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Abstract
The exact solution of fractional combined Korteweg-de Vries and modified
Korteweg-de Vries (KdV–mKdV) equation is obtained by using the (1/G′) expansion
method. To investigate a geometrical surface of the exact solution, we choose γ = 1.
The collocation method is applied to the fractional combined KdV–mKdV equation
with the help of radial basis for 0 < γ < 1. L2 and L∞ error norms are computed with
the Mathematica program. Stability is investigated by the Von-Neumann analysis.
Instable numerical solutions are obtained as the number of node points increases. It is
shown that the reason for this situation is that the exact solution contains some
degenerate points in the Lorentz–Minkowski space.

Keywords: Collocation method; Fractional combined Korteweg-de Vries and
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1 Introduction
Fractional calculus is known as a generalization of the derivative and integral of non-
integer order. The birth of fractional calculus goes as Leibniz and Newton’s differential
calculus. Leibniz firstly introduced fractional order derivatives of non-integer order for
the function f (x) = emx, m ∈ R as follows:

dnemx

dxn = mnemx,

where n is non-integer value.
Later, this frame of derivatives was studied by Liouville, Riemann, Weyl, Lacroix, Leib-

niz, Grunward, Letnikov, etc. (cf. [1]).
Since the inception of the definition of fractional order derivatives created by Leibniz,

fractional partial differential equations have drawn attention of many mathematicians and
have also shown an increasing development (cf. [2–14] etc.). Recently, analytical solutions
of fractional differential equations have been obtained by the authors in [15, 16]. Further-
more, there exist many various applications of fractional partial differential equations in
physics and engineering such as viscoelastic mechanics, power-law phenomenon in fluid

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1531-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1531-0&domain=pdf
mailto:mehmetgulbahar85@gmail.com


Kaya et al. Advances in Difference Equations  (2018) 2018:77 Page 2 of 16

and complex network, biology and ecology of allometric measurement legislation, col-
ored noise, the electrode–electrolyte polarization, dielectric polarization, electromagnetic
waves, numerical finance, etc. (cf. [17–21]).

Beside these facts, the combined KdV–mKdV equation, considered as the combina-
tion of KdV equation and mKdV equations, drew attention of several authors (cf. [22–30]
etc.). The combined KdV–mKdV equation is one of the most popular equations in soliton
physics and wave propagation of bound particle. The combined KdV–mKdV equation can
be expressed as follows:

ut + αuux + βu2ux + suxxx = 0, (1)

where α, β , and s are real constants. In general, the fractional combined KdV–mKdV equa-
tion is given in the following form for α = 2, β = 3, s = –1:

∂γ u
∂tγ

+ 2u
∂u
∂x

+ 3u2 ∂u
∂x

–
∂3u
∂x3 = 0 (2)

with the initial condition

u(x, 0) = f (x) (3)

and with boundary conditions

u(a, t) = β1, u(b, t) = β2, t ≥ t0. (4)

In recent years, the collocation method has been a useful alternative tool to obtain nu-
merical solutions since this method yields multiple numerical solutions depending on
whether numerical methods such as finite differences, Runge–Kutta and Crank–Nicolson
methods yield only numerical solutions. Using a few numbers of collocation points, this
method has been widely studied by various authors to obtain high accuracy in numerical
analysis (cf. [31–36]). On the other hand, radial basis functions are univariate functions
which depend only on the distance between points and they are attractive to high dimen-
sional differential equations. Furthermore, implementation and coding of the collocation
method are very practical by using these bases. However, this method usually gives very
efficient results as the number of node points is increased. We will see that it is not true
when finding numerical solutions of the fractional combined KdV–mKdV equation in the
present paper. This situation led us to examine the geometry of numerical solutions.

