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1 Introduction
When Fourier was trying to solve a problem in heat conduction, he needed to express a
function f as an infinite series of sine and cosine functions:

f (x) =
a0

2
+

∞∑

n=1

(an cos nx + bn sin nx).

Earlier, Bernoulli and Euler had used such series while investigating problems concerning
vibrating strings and astronomy. Note that a Fourier series is widely known as an expansion
of a periodic function f (x) in terms of an infinite sum of sine and cosine functions. Fourier
series make use of the orthogonality relationships of the sine and cosine functions.

Fourier series of a function with period T can be written in an exponential form as
follows:

f (x) = a0 + a1eiwx + a2e2iwx + · · · + aneniwx + · · ·
+ a–1e–iwx + a–2e–2iwx + · · · + a–ne–niwx + · · ·

or equivalently by

f (x) =
∞∑

n=–∞
aneinwx

(
w =

2π

T

)
, (1)
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where the coefficients an and a–n are computed by

an =
1
T

∫ 2π
w

0
e–inwtf (t) dt and a–n =

1
T

∫ 2π
w

0
einwtf (t) dt.

Note that a–n = an (an is the complex conjugate of an). For more information as regards
Fourier series, see Refs. [3, 4, 6].

The Fourier expansion of some well-known polynomials have been studied by some
mathematicians; see, for details, [2–4, 6]. For example, in [3], Luo derived a Fourier se-
ries and integral representations for the classical Genocchi polynomials, and Apostol–
Genocchi polynomials by using the Lipschitz summation formula. In [4], by making use
of Cauchy residue theorem in the complex plane, Bayad obtained a Fourier series for the
Apostol–Bernoulli, Apostol–Genocchi and Apostol–Euler polynomials. Also the Fourier
series of sums of products of some well-known special polynomials have been investigated
extensively by Agarwal et al. [1] and Kim et al. [6–8, 11].

With this motivation, we are going to focus on obtaining the Fourier expansion of the
Apostol Frobenius–Euler polynomial. After that, we are going to derive some useful results
arising from its Fourier expansion. Before giving the main results mentioned above, we
need some useful properties of Apostol–Frobenius Euler polynomials, which will be given
in the next section as preliminaries.

2 Preliminaries
The Frobenius–Euler polynomials and their various generalizations such as the Apostol
Frobenius–Euler polynomials have been studied intensively by some mathematicians. For
example, Kim [2] obtained linear differential equations for Frobenius–Euler polynomials
by using their generating function. From those differential equations, he gave the sums of
products of Frobenius–Euler polynomials.

We now begin some known definitions and properties of Frobenius–Euler polynomials
and Apostol Frobenius–Euler polynomials which will be useful in deriving the main results
of this paper.

Definition 1 Let u ∈C with u �= 1. The Frobenius–Euler polynomials Hn(x, u) are known
as [2, 5]:

∞∑

n=0

Hn(x, u)
tn

n!
=

1 – u
et – u

ext .

Definition 2 Let u,λ ∈ C with u �= 1, λ �= 1 and u �= λ. The Apostol Frobenius–Euler poly-
nomials Hn(x, u,λ) are defined by [2, 5]

∞∑

n=0

Hn(x, u,λ)
tn

n!
=

1 – u
λet – u

ext .

Note that Apostol Frobenius–Euler polynomials are a good generalization (or known as
λ extension) of Frobenius–Euler polynomials. Comparing Definition 1 with Definition 2,
one may get the following:

Hn(x, u,λ) =
u
λ

1 – u
λ

Hn
(
x,λu–1).
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Observe that

Hn(0, u) := Hn(u) and Hn(0, u,λ) := Hn(u,λ),

which are called the Frobenius–Euler numbers and Apostol Frobenius–Euler numbers,
respectively.

Definition 3 The Frobenius–Genocchi polynomials are defined by means of the follow-
ing generating function:

∞∑

n=0

GF
n (x, u)

tn

n!
=

(1 – u)t
et – u

ext cf. [12].

The Apostol–Euler polynomials are defined by means of the following generating series:

∞∑

n=0

En(x,λ)
tn

n!
=

2
λet + 1

ext (|t| <
∣∣log(–λ)

∣∣). (2)

From Eq. (2), we have

2
λet + 1

ext =
2λ–1

et + λ–1 ext =
2

1 + λ

1 + λ–1

et + λ–1 ext =
∞∑

n=0

2
1 + λ

Hn
(
x,λ–1) tn

n!
,

from which one may get the following useful corollary.

