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Abstract
In this study, we propose two techniques for clustering genetic regulatory networks
with mixed delays. Laws for identifying coupling parameters are designed, and the
Lyapunov theorem and Lipschitz condition are employed to achieve the desired
stability and to identify the coupling parameters. Using our proposed methods, the
value of a cluster or the sum of clusters can approach the expected values. Numerical
examples verify the feasibility and effectiveness of this method.
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1 Introduction
After the double helix structure of DNA was discovered by Watson and Crick in 1953, we
entered a new era of molecular biology, and many subsequent studies have shown that
physiological functions are controlled by biological networks instead of several molecules
and genes. Biological networks include metabolic networks, protein interaction networks,
and genetic regulatory networks (GRNs), where the latter are significant for studies of the
interactions between mRNA and proteins at the molecular level. GRNs have been eluci-
dated increasingly in the last 30 years due to great progress in genome sequencing and
gene recognition, thereby attracting considerable attention from researchers in the areas
of biology, computer science, physics, and mathematics; and thus GRNs is a focus of in-
terdisciplinary research. Various models have been proposed to describe the transcription
and translation of DNA, e.g., Boolean networks [1–3] and differential equation models [4–
12], where the latter can depict the continuous dynamic behavior of mRNA and protein.

Time delays are ubiquitous in biology [13], physics [14], chemistry [15], optics [16], and
complex networks [17, 18]. Thus, time delays need to be considered in GRNs because of
the finite speeds of the slow processes of transcription, translation, and translocation [7–
10, 12]. Furthermore, inappropriate considerations of time delays can lead to incorrect
predictions of the behavior of GRNs.

Stability is essential for the design or control of GRNs because it ensures that an organ-
ism can robustly regulate its functions even if the state of the organism moves away from
the equilibrium points. Zhang et al. used the improved integral inequality to conduct sta-
bility analysis for a GRN with interval time-varying delays [19]. Wang et al. performed
exponential convergence analysis for an uncertain GRN with time-varying delays [20].
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Zhang et al. established globally asymptotic stability criteria for a GRN with time-varying
discrete and unbounded distributed delays [21]. Liu and Wu analyzed the global asymp-
totical stability of a GRN with time-varying delays via a convex combination method [22].

These previous studies considered the stability of GRNs but not clustering phenomena.
In general, cells can communicate with neighboring cells via quorum sensing because the
genetic signals transmitted from genes can support different physiological functions [23].
Therefore, clustering is a common phenomenon in interacting populations, and clustering
is an important aspect of biological control [24]. Recently, some studies have investigated
the clustering of GRNs, such as how the influence of coupling or noise can generate clus-
ter patterns in an ensemble of cellular oscillators [25], how individual GRNs are divided
into different clusters by cluster synchronization [23, 24, 26], and how temporal control is
introduced to cluster mammalian signaling modules [27]. In this study, we investigate the
desired clustering of GRNs where clusters of GRNs could have different features accord-
ing to two proposed strategies. In particular, we impose no limitations on the number of
nodes in each cluster, the division of the clusters of GRNs, and the time delay for feed-
back regulation. Comparing with the previous research of GRNs, we not only analyze the
stability of GRNs, but also make the concentrations of protein and mRNA approach the
desired values through our tactics. Linear matrix inequality (LMI) method is often used
to obtain the stability criteria for GRNs, but the computation of LMI is complex. In this
paper, stability criterion is given by a Lyapunov function.

The real genetic regulatory network is over complex, and the number of nodes is huge.
Since “network motifs” [28, 29] were proposed by Alon et al. in 2002, few node genetic
regulatory networks have become research hotspots. It is hoped that the real genetic reg-
ulatory network can be understood gradually by the research of such network motifs. In
2000, Elowitz et al. used three transcriptional repressor systems to build a synthetic oscil-
lating network in Escherichia coli [30]. Gardner et al. used two transcriptional repressors
to construct a synthetic toggle switch genetic regulatory network in Escherichia coli also
in 2000 [31]. Therefore, 7 or 20 genes with clustering as numerical examples in Sect. 4 are
significant.