In the present paper, we obtain the exact solution of the fractional combined KdV–
mKdV equation by using the (1/G′) expansion method. With the help of radial basis func-
tions, we apply the collocation method to this equation and obtain numerical solutions.
We recognize that numerical solutions are more accurate for h = 0.1 than for h = 0.01.
Therefore, we investigate the exact solution of the combined KdV–mKdV equation in a
Lorentz–Minkowski space. Furthermore, we compute the Gauss curvature and the mean
curvature of the exact solution and give a geometrical interpretation of these curvatures
at the node points of our numerical solution. Finally, we observe that the exact solution
contains some degenerate points in the Lorentz–Minkowski space at h = 0.01.
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2 Analysis of (1/G′)-expansion method
The (1/G′) expansion method is used to obtain traveling wave solutions in nonlinear dif-
ferential equation. In this section, we shall firstly mention a simple description of the
(1/G′)-expansion method by following [37]. Later, we shall obtain the exact solution of
the combined KdV–mKdV equation by using this method.

Let us consider the following two-variable general form of nonlinear partial differential
equation:

Q
(

u,
∂u
∂x

,
∂2u
∂x2 , . . .

)
= 0. (5)

If we apply u = u(x, t) = u(ξ ), ξ = x – Vt and V is a constant in Eq. (5), we get a nonlinear
ordinary differential equation for u(ξ ) as follows:

Q
(
u′, u′′ . . .

)
= 0. (6)

Now, assume that a solution of Eq. (6) can be stated as a polynomial in (1/G′) by

u(ξ ) = a0 +
m∑

i=1

ai

(
1

G′

)i

, (7)

where ai (i = 0, 1, 2, . . . , m), m is a positive integer determined by balancing the highest
order derivative with the highest nonlinear terms in Eq. (6), and G = G(ξ ) satisfies the
following second order linear ordinary differential equation:

G′′ + λG′ + μ = 0. (8)

Here, μ and λ are constants.
The method is constructed as follows.
Firstly, if we substitute solution (7) into Eq. (6), then we obtain the second order IODE

given in (8). Later, using (8), we have a set of algebraic equations of the same order of (1/G′)
which have to vanish. That is, all coefficients of the same order have to vanish. After we
have manipulated these algebraic equations, we can find ai, i ≥ 0, and V are constants and
then, substituting ai and the general solutions of Eq. (8) into (7), we can obtain solutions
of Eq. (5).

Example 2.1 Let us consider Eq. (2) for γ = 1. When balancing u2ux with uxxx, it is ob-
tained that m = 1. Thus, putting u = u(x, t) = u(ξ ), ξ = x – Vt and taking integral in Eq. (2),
we get

c – Vu + u2 + u3 – u′′ = 0. (9)

Now let us write

u(ξ ) = a0 + a1

(
1

G′

)
. (10)
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Substituting Eq. (9) into Eq. (10), we have a group of algebraic equations for the coefficients
a0, a1, δ, μ, c, λ, and V . These systems are given as follows:

2a0a1 + 3a2
0a1 – a1c – a1λ

2 = 0,

a2
1 + 3a0a2

1 – 3a1λμ = 0,

a3
1 + 2a1μ

2 = 0.

(11)

If we find the solutions of system (11) with the aid of Mathematica, then the following
cases occur.

Case 1. If we put

a0 =
1
6

(–2 – 3
√

2λ), a1 = –
√

2μ, V =
1
6
(
–2 + 3λ2) (12)

and substitute a0 and a1 values into (10), we have the following two types of wave solutions
of Eq. (2):

ξ = x –
1
6
(
–2 + 3λ2)t, (13)

u1(ξ ) =
1
6

(–2 – 3
√

2λ) +
√

2μ

(
1

– μ

λ
+ cosh(ξλ) – sinh(ξλ)

)
(14)

(see Fig. 1).
Case 2. If we put

a0 =
1
6

(–2 + 3
√

2λ), a1 =
√

2μ, V =
1
6
(
–2 + 3λ2) (15)

Figure 1 Exact solution u1(x, t) of Eq. (2) by substituting the values λ = 0.834, μ = 1, α = 0.8, –3≤ x ≤ 3,
–4≤ t ≤ 4, γ = 1 for the 2D graphic
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Figure 2 Exact solution u2(x, t) of Eq. (2) by substituting the values λ = 0.834, μ = 1, α = 0.8, –3≤ x ≤ 3,
–4≤ t ≤ 4, γ = 1 for the 2D graphic

and substitute a0 and a1 values into (10), we have the following two types of wave solutions
of Eq. (2):

ξ = x +
1
6
(
2 – 3λ2)t, (16)

u2(ξ ) =
1
6

(–2 + 3
√

2λ) +
√

2μ

(
1

– μ

λ
+ cosh(ξλ) – sinh(ξλ)

)
(17)

(see Fig. 2).