Corollary 1

En(x,λ) =
2

1 + λ
Hn

(
x,λ–1), cf. [9]. (3)

Remark 1 Substituting λ = 1 in Definition 2, one can easily see that

H(x, u, 1) := H(x, u), cf. [2, 5].

Remark 2 Putting u = –1 in Definition 2,

H(x, –1,λ) := En(x,λ),

where En(x,λ) is called the Apostol–Euler polynomials, cf. [2, 5].

Remark 3 Putting u = –1 in Definition 2,

H(x, –1,λ) :=
Gn+1(x,λ)

n + 1
,

where Gn(x,λ) is called the Apostol–Genocchi polynomials, cf. [2, 5].
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Remark 4 Taking u = –1 and λ = 1 in Definition 2, one can see

H(x, –1, 1) := En(x),

where En(x) is called the classical Euler polynomials, cf. [2, 5].

Remark 5 Taking u = –1 and λ = 1 in Definition 2, one can see

H(x, –1, 1) :=
Gn+1(x)

n + 1
,

where Gn(x) is called the classical Genocchi polynomials, cf. [2, 5].

Proposition 1 The following identity holds true:

λHn(x + 1, u,λ) – uHn(x, u,λ) = (1 – u)xn, cf. [5].

Proof It is proved by using Definition 2 as follows:

∞∑

n=0

(
λHn(x + 1, u,λ) – uHn(x, u,λ)

) tn

n!
= λ

1 – u
λet – u

e(x+1)t – u
1 – u

λet – u
ext

= (1 – u)ext

=
∞∑

n=0

(1 – u)xn tn

n!
.

Matching the coefficients tn

n! gives the required result. �

Proposition 2 The following identity holds true:

d
dx

Hn(x, u,λ) = nHn–1(x, u,λ), cf. [5].

Proof From Definition 2, we have

d
dx

( ∞∑

n=0

Hn(x, u,λ)
tn

n!

)
=

∞∑

n=0

(
d

dx
Hn(x, u,λ)

)
tn

n!

=
d

dx

(
1 – u

λet – u
ext

)

=
1 – u

λet – u
text

=
∞∑

n=0

Hn(x, u,λ)
tn+1

n!
.

Comparing the coefficients tn yields the desired result. �

Proposition 3 Let n be a member of the natural numbers. Then we have

∫ 1

0
Hn(x, u,λ) dx =

u – λ

λ

Hn+1(u,λ)
n + 1

, cf. [5].
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Proof From Definition 2 and Proposition 1, we have

∫ 1

0
Hn(x, u,λ) dx =

Hn+1(1, u,λ) – Hn+1(u,λ)
n + 1

=
u – λ

λ

Hn+1(u,λ)
n + 1

.

Thus we complete the proof of the theorem. �

We are now in a position to state our main results in the next section. Also we derive
their special cases.

3 Main results
We begin with the following theorem, which is a Fourier series expansion of the Apostol
Frobenius–Euler polynomial. For the following theorem, we will give two proofs. The first
proof includes the Cauchy residue theorem and a complex integral over a circle C follow-
ing Bayad’s method in [4]. The second proof includes the Lipschitz summation formula
following Luo’s method in [3].

Theorem 1 Let u,λ ∈C with u �= 1, λ �= 1, u �= λ and 0 < x < 1. We have

Hn(x, u,λ) =
u – 1

u
n!

(
u
λ

)x ∑

k∈Z

e2kπ ix

(2π ik – log( λ
u ))n+1

.

Proof 1 of Theorem 1 We firstly consider the following integral and the function fn(t) =
1

tn+1
1–u

λet–u ext :

∫

C
fn(t) dt (4)

over the circle C = {t | |t| ≤ (2N + ε)π and ε ∈ R, (επ i ± log( λ
u ) �= 0(mod 2π i))}. Now we

find the poles of the function fn(t) as follows:

tk = 2kπ i – log

(
λ

u

)
(k ∈ Z)

and t = 0 is a pole of order n + 1. From the Cauchy residue theorem, we write

∫

C
fn(t) dt = 2π i

(
Res

(
fn(t), t = 0

)
+

∑

k∈Z
Res

(
fn(t), t = tk

))
. (5)

We should compute Res(fn(t), t = 0) and Res(fn(t), t = tk) as follows:

Res
(
fn(t), t = 0

)
= lim

t→0

1
n!

dn

dtn (t – 0)n+1 1
tn+1

∞∑

m=0

Hm(x, u,λ)
tm

m!