2 Model of GRNs
GRNs with mixed delays [12] are described by Eq. (1):

⎧
⎨

⎩

ṁi(t) = –aimi(t) +
∑N

j=1 ωij(t)fj(pj(t – τ (t))) + li(t),

ṗi(t) = –cipi(t) + dimi(t – σ (t)), i ∈ {1, 2, . . . , n},
(1)

where m(t) = [m1(t) · · ·mn(t)] ∈ Rn and p(t) = [p1(t) · · ·pn(t)] ∈ Rn are the concentrations
of mRNA and protein for node i at the time t, respectively, the parameters ai and ci are the
degradation rates of the mRNA and protein, and di is the translation rate. The feedback
regulation delays τ (t), σ (t) are both positive, and fi(x) is the Hill form regulatory func-
tion, which represents the feedback regulation of the protein on transcription, and it is
described by Eq. (2):

fj(x) =
( x

vj
)Hj

1 + ( x
vj

)Hj
, (2)
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m1, m2, . . . , mq1
︸ ︷︷ ︸

C1

, . . . , mqk–1+1, mqk–1+2, . . . , mqk
︸ ︷︷ ︸

Ck

, . . .

Figure 1 Cluster of GRNs where qk – qk–1 represents the number of nodes in the kth cluster and
{qk–1 + 1, . . . ,qk–1 + γ , . . . ,qk} represents the index set of all the nodes in the kth cluster. We find that
mi =mqk–1+γ , when the index of the ith gene is the γ th gene in the kth cluster

where Hi is the Hill coefficient, vj is a positive constant, and we propose that fj(x) is positive.
li(t) =

∑
j∈Ii

αij(t) and Ii is the set of all j, which is a repressor of gene i. The coupling matrix
W = ωij ∈ Rn×n is described as follows:

ωij(t) =

⎧
⎪⎪⎨

⎪⎪⎩

αij(t) if j is an activator of gene i,

0 if there is no link from node j to i,

–αij(t) if j is an repressor of gene i.

(3)

As shown in Fig. 1, we assume that there are M clusters in the GRNs (1) (M ≥ 1), which
are denoted by C1, C2, . . . , Cm, where Ck = {qk–1 +1, qk–1 +2, . . . , qk}, with k = 1, 2, . . . , m, q0 =
0, and qm = N .

Let mk(t) = (mqk–1+1, mqk–1+2, . . . , mqk ), pk(t) = (pqk–1+1, pqk–1+2, . . . , pqk ).

Definition 1 X(t) ∈ Rn will approach the desired values X̂ ∈ Rn if limt→∞ |X(t) – X̂| = 0.

3 Desired clustering of GRNs
In this section, the GRNs (1) are clustered using two techniques.

3.1 Method 1
In this method, the concentrations of mRNA and protein within a cluster have the same
desired values m̂k and p̂k , and the desired values of the nodes vary in different clusters.

Theorem 1 The desired clustering of GRNs with mixed delays will be achieved when the
law for identifying the coupling parameters ωij, ai, ciβi (i ∈ {qk–1 + 1, qk–1 + 2, . . . , qk}, j ∈
{1, . . . , N}) and p̂k is taken as follows, respectively:

ω̇ij(t) = α
(
m̂k(t) – mi

)
, (4)

ai + δ – εi > 0, (5)

ci > 0, (6)

βi =
aim̂k

∑n
j=1 ω̂ij

> 0, (7)

p̂k = lim
t→∞ θkmi

(
t – σ (t)

)
, (8)

where the real numbers δ and εi are positive; the estimated identification of the uncertain
adjustment parameters ωij is ω̂ij and α is an adjustment parameter; θk = dk/ck is a scale
factor that represents the proportional relationship between p̂k and m̂k , ck = cqk–1+1 = · · · =
cqk , and dk = dqk–1+1 = · · · = dqk .
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Proof For i ∈ Ck , the error between mi and m̂k and the error between pi and pi(t – σ (t))
are defined by Eq. (9).

⎧
⎨

⎩

e1i(t) = mi(t) – m̂k ,

e2i(t) = pi(t) – p̂k .
(9)

We establish the Lyapunov function as follows.