3 Collocation method using radial basis functions
In Eq. (2), ∂γ u

∂tγ is the Caputo fractional derivative through L1 formula of u(x, t), which can
be written as follows:

∂γ u
∂tγ

=

⎧⎨
⎩

(	t)–γ


(2–γ )
∑n

k=0[un+1–k
m – un–k

m ][(k + 1)1–γ – k1–γ ], n ≥ 1,
(	t)–γ


(2–γ ) (u1
m – u0

m), n = 0.
(18)

Now, we discretize the time derivative in (2) by using the Caputo derivative defined in [38]
through L1 formula and the space derivative by the Crank–Nicolson formula between two
time levels n and n + 1, respectively. Thus, we have

(	t)–γ


(2 – γ )

n∑
k=0

[
un+1–k

m – un–k
m

][
(k + 1)1–γ – k1–γ

]
+ 2

(uux)n+1 + (uux)n

2

+ 3
(u2ux)n+1 + (u2ux)n

2
–

un+1
xxx + un

xxx
2

= 0. (19)
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Nonlinear terms of the above equation can be linearized by using the following equations:

(
u2ux

)n+1
m = 2unun+1un

x – 2
(
u2)nun

x +
(
u2)nun+1

x , (20)

(uux)n+1
m = un

xun+1 + un+1
x un – un

xun. (21)

By a straightforward computation in Eq. (19), it follows that

2(	t)–γ


(2 – γ )

n∑
k=0

[
(k + 1)1–γ – k1–γ

][
un–k+1

m – un–k
m

]
+ 2un

xun+1

+ 2un+1
x un + 6unun+1un

x – 6
(
u2)nun

x

+ 3
(
u2)nun+1

x + 3
(
u2)nun

x – un+1
xxx – un

xxx = 0. (22)

Now, we shall use radial basis functions.
Radial basis functions are often very variable functions, and their values depend on the

distance from the origin. Thus φ(x) = φ(r) ∈ R, x ∈ R
n or it is the distance from a point

{xj} of φ(x – xj) = φ(rj) ∈ R. We note each function providing φ(x) = φ(‖x‖2). In general,
norm rj = ‖x – xj‖2 is considered to be the Euclidean distance. Globally supported radial
basis functions throughout the present paper are given as follows:

Multiquadratic (MQ) φ(rj) =
√

r2
j + c2,

Inverse multiquadratic (IMQ) φ(rj) = 1/
√

r2
j + c2,

Inverse quadratic (IQ) φ(rj) = 1/
(
r2

j + c2),

Gaussian (G) φ(rj) = exp
(
–c2r2

j
)
,

(23)

where c is the shape parameter. Let xi (i = 0, . . . , n) be the collocation points in the interval
[a, b] such that x1 = a and xn = b. Then Eq. (2) is expressed with the following approximate
solution:

u(x, t) ≈
n∑

j=0

λjφj(rj). (24)

Here, n is the number of data points; φ is some radial basis functions; λj are unknown
coefficients defined by collocation methods. Thus, for each collocation point, Eq. (24) be-
comes

u(xi, t) ≈
n∑

j=0

λjφj(rij). (25)

Putting Eq. (25) into Eq. (22) and writing the collocation points xi (i = 0, . . . , n) instead of
x, we obtain the following equations:

2(	t)–γ


(2 – γ )

n∑
k=0

n∑
j=0

[
(k + 1)1–γ – k1–γ

][
λn–k+1

j – λn–k
j

]
φj(rij)
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+ 2
n∑

j=0

λn+1
j φj(rij)

n∑
j=0

λn
j φ

′
j (rij) + 2

n∑
j=0

λn+1
j φ′

j (rij)
n∑

j=0

λn
j φj(rij)

