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1 Introduction
For any non-negative integer n, the Fibonacci polynomials {Fn(x)} and Lucas polynomials
{Ln(x)} are defined by the second order linear recursive formulas Fn+2(x) = xFn+1(x) + Fn(x)
and Ln+2(x) = xLn+1(x)+Ln(x) with F0(x) = 0, F1(x) = 1, L0(x) = 2, and L1(x) = x. The general
terms of Fn(x) and Ln(x) are given by

Fn+1(x) =
[ n

2 ]∑

k=0

(
n – k

k

)
xn–2k

and

Ln(x) =
[ n

2 ]∑

k=0

n
n – k

(
n – k

k

)
xn–2k , (1)

where
(m

n
)

= m!
n!(m–n)! , and [x] denotes the greatest integer ≤ x.

It is easy to prove the identities

Fn(x) =
1√

x2 + 4

[(
x +

√
x2 + 4
2

)n

–
(

x –
√

x2 + 4
2

)n]

and

Ln(x) =
(

x +
√

x2 + 4
2

)n

+
(

x –
√

x2 + 4
2

)n

. (2)
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If x = 1, then {Fn(x)} becomes the famous Fibonacci sequences {Fn} and {Ln(x)} becomes
the Lucas sequences {Ln}.

These sequences and polynomials occupy very important positions in the theory and ap-
plication of mathematics, so many scholars have studied their various arithmetical proper-
ties and obtained a series of important results. For example, Ozeki [1] proved the identity

n∑

k=1

F2m+1
2k =

1
5m

m∑

j=0

(–1)j

L2m+1–2j

(2m+1
j

)
(F(2m+1–2j)(2n+1) – F2m+1–2j).

Prodinger [2] studied the more general summation
∑n

k=0 F2m+1+ε
2k+δ , where δ, ε ∈ {0, 1}, and

obtained many interesting results.
Ma and Zhang [3] used the properties of Chebyshev polynomials to obtain some identi-

ties involving Fibonacci numbers and Lucas numbers. Wang and Zhang [4] proved some
divisible properties involving Fibonacci numbers and Lucas numbers. Some of other re-
lated papers can also be found in references [5–15], here we are not going to list them
all.

In this paper, we shall use the elementary and combination methods to study the arith-
metical properties of Lucas polynomials, and give some new identities for them. That is,
we shall prove the following results.

Theorem 1 For any positive integer h and integer k ≥ 0, we have

h∑

n=1

L2n(2k+1)(x) – 2
n

=
h∑

n=1

(h+n
h–n

)

n
L2n

2k+1(x).

Theorem 2 For any integers h and k ≥ 0, we have

h∑

n=0

L(2n+1)(2k+1)(x)
2n + 1

=
h∑

n=0

(h+n+1
h–n

)

2n + 1
L2n+1

2k+1(x).

Theorem 3 For any integers n ≥ 1 and h ≥ 0, we have the identity

∫ x

0
L2n

2h+1(y) dy =
n∑

k=0

(–1)n–k( 2n
n–k

)

4kh + 2k + 1
L4kh+2k+1(x) +

n∑

k=1

(–1)n–k( 2n
n–k

)

4kh + 2k – 1
L4kh+2k–1(x).

Theorem 4 For any integers n ≥ 1 and h ≥ 0, we have the identity

∫ x

0
L2n+1

2h+1(y) dy =
1
2

n∑

k=0

(–1)n–k
(

2n + 1
n – k

)(
L4kh+2k+2h+2(x)
2kh + k + h + 1

+
L4kh+2k+2h(x)
2kh + k + h

)

–
n∑

k=0

(–1)n–k
(

2n + 1
n – k

)(
1

2hk + k + h + 1
+

1
2hk + k + h

)
.

Taking k = 0, from Theorems 1 and 2 we can deduce the following:

Corollary 1 For any positive integer h, we have the identities

h∑

n=1

L2n(x) – 2
n

=
h∑

n=1

(h+n
h–n

)

n
x2n
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and

h∑

n=0

L2n+1(x)
2n + 1

=
h∑

n=0

(h+n+1
h–n

)

2n + 1
x2n+1.

If x = 1 and k = 0, then we also have the following:

Corollary 2 For any positive integer h, we have the identities

h∑

n=1

L2n

n
=

h∑

n=1

(h+n
h–n

)
+ 2

n
and

h∑

n=0

L2n+1

2n + 1
=

h∑

n=0

(h+n+1
h–n

)

2n + 1
.

From Theorems 3 and 4 we can deduce the following corollaries.

Corollary 3 For any integers n ≥ 1 and h ≥ 0, we have

∫ 1

0
L2n

2h+1(y) dy =
n∑

k=0

(–1)n–k( 2n
n–k

)

4kh + 2k + 1
L4kh+2k+1 +

n∑

k=1

(–1)n–k( 2n
n–k

)

4kh + 2k – 1
L4kh+2k–1.

