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Abstract
The dynamical properties of a stochastic susceptible-infected epidemic model with
Logistic growth are investigated in this paper. We show that the stochastic model
admits a nonnegative solution by using the Lyapunov function method. We then
obtain that the infected individuals are persistent under some simple conditions. As a
consequence, a simple sufficient condition that guarantees the extinction of the
infected individuals is presented with a couple of illustrative examples.
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1 Introduction
Some mathematical models, for instance, see [1–5], have been employed to describe and
understand epidemic transmission dynamics since the work of Kermack and McKendrick
[6] was proposed. The classical compartment models were proposed and investigated on
the ground of some restrictive assumptions including a constant total population size and
a constant recruitment rate for the susceptible individuals. This assumption is relatively
reasonable for a short-lasting disease. While in reality, the population sizes of human be-
ings and other creatures are generally variable, instead of keeping constant for a long run.
As an example of this phenomenon, Ngonghala et al. pointed out that malaria in develop-
ing countries took place with growth of local population size. When it concerns the vari-
able population size, some recent literature works, such as Ngonghala et al. [7], Busenberg
and Driessche [8], Wang et al. [9], Zhao et al. [10], Zhu and Hu [11], Li et al. [12], had con-
sidered the effect of population size on the epidemic dynamics. We would like to mention
the work by Wang et al. [9], in which they constructed an SIS epidemic model under the
assumption that the susceptible individuals followed the Logistic growth:

Ṡ(t) = rS
(

1 –
S
a

)
– β(I)IS + γ I,

İ(t) = β(I)IS – (d + ε + γ )I,
(1)

where S(t) and I(t) denote the numbers of the susceptible and the infected individuals at
time t, respectively; r is the intrinsic growth rate of the susceptible individuals; a is the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1528-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1528-8&domain=pdf
http://orcid.org/0000-0002-0141-629X
mailto:weifengying@fzu.edu.cn


Liu et al. Advances in Difference Equations  (2018) 2018:68 Page 2 of 10

carrying capacity of the community in the absence of infection; d is the natural death rate;
γ represents the recovery rate of the infected individuals; ε is the disease-induced death
rate; β(I) is the transmission rate and is given in the following form:

β(I) =

⎧⎨
⎩

β , 0 ≤ I ≤ Ic,

β( Ic
I )p, I > Ic.

(2)

All the parameters are assumed to be nonnegative. When p = 0, β(I) is equal to the con-
stant transmission rate β . In this paper, we shall consider the following deterministic SIS
endemic model:

Ṡ(t) = bS(a – S) – βIS + γ I,

İ(t) = βIS – (d + ε + γ )I,
(3)

where b = r/a. We set N(t) is the total population at time t, then

Ṅ(t) = Ṡ(t) + İ(t) = rS
(

1 –
S
a

)
– (d + ε)I. (4)

Wang et al. [9] showed that the domain

� =
{

(S, I) ∈R
2
+ | N = S + I ≤ K0 =

(ab + d + ε)2

4b2(d + γ )
+ 1

}
(5)

is a positively invariant set with respect to model (1). Moreover, the disease-free equilib-
rium E0(a, 0) of model (1) always exists, and if the basic reproductive number

R0 =
βa

d + ε + γ
≤ 1, (6)

E0(a, 0) is globally asymptotically stable. If R0 > 1, then E0(a, 0) is unstable, and there is a
unique endemic equilibrium E∗(S∗, I∗) which is globally asymptotically stable. Here

S∗ =
d + ε + γ

β
, I∗ =

S∗2b
d + ε

(R0 – 1). (7)

The compartment models are inevitably affected by the environmental noise. We as-
sume that the transmission coefficient β is subject to the environmental white noise, that
is,

β → β + σ Ḃ(t), (8)

where B(t) is a standard Brownian motion, σ is the intensity of environmental white noise.
In order to explore the stochastic effect, when the constant transmission rate is replaced
by a random variable, we consider the corresponding stochastic SIS epidemic model:

dS(t) =
(
bS(a – S) – βIS + γ I

)
dt – σ IS dB(t),

dI(t) =
(
βIS – (d + ε + γ )I

)
dt + σ IS dB(t).