= lim
t→0

1
n!

dn

dtn

∞∑

m=0

Hm(x, u,λ)
tm

m!



Araci and Acikgoz Advances in Difference Equations  (2018) 2018:67 Page 6 of 14

= lim
t→0

1
n!

∞∑

m=0

Hm(x, u,λ)
tm–n

(m – n)!

=
Hn(x, u,λ)

n!

and

Res
(
fn(t), t = tk

)
= lim

t→tk
(t – tk)t–(n+1) 1 – u

λet – u
ext

=
1

tn+1
k

(1 – u)extk lim
t→tk

t – tk

λet – u

=
1

tn+1
k

(1 – u)extk lim
t→tk

1
λet

=
1

tn+1
k

(1 – u)extk
1

λetk

=
1

(2kπ i – log( λ
u ))n+1

(1 – u)ex(2kπ i–log( λ
u )) 1

λe2kπ i–log( λ
u )

=
1 – u

u

(
λ

u

)–x(
2kπ i – log

(
λ

u

))–n–1

e2kxπ i.

Combining these residues with Eq. (5) yields

∫

C
fn(t) dt = 2π i

(
Hn(x, u,λ)

n!
+

1 – u
u

(
u
λ

)x ∑

k∈Z

e2kxπ i

(2kπ i – log( λ
u ))n+1

)
.

From this, taking N → ∞, it becomes
∫

C fn(t) dt = 0. So we have

Hn(x, u,λ) =
u – 1

u
n!

(
u
λ

)x ∑

k∈Z

e2kxπ i

(2kπ i – log( λ
u ))n+1

.

Therefore, we complete the proof. �

Before giving the second proof of Theorem 1, we need the following definition.

Definition 4 Lipschitz summation formula is defined by

∑

k+μ>0

e2π iτ (k+μ)

(k + μ)1–α
=

�(α)
(–2π i)α

∑

k∈Z

e–2π ikμ

(τ + k)α
(α ∈C),

where μ ∈ Z, Re(α) > 1 if μ ∈ R \ Z, Re(α) > 0, τ ∈ H , H denotes the complex upper half
plane; � denotes the Euler–Gamma function; cf. [3].

Proof 2 of Theorem 1 By writing t = 2π iτ in Definition 2, we have

∞∑

k=0

Hk(x, u,λ)
(2π iτ )k

k!
=

1 – u
λe2π iτ – u

e2π ixτ

= (u – 1)e2π ixτ 1
u – λe2π iτ
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=
u – 1

u
e2xπ iτ 1

1 – λ
u e2π iτ

(∣∣∣∣
λ

u

∣∣∣∣ < 1
)

=
u – 1

u

∞∑

k=0

(
λ

u

)k

e2π i(k+x)τ .

Differentiating n times with respect to τ gives

∞∑

k=0

Hk(x, u,λ)(2π i)k τ k–n

(k – n)!
= (2π i)n u – 1

u

∞∑

k=0

(
λ

u

)k

(k + x)ne2π i(k+x)τ . (6)

From Definition 4, if we substitute α = n + 1, μ = x and if τ is replaced by τ + log( λ
u ), we

derive

∑

k+x>0

e2π i(k+x)(τ+log( λ
u ))

(k + x)–n =
n!

(–2π i)n+1

∑

k∈Z

e–2π ikx

(τ + log( λ
u )

2π i + k)n+1

= (–1)n+1n!
∑

k∈Z

e–2π ikx

(2π i(τ + k) + log( λ
u ))n+1

.

From this, we reach the following expression:

(
λ

u

)x ∞∑

k=0

(k + x)n
(

λ

u

)k

e2π i(k+x)τ = (–1)n+1n!
∑

k∈Z

e–2π ikx

(2π i(τ + k) + log( λ
u ))n+1

. (7)

By (6) and (7), we see that

∞∑

k=0

Hk(x, u,λ)(2π i)k τ k–n

(k – n)!

= (2π i)n u – 1
u

∞∑

k=0

(k + x)n
(

λ

u

)k

e2π i(k+x)τ

= (2π i)n u – 1
u

(
λ

u

)–x

(–1)n+1n!
∑

k∈Z

e–2π ikx

(2π i(τ + k) + log( λ
u ))n+1

. (8)

Taking τ → 0 in (8), we arrive at

Hn(x, u,λ) =
u – 1

u

(
u
λ

)x

n!
∑

k∈Z

e2π ikx

(2π ik – log( λ
u ))n+1

,

which is the desired result. �

Corollary 2 From Remark 4 and Theorem 1, we have

En(x) =
2n!