+ 6
n∑

j=0

λn
j φj(rij)

n∑
j=0

λn+1
j φj(rij)

n∑
j=0

λn
j φ

′
j (rij)

– 6

( n∑
j=0

λn
j φj(rij)

)2 n∑
j=0

λn
j φ

′
j (rij) + 3

( n∑
j=0

λn
j φj(rij)

)2 n∑
j=0

λn+1
j φ′

j (rij)

+ 3

( n∑
j=0

λn
j φj(rij)

)2 n∑
j=0

λn
j φ

′
j (rij) –

n∑
j=0

λn+1
j φ′′′

j (rij)

–
n∑

j=0

λn
j φ

′′′
j (rij) = 0 (26)

and

u(xi, t) =
n∑

j=0

λn+1
j φj(rij) = αi, i = 0, 1, . . . , n. (27)

Equations (26) and (27) display (n + 1) linear equation systems in (n + 1) unknown λn+1
j pa-

rameters. Before the solution of the system, boundary conditions u(a, t) = α1 and u(b, t) =
α2 are applied. Thus, n × n type equation systems are obtained in each point of the range
from Eq. (25).

3.1 Stability analysis
In this subsection, we shall investigate the stability of this method with the help of Von-
Neumann analysis.

The third order derivatives in (25) can be approximated using linear combinations of
values of uk(x) as follows:

∂3uk(x)
∂x3

∣∣∣∣
x=xi

=
n∑

i=0

β
(k,i)
i uk(x(k)

i
)
, (28)

where {β (k,i)
i }N

i=1 is the RBF-FD coefficient corresponding to the third order derivatives. For
simplicity, the stencils with three uniform nodes are used. It is well known that stability
analysis is only applied to partial differential equations with constant coefficients. Let the
stencils with three uniform nodes be used [39]. For x = {xm–1, xm, xm+1}, we get

2(	t)–γ


(2 – γ )

n∑
k=0

[
(k + 1)1–γ – k1–γ

]

[(
un–k+1

m–1 + un–k+1
m + un–k+1

m+1
)

–
(
un–k

m–1 + un–k
m + un–k

m+1
)]

+ 2B
(
un+1

m–1 + un+1
m + un+1

m+1
)

+ 2A
(
α

(n+1,m–1)
m–1 un

m–1 + α(n+1,m)
m un

m + α
(n+1,m+1)
m+1 un

m+1
)

+ 6AB
(
un+1

m–1 + un+1
m + un+1

m+1
)
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– 6A2(α(n,m–1)
m–1 un

m–1 + α(n,m)
m un

m + α
(n,m+1)
m+1 un

m+1
)

+ 3A2(α(n,m–1)
m–1 un

m–1 + α(n,m)
m un

m + α
(n,m+1)
m+1 un

m+1
)

+ 3A2(α(n+1,m–1)
m–1 un

m–1 + α(n+1,m)
m un

m + α
(n+1,m+1)
m+1 un

m+1
)

–
(
β

(n+1,m–1)
m–1 un+1

m–1 + β (n+1,m)
m un+1

m + β
(n+1,m+1)
m+1 un+1

m+1
)

–
(
β

(n,m–1)
m–1 un

m–1 + β (n,m)
m un

m + β
(n,m+1)
m+1 un

m+1
)

= 0, (29)

where A = un, B = un
x .