V (t) =
1
2

( N∑

i=1

eT
1i(t)e1i(t) +

N∑

i=1

eT
2i(t)e2i(t) +

βi

α

N∑

i=1

N∑

j=1

(
ω̂ij – ωij(t)

)T(
ω̂ij – ωij(t)

)
)

=
1
2

M∑

k=1

qk∑

i=qk–1+1

(

eT
1i(t)e1i(t) + eT

2i(t)e2i(t)

+
βi

α

N∑

j=1

(
ω̂ij – ωij(t)

)T(
ω̂ij – ωij(t)

)
)

. (10)

The derivative form of V (t) can be described as follows:

V̇ (t) =
M∑

k=1

qk∑

i=qk–1+1

[

eT
1i(t)

(

–aimi(t) +
N∑

j=1

ωijfj
(
pj

(
t – τ (t)

))
+ li(t) + βi

N∑

j=1

(ω̂ij – ωij)

)

+ eT
2i(t)

(
–cipi(t) + dimi

(
t – σ (t)

))
]

=
M∑

k=1

qk∑

i=lk–1+1

[

eT
1i(t)(–(ai + δ)mi(t) + (ai + δ)m̂k + Fi

(
mi(t)

)
– Hi(m̂k)

+ βi

N∑

j=1

ω̂ij – aim̂k + eT
2i(t)

(
–cipi(t) + cip̂k + dimi

(
t – σ (t)

)
– cip̂k

)
]

, (11)

where

Fi = δm
i (t) +

N∑

j=1

ωij
[
fj
(
pj

(
t – τ (t)

))
– βi

]
+ li(t), (12)

Hi(m̂k) = (ai + δ)m̂k . (13)

For the real number εi > 0, the following relationship is obtained using the Lipschitz con-
dition:

∥
∥Fi

(
mi(t)

)
– Hi(m̂k)

∥
∥ ≤ εi

∥
∥mi(t) – m̂k

∥
∥, (14)

and Eq. (10) can be simplified as follows:

V̇ (t) ≤
M∑

k=1

qk∑

i=qk–1+1

{

(εi – ai – δ)eT
1i(t)e1i(t) + eT

1i(t)

(

βi

N∑

j=1

ω̂ij – aim̂k

)

– cieT
2i(t)e2i(t)
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+ eT
2i(t)

[
dimi

(
t – σ (t)

)
– cip̂k

]
}

. (15)

The following inequation is obtained while Eq. (7) is substituted into Eq. (15):

V̇ (t) ≤
M∑

k=1

qk∑

i=qk–1+1

{
(εi – ai – δ)eT

1i(t)e1i(t) – cieT
2i(t)e2i(t)

+ eT
2i(t)

[
dimi

(
t – σ (t)

)
– cip̂k

]}
. (16)

Clearly, when (5), (6), (8) are satisfied, we find that limt→∞ V̇ (t) ≤ 0. According to stabil-
ity theory and Definition 1, mi(t) ∈ mk(t) and pi(t) ∈ pk(t) will approach the desired values,
where p̂k = limt→∞ θkmi(t – σ (t)) = θkm̂k (i ∈ {qk–1 + 1, qk–1 + 2, . . . , qk}). �

3.2 Method 2
In this method, the GRNs is clustered by summing, which means that the sums of mk(t)
and pk(t) have the desired values Ŝ1k and Ŝ2k , respectively, and the desired values of the
sum of the various clusters are different. The sums of the mRNAs and proteins in the kth
cluster are defined as follows:

S1k(t) =
qk∑

i=qk–1+1

mi(t), (17)

S2k(t) =
qk∑

i=qk–1+1

pi(t). (18)

The error between S1k(t) and Ŝ1k and the error between S2k(t) and Ŝ2k are defined as
follows:

E1k(t) = S1k(t) – Ŝ1k , (19)

E2k(t) = S2k(t) – Ŝ2k . (20)

Theorem 2 The desired cluster of GRNs with mixed delays will be achieved when the
law for identifying the coupling parameters ωij, ai, ci, βi (i ∈ {qk–1 + 1, qk–1 + 2, . . . , qk}, j ∈
{1, . . . , N}), and Ŝ2k is taken as follows, respectively:

ω̇ij(t) = α
(
Ŝ1k – S1k(t)

)
(21)

ak + ξ – μk > 0 (22)

ck > 0 (23)

βk =
akŜ1k

∑qk
i=qk–1+1

∑N
j=1 ω̂ij

> 0 (24)

Ŝ2k = lim
t→∞ϑkS1k

(
t – σ (t)

)
, (25)

where the real numbers ξ and μk are positive; ϑk = dk/ck is a scale factor that represents the
proportional relationship between Ŝ2k and Ŝ1k ; ak = aqk–1+1 = · · · = aqk , ck = cqk–1+1 = · · · =
cqk , and dk = dqk–1+1 = · · · = dqk .
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Proof The Lyapunov function is established as follows:

V (t) =
1
2

( M∑

k=1

ET
1k(t)E1k(t) +

M∑

k=1

ET
2k(t)E2k(t)

+
βk

α

M∑

k=1

qk∑

i=qk–1

N∑

j=1

(ω̂ij – ωij)T(ω̂ij – ωij)

)

. (26)

The derivative form of V (t) can be described as follows:

V̇ (t) =
M∑

k=1

ET
1k(t)Ė1k(t) +

M∑

k=1

ET
2k(t)Ė2k(t) –

βk

α

M∑

k=1

qk∑

i=qk–1

N∑

j=1

(ω̂ij – ωij)Tω̇ij

=
M∑

k=1

(

ET
1k(t)

qk∑

i=qk–1+1

ṁiγ (t) + ET
2k(t)

qk∑

i=qk–1+1

ṗi(t) + βkET
1k(t)

qk∑

i=qk–1+1

N∑

j=1

(ω̂ij – ωij)

)

=
M∑

k=1

{

ET
1k(t)

[ qk∑

i=qk–1+1

(

–aimi(t) +
N∑

j=1

ωijfj
(
pj

(
t – τ (t)

))
+ li(t)

+ βk

N∑

j=1

(ω̂ij – ωij)

)]

+ ET
2k(t)

qk∑

i=qk–1+1

[
–cipi(t) + dimi

(
t – σ (t)

)]
}

. (27)

When ak = aqk–1+1 = · · · = aqk , ck = cqk–1+1 = · · · = cqk , and dk = dqk–1+1 = · · · = dqk , Eq. (27)
is simplified as follows:

V̇ (t) =
M∑

k=1

{

ET
1k(t)

[

–akS1k(t) +
qk∑

i=qk–1+1

( N∑

j=1

ωij
(
fj
(
pj

(
t – τ (t)

))
– βk

)
+ li(t)

+ βk

N∑

j=1

ω̂ij

)]

+ ET
2k(t)

[
–ckS2k(t) + dkS1k

(
t – σ (t)

)]
}

=
M∑

k=1

{

ET
1k(t)

[

–(ak + ξ )S1k(t) + (ak + ξ )Ŝ1k + k(S1k) – �k(Ŝ1k)

+ βk

qk∑

i=qk–1+1

N∑

j=1

ω̂ij – akŜ1k

]

+ ET
2k(t)

[
–ckS2k(t) + ckŜ2k + dkS1k

(
t – σ (t)

)
– ckŜ2k

]
}

, (28)
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where

k
(
S1k(t)

)
= ξS1k(t) +

qk∑

i=qk–1+1

( N∑

j=1

ωij
(
fj
(
pj

(
t – τ (t)

))
– βk

)
+ li(t)

)

, (29)

�k(Ŝ1k) = (ak + ξ )Ŝ1k . (30)

For the real number μk > 0, the following relationship can be obtained using the Lips-
chitz condition:

∥
∥k

(
S1k(t)

)
– �k(Ŝ1k)

∥
∥ ≤ μk

∥
∥1k(t) – Ŝ1k

∥
∥, (31)

and Eq. (28) can be simplified as follows:

V̇ (t) ≤
M∑

k=1

{

(μk – ak – ξ )ET
1k(t)E1k + ET

1k(t)