(2π i)n+1

∑

k∈Z

e2π i(k+ 1
2 )x

(k + 1
2 )n+1

, cf. [3, 4].
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Proof It follows from Remark 4 and Theorem 1 that

Hn(x, –1, 1) := En(x) = 2(–1)xn!
∑

k∈Z

e2π ikx

(2π ik – log(–1))n+1 .

Since

(–1)x := e–π ix and log(–1) = –π i

with the logarithmic property over the complex plane,

z = |z|eiθ , –π ≤ θ < π and log(z) = log
(|z|) + iθ ,

we can write

En(x) = 2n!
∑

k∈Z

e2π ikx–π ix

(2π ik + π i)n+1

=
2n!

(2π i)n+1

∑

k∈Z

e2π i(k– 1
2 )

(k + 1
2 )n+1

,

which completes the proof of this corollary. �

Corollary 3 By making use of the relation H(x, –1, 1) := Gn+1(x)
n+1 in Theorem 1, we have

Gn(x) =
2n!

(2π i)n

∑

k∈Z

e2π i(k+ 1
2 )x

(k + 1
2 )n

, cf. [4].

Corollary 4 Putting λ = 1 in Theorem 1 we have

Hn(x, u) =
u – 1

u
n!ux

∑

k∈Z

e2kxπ i

(2kπ i – log(u))n+1 .

Corollary 5 Substituting u = –1 in Theorem 1 yields

En(x,λ) =
2n!
λx

∑

k∈Z

e2π i(k– 1
2 )x

(2kπ i – π i – log(λ))n+1 , cf. [3, 4].

From a Fourier expanison of the Apostol Frobenius–Euler polynomials, we derive the
following interesting identity.

Theorem 2 Let L be a positive integer. Then we have

1
L

L–1∑

j=0

(
λ

u

) j
L

Hn

(
x + j

L
, u,λ

)

= Hn

(
x
L

, u,λ
)

+
1
L

u – 1
u

(
u
λ

)x

n!
∑

k∈Z

⎛

⎜⎜⎝
L–1∑

j=0
k �=0(mod L)

e2π ik( x+j
L )

(2π ik – log( λ
u ))n+1

⎞

⎟⎟⎠ .
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Proof From Theorem 1, we derive the following applications:

L–1∑

j=0

(
λ

u

) j
L

Hn

(
x + j

L
, u,λ

)

=
L–1∑

j=0

(
λ

u

) j
L
(

u – 1
u

n!
(

u
λ

) x+j
L ∑

k∈Z

e2π i( x+j
L )

(2π ik – log( λ
u ))n+1

)

=
u – 1

u

(
u
λ

) x
L

n!
∑

k∈Z

⎛

⎜⎜⎝
L–1∑

j=0
k≡0(mod L)

e2kπ i( x+j
L )

(2π ik – log( λ
u ))n+1

+
L–1∑

j=0
k �=0(mod L)

e2kπ i( x+j
L )

(2π ik – log( λ
u ))n+1

⎞

⎟⎟⎠.

Under the following condition:

L–1∑

j=0

e2π ij k
L = L

(
k ≡ 0(mod L)

)

we have

=
u – 1

u

(
u
λ

) x
L

n!
∑

k∈Z

⎛

⎜⎜⎝
Le2kπ i x

L

(2π ik – log( λ
u ))n+1

+
L–1∑

j=0
k �=0(mod L)

e2kπ i( x+j
L )

(2π ik – log( λ
u ))n+1

⎞

⎟⎟⎠

= LHn

(
x
L

, u,λ
)

+
u – 1

u

(
u
λ

) x
L

n!
∑

k∈Z

⎛

⎜⎜⎝
L–1∑

j=0
k �=0(mod L)

e2kπ i( x+j
L )

(2π ik – log( λ
u ))n+1

⎞

⎟⎟⎠ .

Thus we complete the proof of the theorem. �

Theorem 3 Let 0 < x < 1. We have

Hn(x, u,λ) =
∑

k∈Z
ck,ne2kπ ix

with the following the coefficients ck,n:

ck,n =
λ – u

λ

n–2∑

l=1

(n)lHn–l+1(u,λ)
(2π ik)l(n – l + 1)

+
u – 1
λ – u

n!
(2π ik)n ,

where (n)l is the falling factorial.