Assume the solutions of (29) to be as follows:

un(xm) = ξne�ϕm, m = m – 1, m, m + 1, (30)

where � is the imaginary unit and ϕ is real. Firstly, substituting the Fourier mode (30) into
the recurrence relationship (29), we obtain

2(	t)–γ


(2 – γ )

n∑
k=0

[
(k + 1)1–γ – k1–γ

][
ξn–k+1 – ξn–k](ei(m–1)ϕ + eimϕ + ei(m+1)ϕ)

+
(
2 + 6ABξn+1)(ei(m–1)ϕ + eimϕ + ei(m+1)ϕ)

+
(
2A + 3A2)ξn+1(α(n+1,m–1)

m–1 ei(m–1)ϕ + α(n+1,m)
m eimϕ + α

(n+1,m+1)
m+1 ei(m+1)ϕ)

– 3ξnA2(α(n,m–1)
m–1 ei(m–1)ϕ + α(n,m)

m eimϕ + α
(n,m+1)
m+1 ei(m+1)ϕ)

– ξn+1(β (n+1,m–1)
m–1 ei(m–1)ϕ + β (n+1,m)

m eimϕ + β
(n+1,m+1)
m+1 ei(m+1)ϕ)

– ξn(β (n,m–1)
m–1 ei(m–1)ϕ + β (n,m)

m eimϕ + β
(n,m+1)
m+1 ei(m+1)ϕ)

= 0. (31)

Next, let ξn+1 = ζ ξn and assume that ζ = ζ (ϕ) is independent of time. Then we easily obtain
the following expression:

2(	t)–γ


(2 – γ )

n∑
k=0

[
(k + 1)1–γ – k1–γ

][
ξn–k+1 – ξn–k](e–iϕ + 1 + eiϕ)

–
(
β

(n,m–1)
m–1 e–iϕ + β (n,m)

m + β
(n,m+1)
m+1 eiϕ)

– 3A2(α(n,m–1)
m–1 e–iϕ + α(n,m)

m + α
(n,m+1)
m+1 eiϕ)

+ ξ
((

2A + 3A2)(α(n+1,m–1)
m–1 e–iϕ + α(n+1,m)

m + α
(n+1,m+1)
m+1 eiϕ)

– β
(n+1,m–1)
m–1 e–iϕ + β (n+1,m)

m + β
(n+1,m+1)
m+1 eiϕ

+
(
2 + 6ABξn+1)(e–iϕ + 1 + eiϕ))

= 0. (32)

Let us denote Eq. (32) as follows:

|ζ | =
∣∣∣∣X1 + iX2

Y1 + iY2

∣∣∣∣, (33)
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where

X1 =
2(	t)–γ


(2 – γ )

n–1∑
k=0

[
(k + 1)1–γ – k1–γ

][
ζ –k – ζ –k–1](2 cosϕ + 1)

– cosϕ
(
3A2(a + c) – h – m

)
– 3A2b – p,

X2 =
(
3A2(a – c) – h + m

)
sinϕ,

Y1 = cos(ϕ)
((

2 + 3A2)(d + f ) + 4 + 12AB – n – r
)

+
(
2 – 3A2)b – k,

Y2 =
((

2 – 3A2)(a – c) – h + m
)

sin(ϕ)

for

α
(n,m–1)
m–1 = a, α(n,m)

m = b, α
(n,m+1)
m+1 = c,

α
(n+1,m–1)
m–1 = d, α(n+1,m)

m = e, α
(n,m+1)
m+1 = f ,

β
(n,m–1)
m–1 = h, β (n,m)

m = k, β
(n,m+1)
m+1 = m,

β
(n+1,m–1)
m–1 = n, β (n+1,m)

m = p, β
(n+1,m+1)
m+1 = r.

Therefore, we get

|ζ |2 =
X2

1 + X2
2

Y 2
1 + Y 2

2
. (34)

If |ζ | ≤ 1 conditional is satisfied, then we see that the proposed method is unconditionally
stable.

3.2 L2 and L∞ error norms
For the test problem used in the present study, numerical solutions of Eq. (2) are computed
with help of Mathematica software. Both L2 error norms are given by

L2 =
∥∥Uexact – UN

∥∥
2 =

√√√√h
N∑

J=0

∣∣Uexact
j – (UN )j

∣∣2

and L∞ error norm is given by

L∞ =
∥∥Uexact – UN

∥∥∞ = max
j

∣∣Uexact
j – (UN )j

∣∣.

They are calculated to show the accuracy of the results.