(9)



Liu et al. Advances in Difference Equations  (2018) 2018:68 Page 3 of 10

The sum of the two equations for the population size N(t) of models (3) and (9) is

Ṅ(t) = bS(a – S) – (d + ε)I. (10)

Throughout this paper, we will work on the complete probability space (�, {Ft}t≥0, P)
with its filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and
F0 contains all P-null sets). We will investigate the dynamical properties of stochastic SIS
model from several aspects: the result that stochastic model (9) admits a unique positive
solution will be studied in the next section. The sufficient conditions of the persistence for
the infected individuals would be derived. Further, we still find a simple condition to reach
the extinction for the infected individuals. As a consequence, several illustrative examples
are carried out to support the main results of this paper.

2 Existence and uniqueness of positive solution
In this section, we first show that the solution of system (9) is positive and global. Our
proof is motivated by the work of Mao et al. [13].

Theorem 1 There exists a unique solution (S(t), I(t)) of system (9) on t ≥ 0 for any ini-
tial value (S(0), I(0)) ∈ R

2
+, and the solution will remain in R

2
+ with probability 1, namely

(S(t), I(t)) ∈ R
2
+ for all t ≥ 0 almost surely.

Proof Since the coefficients of model (9) satisfy local Lipschitz conditions for any initial
value (S(0), I(0)) ∈ R

2
+, there exists a unique local solution on t ∈ [0, τe), where τe is the

explosion time. Next, we will show that the solution of model (9) is global. To this end, we
need to show that τe = ∞ holds almost surely. Let k0 > 0 be sufficiently large such that S(0)
and I(0) all lie within the interval [ 1

k0
, k0]. For all k ≥ k0, we define the stopping time

τk = inf

{
t ∈ [0, τe) : min

{
S(t), I(t)

} ≤ 1
k

or max
{

S(t), I(t)
} ≥ k

}
. (11)

Throughout this paper, we set inf∅ = ∞. Clearly, τk is an increasing function as k → ∞.
We set τ∞ = limk→∞ τk , according to the definition of stopping time, we get that τ∞ ≤ τe

a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. From now on, our proof will go
by contradiction. If this statement is false, then there exists a pair of constants T > 0 and
ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε, hence there exists an integer k1 > k0 such that

P{τk ≤ T} ≥ ε for all k > k1. (12)

We define a C2-function V : R2
+ →R+ as follows:

V (S, I) = S – k – k log
S
k

+ I – 1 – log I, (13)
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where k is a constant determined later. Generalized Itô’s formula gives that

LV (S, I) =
(

1 –
k
S

)(
bS(a – S) – βIS + γ I

)
+

(
1 –

1
I

)(
βIS – (d + ε + γ )I

)

+
k
2
σ 2I2 +

1
2
σ 2S2

= (ab + kb – β)S – bS2 +
(
kβ – (d + ε)

)
I – abk –

kγ I
S

+ (d + ε + γ )

+
k
2
σ 2I2 +

1
2
σ 2S2. (14)

Choose the constant

k =
d + ε

β
, (15)

which implies that

LV (S, I) = (ab + kb – β)S – bS2 – abk –
kγ I

S
+ (d + ε + γ ) +

k
2
σ 2I2 +

1
2
σ 2S2

≤ (ab + kb)K0 + (d + ε + γ ) +
(1 + k)

2
σ 2K2

0 := M0. (16)

The remainder of the proof follows that in Zhao et al. [10]. �

3 Persistence in the mean
In this section, we shall investigate the persistence property of model (9). The solution of
model (9) is said to be persistent in the mean if

lim inf
t→∞

1
t

∫ t

0
I(s) ds > 0 a.s. (17)

For convenience, we define the following notation:

〈
x(t)

〉
=

1
t

∫ t

0
x(s) ds. (18)

Lemma 1 ([13], Strong law of large numbers) Let M = {Mt}t≥0 be a real-valued continuous
local martingale vanishing at t = 0. Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
= 0 a.s., (19)

and also

lim sup
t→∞

〈M, M〉t

t
= ∞ a.s. ⇒ lim

t→∞
Mt

t
= 0 a.s. (20)

