)(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē))
> 0

and

|b0| + b2 = Q–1[(1 + μ + α)2(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē)
)2

–
(
1 – γ (μ + α)

)2 +
(
1 – γ (μ + α)

)[
(1 + μ + α)

(
1 + γ – θ ĪF ′(Ē)

)

+ (1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)
+ (1 + μ + α)(1 + μ + βĒ)

]

– (1 + μ)
(
1 – γ (μ + α)

)
(1 + μ + α)(1 + μ + βĒ)

(
1 + γ – θ ĪF ′(Ē)

)

– βĒ(1 + μ + α)(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)

– (1 + μ + α)2(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)

– (1 + μ + α)(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)2]

= Q–1[(1 + μ + α)2(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē)
)2

–
(
1 – γ (μ + α)

)2 +
(
1 – γ (μ + α)

)[
(1 + μ + α)

(
1 + γ – θ ĪF ′(Ē)

)

+ (1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)
+ (1 + μ + α)(1 + μ + βĒ)

]

+ γ (1 + μ)(μ + α)(1 + μ + α)(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)

– (1 + μ + α)(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē)
)

– (1 + μ + α)2(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)

– (1 + μ + α)(1 + μ + βĒ)
(
1 + γ – θ ĪF ′(Ē)

)2]

= Q–1[(ϕ + 1)(n + 1)(w – 1)M + (1 + 2r + ϕ)N
]
,
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where

Q = (1 + μ + α)2(1 + μ + βĒ)2(1 + γ – θ ĪF ′(Ē)
)2 = (1 + ϕ)2(1 + n)2(1 + w)2.

From assumption (A) we obtain |b0| + b2 > 0. By Lemma 2, all roots λ of the equation
f (λ) = 0 satisfy |λ| < 1. Therefore, equilibrium P∗ locally asymptotically stable. �

It is difficult to discuss the local stability for the case of two positive equilibria P1 and P2

in condition (c) of Lemma 7 by using the linearization method. However, we can give the
following conjecture.

Conjecture 1 Assume that Rs < 1 and HM > 0. Let P1(S̄1, Ī1, Ē1) and P2(S̄2, Ī2, Ē2) be two
positive equilibria of slow system (7) with Ē1 < Ē2. Then P2 is locally asymptotically stable,
and P1 is unstable.

4 The analysis for coupled system
Now, we return to coupled systems (3)–(4). If D̃(S̃, Ĩ, Ẽ, T̃ , T̃∗, Ṽ ) is the equilibrium of cou-
pled systems (3)–(4), then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A – βẼS̃ – μS̃ = 0,

βẼS̃ – (μ + α)Ĩ = 0,

θ ĨṼ (1 – Ẽ) – γ Ẽ = 0,

� – kṼ T̃ – mT̃ = 0,

kṼ T̃ – (m + d)T̃∗ = 0,

g(Ẽ) + pT̃∗ – cṼ = 0.

From Lemmas 4, 5 and 7, we have the following result.

Lemma 8
(1) Coupled system (3)–(4) always has a disease-free and infection-free equilibrium

D0( A
μ

, 0, 0, T0, 0, 0).
(2) If Rf > 1, then coupled system (3)–(4) has a disease-free equilibrium

D1( A
μ

, 0, 0, T̆ , T̆∗, V̆ ).
(3) If one of the conditions (a) and (b) in Lemma 7 holds, then coupled system (3)–(4) has

a unique endemic equilibrium D∗(S̄, Ī, Ē, T̆(Ē), T̆∗(Ē), V̆ (Ē)).
(4) If the condition (d) in Lemma 7 holds, then coupled system (3)–(4) has only two

positive equilibria D2(S̄1, Ī1, Ē1, T̆(Ē1), T̆∗(Ē1), V̆ (Ē1)) and D3(S̄2, Ī2, Ē2, T̆(Ē2), T̆∗(Ē2),
V̆ (Ē2)) with Ē1 < Ē2.

On the stability of equilibrium D̃(S̃, Ĩ, Ẽ, T̃ , T̃∗, Ṽ ) of coupled system (3) and (4), we have
the following definition.