3.3 Test problem
For λ = 0.834, μ = 1, –γ = 0.8, the exact solution of the fractional combined KdV–mKdV
equation is given as follows:

u(x, t) =
1
6

(–2 – 3
√

2λ)

–
√

2μ

(
1

– μ

λ
+ cosh((x + 1

6 (2 – 3λ2)t)λ) – sinh((x + 1
6 (2 – 3λ2)t)λ)

)

for t ≥ t0, 0 ≤ x ≤ 1.
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Table 1 Comparison of the error norms L2 and L∞ of the obtained solution using IQ radial basis for
h = 0.1and h = 0.01 at c = 10–15, 	t = 0.01

Numerical solution for
φ(rj) = 1/(r2j + c2)

Exact solution

h = 0.01

x = 0 6.18208 6.64277
x = 0.1 4.14476 4.35567
x = 0.2 3.08694 3.20707
x = 0.3 2.44095 2.51819
x = 0.4 2.00673 2.0604
x = 0.5 1.69576 1.73507
x = 0.6 1.46278 1.49273
x = 0.7 1.28229 1.30578
x = 0.8 1.13878 1.15765
x = 0.9 1.02233 1.03776
x = 1 0.939049 0.939049

L2 (	t = h = 0.1) 0.0844697
L∞ (	t = h = 0.1) 3.1226
L2 (	t = h = 0.01) 0.116856
L∞ (	t = h = 0.01) 5.90397

Figure 3 Comparison of the exact solution and the obtained solutions using IQ, MQ, IMQ bases for h = 0.1

In our computations, the linearization technique has been applied for the numerical
solution of the test problem. Then, the numerical tests are performed using the radial
basis function GA, IQ, IMQ, MQ. The collocation matrix does not become ill-conditional
during the run algorithms with GA radial basis functions for c = 10–15 at Eq. (2). In Table 1,
the error norms L2 and L∞ of numerical solutions with IQ basis are compared for c = 10–15

and 	t = 0.01 at times t = 1. In Fig. 3, the numerical solutions obtained by IQ, IMQ, MQ
bases are compared for h = 0.1 at times t = 1.

We obtain good results for h = 0.1. However, we do not get better results for h = 0.01.
Furthermore, we cannot find any result as the number of nodes increases.
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4 Geometry of the exact solution
The geometry of the exact solutions of various equations has been intensely studied by
different authors in various ways (cf. [40–44]). In this section, we are going to investigate
the exact solution and the numerical solutions in the 3-dimensional space-time known
as Lorentz–Minkowski space R

3
1. The main reason for choosing to work in this space is

that the Lorentz–Minkowski space plays an important role in both special relativity and
general relativity with space coordinates and time coordinates.

First, we need to recall some basic facts and notations in R
3
1 (cf. [45–49]).

Let X = (x1, x2, x3) and Y = (y1, y2, y3) be any two vector fields in R
3
1. Then inner product

of X and Y is defined by

〈X, Y 〉 = x1y1 + x2y2 – x3y3. (35)

Note that a vector field X is called
(i) a timelike vector if 〈X, X〉 < 0,

(ii) a spacelike vector if 〈X, X〉 > 0,
(iii) a lightlike (or degenerate) vector if 〈X, X〉 = 0 and X �= 0.
Thus, the inner product in R

3
1 splits each vector field into three categories, namely

(i) spacelike, (ii) timelike, and (iii) lightlike (degenerate) vectors. The category is known
as causal character of a vector. The set of all lightlike vectors is called null cone. Further-
more, the norm of a vector X is defined by its causal character as follows:

(i) ‖X‖ =
√〈X, X〉 if X is a spacelike vector,

(ii) ‖X‖ = –
√〈X, X〉 if X is a timelike vector.