Proof Let

Hn(x, u,λ) =
∑

k∈Z
ck,ne2kπ ix
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with the following coefficients:

ck,n =
∫ 1

0
Hn(x, u,λ)e–2π ikx dx.

By integration by parts, we have

ck,n =
u – λ

λ

Hn+1(u,λ)
n + 1

+
2π ik
n + 1

∫ 1

0
Hn+1(x, u,λ)e–2π ikx dx

=
u – λ

λ

Hn+1(u,λ)
n + 1

+
2π ik
n + 1

ck,n+1.

From this, we find the following recurrence relation:

ck,n =
n

2π ik
λ – u

λ

Hn(u,λ)
n

+
n

2π ik
ck,n–1.

By the iteration method, we arrive at the following expression:

ck,n =
λ – u

λ

n–2∑

l=1

(n)lHn–l+1(u,λ)
(2π ik)l(n – l + 1)

+
n!

(2π ik)n–1 ck,1.

Now it seems to be sufficient in order to compute ck,1. Since

H1(x, u,λ) =
1 – u
λ – u

x –
λ(1 – u)
(λ – u)2 ,

we have

ck,1 =
∫ 1

0

(
1 – u
λ – u

x –
λ(1 – u)
(λ – u)2

)
e–2π ikx dx

=
u – 1
λ – u

1
2π ik

.

Also

ck,n =
λ – u

λ

n–2∑

l=1

(n)lHn–l+1(u,λ)
(2π ik)l(n – l + 1)

+
1 – u
λ – u

n!
(2π ik)n .

Thus we end the proof. �

In [9], Kim et al. defined the Hurwitz type λ-zeta function as follows:

ζλ(s, x) =
∞∑

n=0

λn

(n + x)s (s ∈C). (9)

Note that ζλ(s, x) when λ = –1 is the Hurwitz–Euler zeta function; cf. [10].
Recall from Eq. (8) that

∞∑

k=0

Hk(x, u,λ)
tn

n!
=

u – 1
u

∞∑

k=0

(
λ

u

)k

e(k+x)t
(∣∣∣∣

λ

u
et

∣∣∣∣ < 1
)

.
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From this we have

Hn(x, u,λ) =
u – 1

u

∞∑

k=0

(
λ

u

)k

(k + x)n.

Then Eq. (9) can be written

u – 1
u

ζ λ
u

(–n, x) =
u – 1

u

∞∑

k=0

(k + x)n
(

λ

u

)k

= Hn(x, u,λ).

Thus we have the following theorem.

Theorem 4 The following equality holds true:

u – 1
u

ζ λ
u

(–n, x) = Hn(x, u,λ).

In [9], Kim et al. introduced the λ-partial zeta function as follows:

Hλ(s, a | F) =
∑

m≡a(mod F)

λm

ms .

From this we have the following applications:

H λ
u

(s, a | F) =
∞∑

m=0

( λ
u )mF+a

(mF + a)s

= λaF–s
∞∑

m=0

(( λ
u )F )m

(m + a
F )s

= λaF–sζ λF
uF

(
s,

a
F

)
. (10)

By Theorem 4 and Eq. (10), we have the following theorem.

Theorem 5 The following identity holds true:

λaFnHn

(
a
F

, uF ,λF
)

=
uF – 1

uF H λ
u

(–n, a | F).

Set λ = e2π ix, x = – log( λ
u )

2π i and s = n + 1 in Eq. (9), we see that

ζe2π ix

(
n + 1, –

log( λ
u )

2π i

)
=

∞∑

k=0

e2π ikx

(k – log( λ
u )

2π i )n+1
. (11)
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Now we write the Fourier expansion of the Apostol Frobenius–Euler polynomials as fol-
lows:

Hn(x, u,λ) =
u – 1

u
n!

(
u
λ

)x 1
(– log λ

u )n+1
+

u–1
u n!( u

λ
)x

(2π i)n+1

∞∑

k=1

e2kπ ix

(k – log( λ
u ))n+1

+
u–1

u n!( u
λ

)x

(–2π i)n+1

∞∑

k=1

e–2kπ ix

(k + log( λ
u ))n+1

,

which is closely related to Eq. (11). So we have

Hn(x, u,λ) =
u – 1

u
n!