Definition 1
(1) D̃ is said to be stable, if for any constant ε > 0, there is a δ = δ(ε) > 0 such that, for

any initial point (S0, I0, E0, T0, T∗
0 , V0) at time s = 0 and t = 0 satisfying |S0 – S̃| < δ,

|I0 – Ĩ| < δ, |E0 – Ẽ| < δ, |T0 – T̃ | < δ, |T∗
0 – T̃∗| < δ, and |V0 – Ṽ | < δ, one has
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|S(t) – S̃| < δ, |I(t) – Ĩ| < δ, |E(t) – Ẽ| < δ, |T(s) – T̃ | < δ, |T∗(s) – T̃∗| < δ, and
|V (s) – Ṽ | < δ, for all t ≥ 0 and s ≥ 0.

(2) D̃ is said to be locally asymptotically stable, if D̃ is stable and there is a constant δ > 0
such that, for any solution (S(t), I(t), E(t), T(s), T∗(s), V (s)) with initial point
(S0, I0, E0, T0, T∗

0 , V0) at time s = 0 and t = 0 satisfying |S0 – S̃| < δ, |I0 – Ĩ| < δ,
|E0 – Ẽ| < δ, |T0 – T̃ | < δ, |T∗

0 – T̃∗| < δ, and |V0 – Ṽ | < δ, one has

lim
t→∞

(
S(t), I(t), E(t)

)
= (S̃, Ĩ, Ẽ), lim

s→∞
(
T(s), T∗(s), V (s)

)
=

(
T̃ , T̃∗, Ṽ

)
.

Furthermore, by applying the theory of limit equations, from Theorems 1, 2 and 4, we
have the following result.

Theorem 6
(1) If Rf < 1 and Rs ≤ 1, then equilibrium D0( A

μ
, 0, 0, T0, 0, 0) is locally asymptotically

stable, and if Rf > 1, then D0 is unstable.
(2) If Rf > 1 and Rs ≤ 1, then equilibrium D1( A

μ
, 0, 0, T̆ , T̆∗, V̆ ) is locally asymptotically

stable, and if Rs > 1, then D1 is unstable.

Proof In fact, the linearization systems of coupled systems (3)–(4) at equilibrium D0 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t + 1) = 1
1+μ

X(t) – βA
μ(1+μ) Z(t),

Y (t + 1) = 1
1+μ+α

Y (t) + βA
μ(1+μ+α) Z(t),

Z(t + 1) = 1
1+γ

Z(t),

U(s + 1) = 1
1+m U(s) – kT0

1+m W (s),

V (s + 1) = 1
1+m+d V (s) + kT0

1+m+d W (s),

W (s + 1) = 1
1+c W (s) + p

1+c V (s + 1) + g′(0)
1+c Z(t + 1).

(25)

It is easy to see that when Rf < 1 and Rs ≤ 1, then, by conclusion (a) of Theorem 1
and conclusion (a) of Theorem 4 and from the first three equation of (25), we know
(X(t), Y (t), Z(t)) → (0, 0, 0) as t → ∞ and further from the last three equations of (25), we
also have (U(s), V (s), W (s)) → (0, 0, 0) as s → ∞. Therefore, D0 is locally asymptotically
stable.

When Rf > 1, then, by conclusion (b) of Theorem 1, we see that equilibrium (0, 0, 0) of
the last three equations of (25) is unstable. In addition, when Rs > 1 we also have Rf > 1.
Therefore, D0 is unstable.

The linearization system of coupled system (3)–(4) at equilibrium D1 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t + 1) = 1
1+μ

X(t) – βA
μ(1+μ) Z(t),

Y (t + 1) = 1
1+μ+α

Y (t) + βA
μ(1+μ+α) Z(t),

Z(t + 1) = θV̆
1+γ

Y (t) + 1
1+γ

Z(t),

U(s + 1) = 1
1+m+kV̆

U(s) – kT̆
1+m+kV̆

W (s),

V (s + 1) = 1
1+m+d V (s) + kV̆

1+m+d U(s + 1) + kT̆
1+m+d W (s),

W (s + 1) = 1
1+c W (s) + p

1+c V (s + 1) + g′(0)
1+c Z(t + 1).