Let X be a unit timelike vector and e = (0, 0, 1) in R
3
1. Then X is called

(i) a timelike future pointing vector if 〈X, e〉 > 0,
(ii) a timelike past pointing vector if 〈X, e〉 < 0.
Now, let r(x, t) be a surface in R

3
1. Then the normal vector N at a point in r(x, t) is given

by

N =
rx ∧ rt

‖rx ∧ rt‖ , (36)

where ∧ denotes the wedge product in R
3
1. A surface is called

(i) a timelike surface if N is spacelike,
(ii) a spacelike surface if N is timelike,

(iii) a lightlike (or degenerate) surface if N is lightlike.
We note that a point is called regular if N �= 0 and singular if N = 0.
Now, let us consider a surface given by

r(x, t) =
(
x, t, u(x, t)

)
, (37)

where u(x, t) is the exact solution of the fractional combined KdV–mKdV equation given
by

u(x, t) =
1
6

(–2 + 3
√

2λ)

+
√

2μ

(
1

– μ

λ
+ cosh((x + 1

6 (2 – 3λ2)t)λ) – sinh((x + 1
6 (2 – 3λ2)t)λ)

)
.
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Table 2 Classification of r(x, t) surface at node points

Node points 〈N,N〉 Class

x = 0 –1166.57 spacelike
x = 0.1 –233.172 spacelike
x = 0.2 –73.2727 spacelike
x = 0.3 –29.2972 spacelike
x = 0.4 –13.4868 spacelike
x = 0.5 –6.72612 spacelike
x = 0.6 –3.46118 spacelike
x = 0.7 –1.73585 spacelike
x = 0.8 –0.758654 spacelike
x = 0.9 –0.173935 spacelike
x ≈ 0.94 0 lightlike
x = 1 0.191883 timelike

In view of (36), the normal vector field of r(x, t) becomes

N(x, t) = (e
2λt
3 –λ3t+2λx(18eλ3t– 2

3 λ(t+3x)λ4 – 72e
λt
3 – λ3t

2 t+λxλμ3

+ 18e
2
3 λt–λ3t+2λxμ4 – λ2μ

(
72e

1
6 λ((–2+3λ2)t–6x)λ

+
(
–108 + 40λ4 – 12λ6 + 9λ8μ

))))
/
(
18

(
λ – eλ( 1

6 (2–3λ2)t+x)μ
)4). (38)

From (38), it is clear that r(x, t) is a regular surface, that is, every point of it is a regular
point.

As a consequence of the above facts, we immediately get the following.

Corollary 4.1 For the node points, we have Table 2.

Remark 4.2 From Table 2, we see that the surface r(x, t) contains at least one degenerate
point near x = 0.94. As the number of node points increases, we approach degenerate
points. Therefore, numerical solutions become instable when the number of node points
increases.

5 Gaussian curvature of node points
Another important fact for a surface is to compute the Gaussian curvature which is an
intrinsic character of it. The Gaussian curvature is the determinant of the shape opera-
tor. For a surface r(x, t), we shall apply the following useful way to compute the Gaussian
curvature:

Consider 〈N , N〉 = ε‖N‖, where ε = ∓1. Let us define

E = 〈rx, rx〉, F = 〈rx, rt〉, G = 〈rt , rt〉 (39)

and

e = 〈uxx, N〉, f = 〈uxt , N〉, g = 〈utt , N〉.

Then the Gaussian curvature K(p) at a point p of a surface satisfies

K(p) = ε
eg – f 2

EG – F2 . (40)
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We note that
(i) K(p) > 0 means that the surface r(x, t) is shaped like an elliptic paraboloid near p. In

this case, p is called an elliptic point.
(ii) K(p) < 0 means that the surface r(x, t) is shaped like a hyperbolic paraboloid near p.

In this case, p is called a hyperbolic point.
(iii) K(p) = 0 means that the surface r(x, t) is shaped like a parabolic cylinder or a plane

near p. In this case, p is called a parabolic point.
Now, let us consider the surface given in (37). From (39) and (40), by a straightforward

computation, we get

K = –
(
e

4λt
3 +λ3t+4λxλ8(2 – 3λ2)2(–8 + 3λ2)(4 + 3λ2)μ2(eλ3tλ2

– e
2
3 λ(t+3x)μ2)2)/

(
2
(
eλ(t+λ2t+3x)λ2(–108 + 40λ4 – 12λ6 + 9λ8)μ2

– 18e
λt
3 +λxμ4 + 18e

λ3t
2 λ

(
e

3λ3t
2 λ3 – 4eλ(( 1

3 +λ2)t+x)λ2μ – 4eλ(t+3x)μ3))
(
eλ(t+λ2t+3x)λ2(108 + 40λ4 – 12λ6 + 9λ8)μ2

+ 18e
λt
3 +λx(e2λ3tλ4 – 4e

1
6 λ(2+9λ2)t+λxλ3μ – 4eλt+ λ3t

3 +3λxλμ3 + e
4
3 λ(t+3x)μ4))).