[

βk

qk∑

i=qk–1+1

N∑

j=1

ω̂ijfj
(
pj

(
t – τ (t)

))
– akŜ1k

]

– ckET
2k(t)E2k + ET

2k(t)
[
dkS1k

(
t – σ (t)

)
– ckŜ2k

]
}

. (32)

The following inequation is obtained while Eq. (24) is substituted into Eq. (32):

V̇ (t) ≤
M∑

k=1

{
(μk – ak – ξ )ET

1k(t) – ckET
2k(t)E2k + ET

2k(t)
[
dkS1k

(
t – σ (t)

)
– ckŜ2k

]}
. (33)

Based on (22), (23), (25), one can deduce limt→∞ V̇ (t) ≤ 0. According to stability the-
ory and Definition 1, S1k(t) and S2k(t) will approach the desired values, where Ŝ2k =
limt→∞ ϑkS1k(t – σ (t)) = ϑkŜ1k . �

4 Numerical simulation
Example 1 In the numerical simulation of Example 1, the number of the nodes is fixed as
n = 7; the parameters are fixed as ai = 2 (i = 1, . . . , 7), ck = 1, and dk = ckp̂k/m̂k (k = 1, . . . , M);
and the adjustment parameter α = 0.5.

We assume that there are two clusters in the GRNs, M = 2, where

(
m1

p1

)

=

{(
m1(t)
p1(t)

)

,

(
m2(t)
p2(t)

)

,

(
m3(t)
p3(t)

)}

,

(
m2

p2

)

=

{(
m4(t)
p4(t)

)

,

(
m5(t)
p5(t)

)

,

(
m6(t)
p6(t)

)

,

(
m7(t)
p7(t)

)}

,

(
m̂1

p̂1

)

=

(
1.5
3

)

,

(
m̂2

p̂2

)

=

(
3
6

)

.

The temporal evolution of mi (i = 1, . . . , 7) and pi is shown in Fig. 2. Figure 2 clearly
indicates that the concentrations of mi and pi at equilibrium approach the desired values.
In addition, mi, pi (i = 1, 2, 3) belong to the first cluster and the concentration of mi, pi (i =
4, 5, 6, 7) belongs to the second cluster.
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Figure 2 Time trajectories ofmi(t) and pi(t),
(i = 1, . . . , 7), and identification process for the
uncertain parameter ω1j (j = 1, . . . , 7)

According to Figs. 2 and 3, the curves for identifying ωij (i = 1, 2, . . . , 7; j = 1, 2, . . . , 7) grad-
ually tend toward the fixed values as follows:

Ŵ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.28 0.48 –0.71 0.28 –0.41 0.48 0.58
–1.98 1.31 0.21 0.02 –0.28 –0.28 1.41
1.51 0.01 0.01 0.31 1.01 0.31 –0.28
1.21 1.01 1.01 –0.68 1.01 1.41 0.71
0.56 3.01 0.31 0.61 0.81 0.51 0.61
1.64 0.64 2.14 0.71 0.64 –0.45 0.64
2.31 0.71 0.31 1.01 0.31 1.01 0.71

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Ŵ is the identification estimates for the uncertain coupling matrix W ;

β1 =
a1m̂1

∑7
j=1 ω̂1j

= 1.50, β2 =
a2m̂1

∑7
j=1 ω̂2j

= 6.82,

β3 =
a3m̂1

∑7
j=1 ω̂3j

= 1.03, β4 =
a4m̂2

∑7
j=1 ω̂4j

= 1.05,

β5 =
a5m̂2

∑7
j=1 ω̂5j

= 0.94, β6 =
a6m̂2

∑7
j=1 ω̂6j

= 1.00, β7 =
a7m̂2

∑7
j=1 ω̂7j

= 0.93.