Corollary 4 For any integers n ≥ 1 and h ≥ 0, we have

∫ 1

0
L2n+1

2h+1(y) dy =
n∑

k=0

(–1)n–k

2

(
2n + 1
n – k

)(
L4kh+2k+2h+2 – 2
2kh + k + h + 1

+
L4kh+2k+2h – 2
2kh + k + h

)
.

2 Several simple lemmas
Lemma 1 For any positive integers n, we have the identities

∫ x

0
L2n(y) dy =

L2n+1(x)
2n + 1

+
L2n–1(x)
2n – 1

;

∫ x

0
L2n+1(y) dy =

L2n+2(x)
2n + 2

+
L2n(x)

2n
–

2n + 1
n(n + 1)

.

Proof Note the identities (x +
√

x2 + 4)′ = 1 + x√
x2+4

= x+
√

x2+4√
x2+4

and (x –
√

x2 + 4)′ = 1 –
x√

x2+4
= – x–

√
x2+4√

x2+4
. From the definitions of the polynomials Fn(x) and Ln(x), we have

L′
n(x) =

n√
x2 + 4

(
x +

√
x2 + 4
2

)n

–
n√

x2 + 4

(
x –

√
x2 + 4
2

)n

= n · Fn–1(x). (3)

Applying (3), the integration by parts, and the recursive formulae of Ln(x) and Fn(x), we
have

∫ x

0
Ln(y) dy = xLn(x) –

∫ x

0
yL′

n(y) dy

= xLn(x) – n
∫ x

0
yFn–1(y) dy

= Ln+1(x) – Ln–1(x) – n
∫ x

0

(
Fn(y) – Fn–2(y)

)
dy
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= Ln+1(x) – Ln–1(x) –
n

n + 1
(
Ln+1(x) – Ln+1(0)

)
+

n
n – 1

(
Ln–1(x) – Ln–1(0)

)

=
Ln+1(x)
n + 1

+
Ln–1(x)
n – 1

+
nLn+1(0)

n + 1
–

nLn–1(0)
n – 1

. (4)

If n = 2k, then note that L2k+1(0) = L2k–1(0) = 0. From (4) we have

∫ x

0
L2k(y) dy =

L2k+1(x)
2k + 1

+
L2k–1(x)
2k – 1

. (5)

If n = 2k + 1, then by (2) we have L2k+2(0) = L2k(0) = 2. From (4) we have

∫ x

0
L2k+1(y) dy =

L2k+2(x)
2k + 1

+
L2k(x)

2k
–

2k + 1
k(k + 1)

. (6)

Now Lemma 1 follows from (5) and (6). �

Lemma 2 For any positive integer n and non-negative integer k, we have the identity

Ln
(
L2k+1(x)

)
= Ln(2k+1)(x).

Proof Let α = x+
√

x2+4
2 and β = x–

√
x2+4
2 . Then replace x by L2k+1(x) in (2) and note that

α2k+1β2k+1 = –1, we have

L2k+1(x) +
√

L2
2k+1(x) + 4 = α2k+1 + β2k+1 +

√(
α2k+1 + β2k+1

)2 + 4

= α2k+1 + β2k+1 +
√

α2(2k+1) + β2(2k+1) – 2 + 4

= α2k+1 + β2k+1 +
√(

α2k+1 – β2k+1
)2 = 2α2k+1

and

L2k+1(x) –
√

L2
2k+1(x) + 4 = α2k+1 + β2k+1 –

√(
α2k+1 + β2k+1

)2 + 4

= α2k+1 + β2k+1 –
√(

α2k+1 – β2k+1
)2 = 2β2k+1.

From (2) we have the identity

Ln
(
L2k+1(x)

)
=

(L2k+1 +
√

L2
2k+1 + 4

2

)n

+
(L2k+1 –

√
L2

2k+1 + 4

2

)n

= αn(2k+1) + βn(2k+1) = Ln(2k+1)(x).

This proves Lemma 2. �

Lemma 3 For any non-negative integer n, we have the identities

x2n =
(–1)n

2

(
2n
n

)
· L0(x) +

n∑

k=1

(–1)n–k
(

2n
n – k

)
· L2k(x)
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and

x2n+1 =
n∑

k=0

(–1)n–k
(

2n + 1
n – k

)
· L2k+1(x).