Another important kind of curvatures is mean curvature which measures the surface
tension from the surrounding space at a point. The mean curvature is a trace of the second
fundamental form. For a surface r(x, t), we shall apply the following useful way to compute
the mean curvature H(p):

H(p) = ε
1
2

eG – 2fF + gE
EG – F2 . (41)

If H(p) = 0 for all points of r(x, t), then the surface is called minimal. Furthermore, if the
value of the mean curvature at a point p receives at least a possible amount of tension from
the surrounding space, then p is called ideal point. That is, if a point in a surface is affected
as little as possible from the external influence, then it becomes ideal.

From (41), we obtain

H =
(
3e

λt
3 – λ3t

2 +λxλ4(40 – 12λ2 + 9λ4)
μ

(
λ + eλ( 1

6 (2–3λ2)t+x)μ
))

/
(
2
(
λ – eλ( 1

6 (2–3λ2)t+x)μ
)3

(
1/

(
λ – eλ( 1

6 (2–3λ2)t+x)μ
)4e

2λt
3 –λ3t+2λx

(
–18eλ3t– 2λ(t+3x)

3 λ4 + 72e
λt
3 – λ3t

2 +λxλμ3

– 18e
2λt
3 –λ3t+2λxμ4 + λ2μ

(
72e

1
6 λ((–2+3λ2)t–6x))λ

+
(
–108 + 40λ4 – 12λ6 + 9λ8)μ)))3/2).

As a consequence of the above facts, we get the following corollary:

Corollary 5.1 For the node points of r(x, t), we have Table 3.

Remark 5.2 From Table 3, we see that if x approaches 0.94, then the values of Gauss cur-
vature and mean curvature change remarkably. Therefore, there exists the maximum ex-
ternal influence near the point 0.94.
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Table 3 Curvatures of r(x, t) surface at node points

Node points Mean curvature Gauss curvature

x = 0 –0.00423076 –0.0000174161
x = 0.1 –0.0142516 –0.000039501
x = 0.2 –0.034402 –0.0000723291
x = 0.3 –0.0699955 –0.000119721
x = 0.4 –0.130085 –0.000190356
x = 0.5 –0.233077 –0.000304767
x = 0.6 –0.423579 –0.000517959
x = 0.7 –0.838338 –0.00101754
x = 0.8 –2.11606 –0.00283336
x = 0.9 –14.4824 –0.0304277
x = 0.94 –1408.05 –12.6644
x = 1 –19.2403 0.0148218

6 Conclusions
Using the (1/G′) expansion method, the exact solution r(x, t) of the fractional combined
KdV–mKdV equation is obtained. The numerical solutions of the fractional combined
KdV–mKdV equation are shown by using the collocation method. These solutions are
compared with the exact solution. The computational efficiency and effectiveness of the
proposed method were tested on a problem. The error norms L2 and L∞ have been cal-
culated. The obtained results show that the error norms are small during all computer
runs for all bases except for MQ basis. It was proved that the present method is a particu-
larly successful numerical scheme to solve the fractional combined KdV–mKdV equation.
However, numerical solutions are more accurate for h = 0.1 than for h = 0.01. Therefore,
casual character of the exact solution was expressed at the nodal points. From Tables 1
and 2, it was realized that the most accurate numerical solution occurred in the timelike
case of r(x, t), and there exists at least one degenerate point near x = 0.94. Furthermore,
from Table 3, it was realized that the most accurate numerical solution occurred at the
elliptic points of r(x, t), and the ideal node point of r(x, t) is x = 0.
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