Clearly, the value of βi, (i = 1, . . . , 7) is positive, and thus inequation (7) is satisfied.
Furthermore, when we expand the number of nodes of GRNs to 20 and assume that

there are three clusters in the GRNs, where ai = 3 (i = 1, . . . , 20), ck = 1, dk = ckp̂k/m̂k (k =
1, . . . , M); M = 3; α = 0.3;

(
m1

p1

)

=

{(
m1(t)
p1(t)

)

, . . . ,

(
m10(t)
p10(t)

)}

,

(
m2

p2

)

=

{(
m11(t)
p11(t)

)

, . . . ,

(
m15(t)
p15(t)

)}

,

(
m3

p3

)

=

{(
m16(t)
p16(t)

)

, . . . ,

(
m20(t)
p20(t)

)}

,

(
m̂1

p̂1

)

=

(
1
2

)

,

(
m̂2

p̂2

)

=

(
2
4

)

,

(
m̂3

p̂3

)

=

(
3.5
7

)

The temporal evolution of mi (i = 1, . . . , 7) and pi is shown in Fig. 4. According to Fig. 4,
mi(t) and pi(t) reach equilibrium at the desired values and the concentrations of mi and
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Figure 3 Identification process for the uncertain parameters ωij (i = 2, . . . , 7; j = 1, . . . , 7)

Figure 4 State trajectories ofmi(t) and pi(t) (i = 1, 2,
. . . , 20)

Figure 5 Identification process for adjustment
parameter ωij , (i = 1, . . . , 20; j = 1, . . . , 20)

pi (i = 1, . . . , 10) belong to the first cluster, the concentrations of mi and pi (i = 11, . . . , 15)
belong to the second cluster, and the concentrations of mi, pi (i = 16, . . . , 20) approach the
third cluster.

According to Fig. 5, the curves for identifying ωij (i = 1, 2, . . . , 20; j = 1, 2, . . . , 20) gradually
tend to the fixed values. Based on Fig. 6, inequation (7) is satisfied.

Example 2 In the numerical simulation of Example 2, the number of the nodes is fixed as
n = 7, and it is assumed that there are two clusters in the GRNs, where ai = 2 (i = 1, . . . , 7),
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Figure 6 Value of βi , (i = 1, . . . , 20)

Figure 7 State trajectory ofmi(t) (i = 1, 2, . . . , 7), and
identification process for the uncertain parameterω1j

(j = 1, . . . , 7)

ck = 2, dk = ckŜ2k/Ŝ1k (k = 1, . . . , M); M = 2; α = 0.5.

(
m1

p1

)

=

{(
m1(t)
p1(t)

)

,

(
m2(t)
p2(t)

)

,

(
m3(t)
p3(t)

)}

,

(
m2

p2

)

=

{(
m4(t)
p4(t)

)

,

(
m5(t)
p5(t)

)

,

(
m6(t)
p6(t)

)

,

(
m7(t)
p7(t)

)}

;

where S11 = m1(t) + m2(t) + m3(t) and S12 = m4(t) + m5(t) + m6(t) + m7(t); S21 = p1(t) +
p2(t) + p3(t) and S22 = p4(t) + p5(t) + p6(t) + p7(t) and the desired values of S11, S12, S21, S22

are fixed at Ŝ11 = 30, Ŝ12 = 10, Ŝ21 = 15, Ŝ22 = 5, respectively.
The temporal evolution of mi (i = 1, . . . , 7) and pi are shown in Fig. 7, respectively. Fig-

ure 8(c) clearly indicates that the values of S1k and S2k (k = 1, 2) approach those of Ŝ1k and
Ŝ2k . It is important to note that the GRNs are divided into two clusters, where the con-
centrations of mi, pi (i = 1, 2, 3) belong to the first cluster and the concentrations of mi,
pi (i = 4, 5, 6, 7) belong to the second cluster.
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Figure 8 (a), (b): Identification process for the adjustment parameter ωij (i, j = 2, . . . , 7); (c): state trajectories of
S1k(t) and S2k (t) (k = 1, 2)

According to Figs. 7 and 8(a)–(b), the curves for identifying ωij (i = 1, 2, . . . , 7; j =
1, 2, . . . , 7) gradually tend toward the fixed values as follows:

Ŵ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4.56 3.76 2.56 3.56 2.86 3.76 3.86
1.86 5.16 4.06 3.86 3.56 3.56 5.26
5.06 3.56 3.56 3.86 4.56 3.86 3.26
0.63 0.43 0.43 –1.27 0.43 0.83 0.12
0.68 3.13 0.43 0.73 0.93 0.63 0.72
1.63 0.63 2.13 0.73 0.63 –0.47 0.63
2.43 0.83 0.43 1.13 0.43 1.13 0.83

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Ŵ is the identification estimates for the uncertain coupling matrix W .