(
u
λ

)x 1
(– log λ

u )n+1
+

u–1
u n!( u

λ
)x

(2π i)n+1 ζe2π ix

(
n + 1, –

log( λ
u )

2π i

)

+
u–1

u n!( u
λ

)x

(2π i)n+1 ζe–2π ix

(
n + 1,

log( λ
u )

2π i

)
.

Thus we state the following theorem.

Theorem 6 Let u,λ ∈C with u �= 1, λ �= 1, u �= λ and 0 < x < 1. We have

Hn(x, u,λ) =
u – 1

u
n!

(
u
λ

)x 1
(– log λ

u )n+1
+

u–1
u n!( u

λ
)x

(2π i)n+1 ζe2π ix

(
n + 1, –

log( λ
u )

2π i

)

+
u–1

u n!( u
λ

)x

(2π i)n+1 ζe–2π ix

(
n + 1,

log( λ
u )

2π i

)
.

4 Further remarks
Based on Definition 3, we introduce here the Apostol Frobenius–Genocchi polynomials
GF

n (x, u,λ) by the following definition.

Definition 5 Let u ∈ C with u �= 1. We define the Apostol Frobenius–Genocchi polyno-
mials as follows:

∞∑

n=0

GF
n (x, u,λ)

tn

n!
=

(1 – u)t
λet – u

ext (λ ∈C).

The Apostol Frobenius–Genocchi polynomials are closely related to the Apostol
Frobenius–Euler polynomials by the following application:

∞∑

n=0

GF
n (x, u,λ)

tn

n!
= t

∞∑

n=0

Hn(x, u,λ)
tn

n!

=
∞∑

n=0

Hn(x, u,λ)
tn+1

n!
,

which gives

Hn(x, u,λ) =
GF

n+1(x, u,λ)
n + 1

.
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We now give some of fundamental properties of the Apostol Frobenius–Genocchi poly-
nomials. We will omit the proof, since it follows from Definition 5.

Theorem 7 The derivative property of the Apostol Frobenius–Genocchi polynomials is as
follows:

d
dx

GF
n (x, u,λ) = nGF

n–1(x, u,λ).

Theorem 8 Difference property of Apostol Frobenius–Genocchi polynomials is as follows:

λGF
n (x + 1, u,λ) – uGF

n (x, u,λ) = (1 – u)nxn–1.

Theorem 9 The integral of Apostol Frobenius–Genocchi polynomials from a to b, where
a, b are members of real numbers, is as follows:

∫ b

a
GF

n (x, u,λ) dx =
GF

n+1(b, u,λ) – GF
n+1(a, u,λ)

n + 1
.

Theorem 10 For | λet

u | < 1, the generating function of the Apostol Frobenius–Genocchi poly-
nomials can be written in the following form:

∞∑

n=0

GF
n (x, u,λ)

tn

n!
=

u – 1
u

text
∞∑

m=0

(
λ

u

)m

et(m+x).

Theorem 11 By the relation Hn(x, u,λ) = GF
n+1(x,u,λ)

n+1 in Theorem 1, we have

GF
n (x, u,λ) =

u – 1
u

(
u
λ

)x

n!
∑

k∈Z

e2π ikx

(2π ik – log( λ
u ))n

which represents a Fourier expansion of the Apostol Frobenius–Genocchi polynomials.

5 Conclusion and observation
In the paper, we have derived the Fourier expansion of Apostol Frobenius–Euler polyno-
mials as Theorem 1. We have investigated special cases of Theorem 1 turning to Fourier
expansions of Euler polynomials, Genocchi polynomials, Frobenius–Euler polynomials,
Apostol–Euler polynomials, Apostol Genocchi polynomials. With the motivation of the
work [12], we have introduced Apostol Frobenius–Genocchi polynomials. We saw that
Apostol Frobenius–Genocchi polynomials are closely related to Apostol Frobenius–Euler
polynomials by the following relation:

Hn(x, u,λ) =
GF

n+1(x, u,λ)
n + 1

. (12)

By this relation, we have got a Fourier expansion for the Apostol Frobenius–Genocchi
polynomials,

GF
n (x, u,λ) =

u – 1
u

(
u
λ

)x

n!
∑

k∈Z

e2π ikx

(2π ik – log( λ
u ))n

.



Araci and Acikgoz Advances in Difference Equations  (2018) 2018:67 Page 14 of 14

By Eq. (12), the obtained theorems concerning the Apostol Frobenius–Euler polynomi-
als here and in other sources turn into those concerning Apostol Frobenius–Genocchi
polynomials.
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