(26)
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It is clear that when Rs ≤ 1, by conclusion (a) of Theorem 4, from first three equation
of (26), we know (X(t), Y (t), Z(t)) → (0, 0, 0) as t → ∞. By Theorem 2 and from last three
equations of (26), we further have (U(s), V (s), W (s)) → (0, 0, 0) as s → ∞. Therefore, D1

is locally asymptotically stable. When Rs > 1, by conclusion (b) of Theorem 4, we see that
equilibrium (0, 0, 0) of the first three equations of (26) is unstable. Therefore, D1 is unsta-
ble. This completes the proof. �

However, to establish the criteria of stability for endemic equilibrium D∗ and two posi-
tive equilibria D2 and D3 is very difficult. We here only give the following conjectures.

Conjecture 2 Assume the condition (A) holds and one of conditions (a) and (b) of Lemma 7
holds. Then endemic equilibrium D∗ of coupled system (3)–(4) is locally asymptotically
stable.

Conjecture 3 Assume that Rs < 1 and HM > 0. Then D3 is locally asymptotically stable
and D2 is unstable.

In the following section, we will give a numerical example to show that Conjectures 2
and 3 may be right.

5 Numerical examples
In this section, we give the numerical examples to discuss assumption (A) and the stability
for two endemic equilibria P1 and P2 of slow system (7) and for two equilibria D2 and D3

of coupled systems (3)–(4). We assume that s = Kt and t = [ s
K ] in coupled systems (3)–(4).

For convenience, we choose K = 366 and function g(E) = wE. The parasite reproduction
rate of infected cell p is chosen as a free parameter. The rest of the parameters in coupled
systems (3)–(4) are chosen in Table 1.

By calculating, we obtain

(ϕ + 1)(n + 1)(w – 1)M + (1 + 2r + ϕ)N = 0.000026 > 0.

Therefore, assumption (A) is satisfied.
We first take the parasite reproduction rate of infected cell p = 1200. By calculating, we

see that the basic reproduction numbers Rf
.= 1.33 > 1 and Rs

.= 5 > 1. We see that system

Table 1 List of parameters

Parameter Definition Value Source

A the recruitment rate of individuals 4 Ref. [5]
β the infection rate of hosts in a contamination 0.0006 Ref. [5]
μ the natural mortality rate of host 0.0004 Ref. [5]
α the induced mortality rate of host 0.0004 Ref. [5]
g(E) the rate which an average host is inoculated g(E) = 4× 105E Refs. [5, 6, 23]
θ the rate of contamination 1.5× 10–10 Ref. [5]
γ clearance rate 0.015 Ref. [5]
� the recruitment rate of cells 6000 Ref. [5]
k infections rate of cells 1.5× 10–6 Ref. [5]
m the natural mortality rate of cells 0.3 Ref. [5]
d the induced mortality rate of cells 0.15 Ref. [5]
c the within-host mortality rate of parasites 60 Ref. [5]
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Figure 1 The trajectories of solutions (S(t), I(t), E(t), T (s), T∗ (s),V(s)) with initial values (S(0), I(0), E(0), T (0), T∗(0),
V(0)) = (4000, 1500, 0.5, 800, 800, 800), (5000, 2000, 0.7, 1210, 1010, 1000) and (6000, 3000, 0.6, 850, 600, 900)

(7) has only endemic equilibrium P∗(4974.47, 2512.76, 0.6735) and coupled systems (3)–
(4) has endemic equilibrium D∗(4974.47, 2512.76, 0.6735, 14,179.6, 3880.26, 82,095.35).
The numerical simulations given in Fig. 1 show that equilibrium P∗ and D∗ is locally
asymptotically stable only when Rs > 1.

We next take the parasite reproduction rate of infected cell p = 950. By calculating, we
see that the basic reproduction numbers Rf

.= 1.0556 > 1 and Rs
.= 0.8333 < 1. Further-

more, we also have HM = 1891.39 > 0. Hence, slow system (7) has two endemic equilib-
ria P1(9503.94, 248.02, 0.0348) and P2(6900.24, 1549.87, 0.2995) and coupled systems (3)–
(4) have two endemic equilibria D2(9503.94, 248.02, 0.0348, 18,644.97, 903.35, 14,535.01)
and D3(6900.24, 1549.87, 0.2995, 17,575.93, 1616.04, 27,583.87). The numerical simula-
tions given in Fig. 2 show that equilibria P2 and D3 are locally asymptotically stable and
equilibria P1 and D2 are unstable. Therefore, Conjecture 1, Conjecture 2 and Conjecture
3 may be right.