Theorem 2 Let (S(t), I(t)) be a solution of system (9) with any initial value (S(0), I(0)) ∈ �.
If

b ≤ β , R̃0 =
ab

d + ε + γ
–

σ 2K2
0

2(d + ε + γ )
=

b
β

R0 –
σ 2K2

0
2(d + ε + γ )

> 1, (21)
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then the density of the infected individuals obeys the following expression:

lim inf
t→∞

〈
I(t)

〉 ≥ (d + ε + γ )(R̃0 – 1)
d + ε + γ + β

> 0 a.s. (22)

Proof Integrating both sides of the second equation of model (9) gives that

I(t) – I(0)
t

= β〈IS〉 – (d + ε + γ )〈I〉 +
σ

t

∫ t

0
I(r)S(r) dB(r). (23)

Then generalized Itô’s formula acting on model (9) leads to

d ln S(t) =
(

ab – bS – βI + γ
I
S

–
σ 2

2
I2

)
dt – σ I dB(t), (24)

d ln I(t) =
(

βS – (d + ε + γ ) –
σ 2

2
S2

)
dt + σS dB(t). (25)

Integrating both sides of (24) and (25) from 0 to t and dividing by t, we have that

ln S(t) – ln S(0)
t

= ab – b〈S〉 – β〈I〉 + γ

〈
I
S

〉
–

σ 2

2
〈
I2〉 +

σ

t

∫ t

0
I(r) dB(r), (26)

ln I(t) – ln I(0)
t

= β〈S〉 – (d + ε + γ ) –
σ 2

2
〈
S2〉 +

σ

t

∫ t

0
S(r) dB(r). (27)

We combine (23), (26), and (27) and derive that

ln S(t) – ln S(0)
t

+
ln I(t) – ln I(0)

t
+

I(t) – I(0)
t

= ab – (d + ε + γ ) – (d + ε + γ + β)〈I〉 + (β – b)〈S〉 + γ

〈
I
S

〉
+

(
β + σ 2)〈IS〉

–
σ 2

2
〈
S2 + I2 + 2SI

〉
+

σ

t

∫ t

0

(
S(r) – I(r) + S(r)I(r)

)
dB(r)

≥ ab – (d + ε + γ ) –
σ 2

2
K2

0 – (d + ε + γ + β)〈I〉

+
σ

t

∫ t

0

(
S(r) – I(r) + S(r)I(r)

)
dB(r), (28)

then

(d + ε + γ + β)〈I〉 ≥ ab – (d + ε + γ ) –
σ 2

2
K2

0 +
σ

t

∫ t

0

(
S(r) – I(r) + S(r)I(r)

)
dB(r)

–
ln S(t) – ln S(0)

t
–

ln I(t) – ln I(0)
t

–
I(t) – I(0)

t
. (29)

We denote

M1(t) = σ

∫ t

0

(
S(r) – I(r) + S(r)I(r)

)
dB(r) (30)
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Figure 1 The density of the infected individuals is persistent, where the threshold R̃0 > 1

by strong law of large numbers for martingales, together with the facts 0 < S(t), I(t) < K0,
which yields that

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

M1(t)
t

= 0 a.s., (31)

therefore,

lim inf
t→∞

〈
I(t)

〉 ≥ ab – (d + ε + γ ) – σ 2

2 K2
0

d + ε + γ + β
=

(d + ε + γ )(R̃0 – 1)
d + ε + γ + β

> 0 a.s. (32)

The proof is complete. �

Example 1 Let the parameters of model (9) be

r = 0.8, a = 10, b = 0.08, β = 0.3, γ = 0.35,

d = 0.1, ε = 0.02, σ = 0.01
(33)

and the initial value be (S(0), I(0)) = (5, 2), then the threshold of model (9) is computed as

R̃0 = 1.1121 > 1, (34)

which is consistent with the result of Theorem 2 (see Fig. 1).