β1 =
a1Ŝ11

∑3
i=1

∑7
j=1 ω̂ij

= 0.75, β2 =
a2Ŝ12

∑7
i=4

∑7
j=1 ω̂ij

= 0.91.

Clearly, the value of βk (k = 1, 2) is positive, and thus inequation (24) is satisfied.
Furthermore, when we expand the number of nodes of GRNs to 20 and assume that

there are three clusters in the GRNs, where ai = 3 (i = 1, . . . , 20), ck = 0.5, dk = ckŜ2k/Ŝ1k (k =
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Figure 9 State trajectories ofmi(t) and pi(t) (i = 1, 2,
. . . , 20)

Figure 10 State trajectories of S1k (t) and S2k(t) (k = 1,
2, 3)

1, . . . , M); M = 3; α = 0.2,

(
m1

p1

)

=

{(
m1(t)
p1(t)

)

, . . . ,

(
m10(t)
p10(t)

)}

,

(
m2

p2

)

=

{(
m11(t)
p11(t)

)

, . . . ,

(
m15(t)
p15(t)

)}

,

(
m3

p3

)

=

{(
m16(t)
p16(t)

)

, . . . ,

(
m20(t)
p20(t)

)}

,

such that S11 =
∑10

i=1 mi(t), S12 =
∑15

i=11 mi(t), S13 =
∑20

i=16 mi(t); S21 =
∑10

i=1 pi(t), S22 =
∑15

i=11 pi(t), S23 =
∑20

i=16 pi(t).
The desired values of S11, S12, S13, S21, S22, S23 are fixed at Ŝ11 = 15, Ŝ12 = 20, Ŝ13 = 30,

Ŝ21 = 30, Ŝ22 = 40, Ŝ23 = 60, respectively.
The temporal evolution of mi and pi (i = 1, . . . , 20) is shown in Fig. 9. According to Fig. 10,

the values of S1k and S2k (k = 1, 2, 3) clearly approach those of Ŝ1k and Ŝ2k . It is important
to note that the GRNs are divided into three clusters, where the concentrations of mi,
pi (i = 1, . . . , 10) belong to the first cluster, the concentrations of mi, pi (i = 11, . . . , 15) belong
to the second cluster, and the concentrations of mi, pi (i = 16, . . . , 20) belong to the third
cluster.
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Figure 11 Identification process for the uncertain
parameter ωij , (i = 1, . . . , 20; j = 1, . . . , 20)

According to Fig. 11, the curves for identifying ωij (i = 1, 2, . . . , 20; j = 1, 2, . . . , 20) gradu-
ally tend toward the fixed values.

β1 =
a1Ŝ11

∑10
i=1

∑7
j=1 ω̂ij

= 1.47, β2 =
a2Ŝ12

∑15
i=11

∑7
j=1 ω̂ij

= 0.95,

β3 =
a3Ŝ13

∑20
i=16

∑7
j=1 ω̂ij

= 0.95.

Clearly, the value of βk (k = 1, 2, 3) is positive, and thus inequation (24) is satisfied.

5 Conclusions
In this study, we investigated desired clusters of GRNs with fixed time lags based on the
Lyapunov theorem and Lipschitz condition. GRNs can be clustered using the two pro-
posed strategies. In the first method, the concentrations of mRNAs in the same cluster
approach the unique desired value. In the second method, the sums of clusters tend to-
ward the desired value. Numerical examples were provided to demonstrate the effective-
ness of the proposed clustering techniques. The results showed that the number of pos-
sible clusters in the GRNs does not affect the targeted stability of the cluster. In addition,
not limiting the number of nodes in each cluster enhances the practicality and flexibility
of these methods.
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