6 Discussions
In this paper we studied a discrete coupled within-host and between-host models (3)–(4)
in environmentally driven infectious disease obeying Micken’s non-standard finite differ-
ence scheme. Since there are two fast and slow time scales in the model, and the fast time
scale is sufficiently quicker than the slow time scale, the model is separated into a fast
system (6) and a slow system (7).

The basic properties for fast system (6), including the existence of infection-free equilib-
rium B0, infected equilibrium B∗ (when E = 0) and infected equilibrium B1 (when E > 0),
the positivity and ultimate boundedness of the solutions with positive initial values, are
established. Under assumption (H), the local stability of equilibria for system (6) is com-
pletely determined by basic reproduction number Rf . That is, when E = 0 in system (6),
if Rf < 1 then B0 is locally asymptotically stable, and if Rf > 1 then B0 is unstable and B∗
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Figure 2 The trajectories of solutions (S(t), I(t), E(t), T (s), T∗ (s),V(s)) with initial values (S(0), I(0), E(0), T (0), T∗(0),
V(0)) = (8500, 600, 0.15, 15,000, 1000, 8500), (8000, 800, 0.1, 16,000, 1200, 23,000), (6000, 2000, 0.4, 19,000, 1800,
30,000) and (9000, 500, 0.05, 17,000, 1300, 19,000)

is locally asymptotically stable. When E > 0 in system (6), then infectious equilibrium B1

exists always and also is locally asymptotically stable.
For slow system (7), the basic properties on the existence of disease-free equilibrium P0,

unique endemic equilibrium P∗ and two positive equilibria P1 and P2, and the positivity
and ultimate boundedness of the solutions with positive initial values are established.

The sufficient conditions on the local stability of disease-free equilibria P0 and unique
endemic equilibria P∗ are established by virtue of basic reproduction number Rs, the quan-
tity HM and condition (A). However, it is very difficult to discuss the local stability of two
endemic equilibria P1 and P2. Here we only show the local stability of P1 and P2 by the
numerical examples in Sect. 5.

We see that assumption (A) is a pure mathematical condition. It is only used in the
proofs of theorems on the local stability of endemic equilibria P∗ to obtain |b0| + b2 > 0
(see the proof of Theorem 5). Generally, we expect that the local stability of equilibria of
slow system (7) can be determined only by basic reproduction number Rs. Therefore, an
open problem is whether condition (A) can be thrown off in Theorem 5. Furthermore, we
also do not obtain the global asymptotic stability of equilibria for system (7). The reason
is that the construction of Lyapunov function is very difficult.

For whole coupled systems (3)–(4), the basic properties on the existence of infection-
and disease-free equilibrium D0, viral infection and disease-free equilibrium D1, unique
endemic equilibrium D∗ and two endemic equilibria D2 and D3, and the local stability of
equilibria D0 and D1 are established, respectively. However, it is difficult to discuss the
local stability for unique endemic equilibrium D∗, and two endemic equilibria D2 and D3.
Here, we only show the local stability of D∗, D2 and D3 by the numerical examples in
Sect. 5.
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Comparing the results established in this paper with the results obtained in [1, 3],
we see that the dynamical properties of equilibria for discrete-time model (3)–(4) and
continuous-time model (2) (see Theorems 1–3 in [1]) in fast time and slow time subsys-
tems, respectively, are very oncoming. This shows that discrete-time model (3)–(4), as a
discrete-time analog of continuous-time model (2), is fairly appropriate. Particularly, we
can use model (3)–(4) to calculate the numerical approximative solution of model (2) in a
neighborhood of equilibrium. In addition, in this paper we further investigate the dynam-
ical properties for whole coupled systems (3)–(4), such as the existence of equilibrium and
the local stability of equilibrium.
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