4 Extinction
In the previous section, we have investigated the persistence of the solution to model (9).
In this section, we shall prove that the density of the infected individuals will be driven to
extinction with a negative exponential power under some simple assumptions.
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Theorem 3 Let (S(t), I(t)) be the solution of model (9) with the initial value (S(0), I(0)) ∈ �.
If

R̆0 =
βK0

d + ε + γ
=

K0

a
R0 < 1 (35)

or

σ 2 >
β2

2(d + ε + γ )
(36)

holds, then the density of the infected individuals will decline to zero exponentially with
probability one. That is to say,

lim sup
t→∞

ln I(t)
t

≤
(

βK0

d + ε + γ
– 1

)
(d + ε + γ ) (37)

or

lim sup
t→∞

ln I(t)
t

≤ β2

2σ 2 – (d + ε + γ ) a.s. (38)

Proof From the second equation of model (9), we have

ln I(t)
t

=
ln I(0)

t
+

1
t

∫ t

0

(
βS(r) – (d + ε + γ ) –

σ 2

2
S2(r)

)
dr +

σ

t

∫ t

0
S(r) dB(r). (39)

The fact S ≤ K0 leads to the following result:

ln I(t)
t

≤ ln I(0)
t

+
1
t

∫ t

0

(
βK0 – (d + ε + γ )

)
dr +

σ

t

∫ t

0
S(r) dB(r)

=
ln I(0)

t
+

(
βK0

d + ε + γ
– 1

)
(d + ε + γ ) +

σ

t

∫ t

0
S(r) dB(r). (40)

We denote

M2(t) = σ

∫ t

0
S(r) dB(r) (41)

by the strong law of large numbers for martingales, we then have

lim
t→∞

M2(t)
t

= 0 a.s. (42)

Condition (35) of Theorem 3 gives that

lim sup
t→∞

ln I(t)
t

≤
(

βK0

d + ε + γ
– 1

)
(d + ε + γ ) ≤ 0 a.s. (43)
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On the other hand, expression (39) can be computed as follows:

ln I(t)
t

=
ln I(0)

t
+

1
t

∫ t

0

(
–

σ 2

2

(
S –

β

σ 2

)2

+
β2

2σ 2 – (d + ε + γ )
)

dr

+
σ

t

∫ t

0
S(r) dB(r)

≤ ln I(0)
t

+
β2

2σ 2 – (d + ε + γ ) +
M2(t)

t
. (44)

By similar discussion, together with condition (36), we take superior limit on both sides
of (44) and derive that

lim sup
t→∞

ln I(t)
t

≤ β2

2σ 2 – (d + ε + γ ) < 0 a.s. (45)

The proof is complete. �

Example 2 We set the parameters of model (9) are

r = 0.4, a = 100, b = 0.004, β = 0.2, γ = 0.3,

d = 0.1, ε = 0.2, σ = 0.2,
(46)

and the initial value is (S(0), I(0)) = (35, 50). It is easy to check that

σ 2 = 0.04 >
β2

2(d + ε + γ )
= 0.0120. (47)

Theorem 3 is satisfied, and the infected individuals will decline to zero according to Fig. 2.
If we choose another group of parameters

r = 0.8, a = 10, b = 0.08, β = 0.02, γ = 0.8,

d = 0.5, ε = 0.1, σ = 0.01,
(48)

and the initial value (S(0), I(0)) = (1, 8) in order to meet condition (36), after substitution,
we then get that

βK0

d + ε + γ
= 0.8556 < 1, (49)

which also means that the infected individuals definitely tend to zero with the rate of a
negative exponential power as shown in Fig. 3.

5 Conclusion
The dynamical properties of the stochastic SIS model with Logistic growth are paid more
attention to in this paper. According to the approach shown in many recent literature
works, we still construct a C2-function to show that the stochastic SIS epidemic model
admits a unique positive global solution. Based on the general assumption of this paper,
the total population is separated into two compartments: one is the susceptible, another
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Figure 2 The infected individuals are extinct under condition (35)

Figure 3 The density of the infected individuals approaches zero almost surely under condition (36)

is the infected. We also assume that the transmission rate β is perturbed by a white noise.
The two indicators R̃0 and R̆0 are kind of thresholds of this paper: when R̃0 > 1, under some
extra conditions, the density of the infected individuals keeps persistent; when R̆0 < 1 holds
or (36) is valid, the density of the infected individuals declines to zero in a long run. Several
illustrative examples support the main results of this paper.
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