Proof From the definition of Ln(x) we know that L2k(x) is an even function. So we may
suppose that

x2n =
n∑

k=0

ak · L2k(x). (7)

Taking x = 2i cos θ in (7) and noting that x2 +4 = 4–4 cos2 θ = 4 sin2 θ , from Euler’s formula
we have

L2k(2i cos θ ) =
(

2i cos θ +
√

4 sin2 θ

2

)2k

+
(

2i cos θ –
√

4 sin2 θ

2

)2k

= (i cos θ + sin θ )2k + (i cos θ – sin θ )2k

= (–1)k(cos θ – i sin θ )2k + (–1)k(cos θ + i sin θ )2k

= (–1)k · 2 · cos(2kθ ). (8)

Then from (7) and (8) we have

(–1)n4n cos2n θ =
n∑

k=0

ak · L2k(2i cos θ ) = 2
n∑

k=0

ak · (–1)k cos(2kθ ). (9)

Note the identities

∫ π

0
2 cos(mθ ) cos(nθ ) dθ =

⎧
⎪⎪⎨

⎪⎪⎩

π , if m = n �= 0,

0, if m �= n,

2π , if m = n = 0

(10)

and

∫ π

0
cos2n(θ ) cos(2kθ ) dθ = π · (2n)!

(2n – 2k)!!(2n + 2k)!!
=

π

4n ·
(

2n
n – k

)
.

From (9) and (10) we have

ak · (–1)kπ = (–1)n4n
∫ π

0
cos2n(θ ) cos(2kθ ) dθ = (–1)nπ ·

(
2n

n – k

)

or

a0 =
(–1)n

2
·
(

2n
n

)
and ak = (–1)n–k ·

(
2n

n – k

)
, 1 ≤ k ≤ n. (11)

Combining (7), (9), and (11), we can deduce the first identity of Lemma 3.
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Similarly, since L2k+1(x) is an odd function, we can suppose that

x2n+1 =
n∑

k=0

bk · L2k+1(x). (12)

Taking x = 2i cos θ in (12) and noting that

L2k(2i sin θ ) =
(

2i sin θ +
√

4 cos2 θ

2

)2k

+
(

2i sin θ –
√

4 cos2 θ

2

)2k

= (i sin θ + cos θ )2k + (i sin θ – cos θ )2k

= (cos θ + i sin θ )2k + (cos θ – i sin θ )2k

= cos(2kθ ) + i sin(2kθ ) + cos(2kθ ) – i sin(2kθ )

= 2 · cos(2kθ ),

we have

(–1)n4n cos2n+1 θ =
n∑

k=0

bk · (–1)k cos
(
(2k + 1)θ

)
. (13)

From (10) and (13) we may immediately deduce that

bk =
2(–1)n–k

π
· 4n ·

∫ π

0
cos2n+1(θ ) cos

(
(2k + 1)θ

)
dθ = (–1)n–k

(
2n + 1
n – k

)
. (14)

Now the second identity of Lemma 3 follows from (12) and (14). �

3 Proofs of the theorems
Using the lemmas in Sect. 2, we can prove our theorems easily. First we prove Theorem 2.
Similarly, we can also deduce Theorem 1 and then omit its proving process here. From
Lemma 1 and the definition of Ln(x), we have

h∑

n=0

L2n(x) =
h∑

n=0

(
α2n + β2n)

=
α2h+2 – 1
α2 – 1

+
β2h+2 – 1
β2 – 1

=
L2h+2(x) – L2h(x)

L2(x) – 2
+ 1

=
L2h+1(x)

x
+ 1. (15)

Applying (15) and Lemma 1, we have

∫ x

0

h∑

n=1

L2n(y) dy =
∫ x

0

(
L2h+1(y)

y
– 1

)
dy =

h∑

n=1

(
L2n+1(x)
2n + 1

+
L2n–1(x)
2n – 1

)
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or

2
h∑

n=0

L2n+1(x)
2n + 1

=
∫ x

0

L2h+1(y)
y

dy +
L2h+1(x)
2h + 1

=
h∑

k=0

2h + 1
2h + 1 – k

(
2h + 1 – k

k

)∫ x

0
y2h–2k dy

+
1

2h + 1

h∑

k=0

2h + 1
2h + 1 – k

(
2h + 1 – k

k

)
x2h+1–2k

=
h∑

k=0

2
2h + 1 – 2k

(
2h + 1 – k

k

)
· x2h+1–2k

= 2
h∑

n=0

(h+n+1
h–n

)

2n + 1
x2n+1. (16)

Now Theorem 2 follows from (16) and Lemma 2 with x = L2k+1(y).
To prove Theorem 3, taking x = L2h+1(y) in Lemma 3, we have

L2n
2h+1(y) = (–1)n

(
2n
n

)
+

n∑

k=1

(–1)n–k
(

2n
n – k

)
· L2k(2h+1)(y). (17)

Integrating for y from 0 to x in (17), then applying Lemma 1, we may immediately deduce

∫ x

0
L2n

2h+1(y) dy =
n∑

k=0

(–1)n–k( 2n
n–k

)

4kh + 2k + 1
L4kh+2k+1(x) +

n∑

k=1

(–1)n–k( 2n
n–k

)

4kh + 2k – 1
L4kh+2k–1(x).

This proves Theorem 3.
Similarly, we can also deduce Theorem 4.
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