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Abstract
In this paper, we investigate a fully implicit finite difference scheme for solving the
time fractional advection–diffusion equation. The time fractional derivative is
estimated using Caputo’s formulation, and the spatial derivatives are discretized using
extended cubic B-spline functions. The convergence and stability of the fully implicit
scheme are analyzed. Numerical experiments conducted indicate that the scheme is
feasible and accurate.
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1 Introduction
Over the past few decades, several physical models have been developed in the form of
fractional differential equations. Fractional differential equations have been found to be
appropriate models for certain phenomena in astro-physics, fractal networks, signal pro-
cessing, chaotic dynamics, turbulent flow, continuum mechanics, and wave propagation
[1–7]. These models admit non-local memory effects in the mathematical formulation
and thus overcome certain shortcomings in integer-based models.

An important fractional partial differential equation is the fractional advection–diffu-
sion equation. It is important to solve this equation for a better understanding of ad-
vection and diffusion phenomena in a fractional setting, and for this purpose, numeri-
cal and approximate analytical methods are usually required. The finite element method
was constructed for the space fractional advection–diffusion equation by Zheng et al. [8].
Wang and Wang [9] developed a fast characteristic finite difference scheme for space frac-
tional advection–diffusion equation. For the space–time fractional advection–diffusions,
explicit and implicit difference approximations were developed by Shen et al. [10]. Jiang et
al. [11] presented analytical solutions for the multi-term time–space Caputo–Riesz frac-
tional advection–diffusion equations on a finite domain with Dirichlet nonhomogeneous
boundary conditions. In [11], the spectral representation of the fractional Laplacian op-
erator was used to derive the analytical solution. A scheme based on the finite volume
method for the solution of space fractional diffusion equation was investigated by Liu et
al. [12]. A finite element multigrid method was developed for multi-term time fractional
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advection–diffusion equations by Bu et al. [13]. Parvizi et al. [14] presented a Jacobi collo-
cation method for numerical solution of classical fractional advection–diffusion equation
with a nonlinear source term. Rubab et al. [15] discussed analytical solutions to the time
fractional advection–diffusion equation with time-dependent pulses on the boundary. In
[15], the Laplace and Fourier transforms were utilized to determine the analytical solutions
of fractional advection–diffusion equation with time fractional Caputo–Fabrizio deriva-
tive. Povstenko and Kyrylych [16] discussed two approaches to obtaining the space–time
fractional advection–diffusion equations. In this paper, Caputo time fractional derivative
and Riesz fractional Laplacian were used.

Many researchers used a spline function for solving fractional differential equations. B-
spline functions can give good approximation due to their small, compact support and
continuity of order 2 [17, 18]. However, there is relatively not much work on the use of
B-splines for solving fractional advection–diffusion equation. B-spline collocation meth-
ods were proposed for the solutions of time fractional diffusion problems by Esen et al.
[19, 20]. Sayevand et al. [21] solved anomalous time fractional diffusion problems in trans-
port dynamic systems using a B-spline collocation scheme. In [21], the fractional deriva-
tive in Caputo sense was utilized to represent the time derivative. A cubic trigonomet-
ric B-spline collocation scheme for the time fractional diffusion problem was presented
by Yaseen et al. [22]. In this paper, the Grunwald–Letnikov representation was used for
Riemann–Liouville derivative, and the stability of the scheme (based on the finite differ-
ence method and cubic trigonometric B-spline) was discussed. Zhu and Nie [23] obtained
a scheme based on exponential B-spline and wavelet operational matrix method for the
time fractional convection–diffusion problem with variable coefficients. Yaseen et al. [24]
constructed a finite difference method for solving time fractional diffusion problem via
trigonometric B-spline. Zhu et al. [25] derived an efficient differential quadrature scheme
based on modified trigonometric cubic B-spline for the solution of 1D and 2D time frac-
tional advection–diffusion equations. Yuan and Chen [26] presented an expanded mixed
finite element method for the two-sided time-dependent fractional diffusion problem with
two-sided Riemann–Liouville fractional derivatives.

In this paper, a fully implicit finite difference scheme using extended cubic B-spline is
formulated for the numerical solution of time fractional advection–diffusion equation.
A finite difference scheme, with Caputo’s formula, is applied to discretize the temporal
derivative, while extended cubic B-spline is employed to discretize the spatial derivatives.

The model problem fractional advection–diffusion equation considered in this paper is
given by

∂γ u(x, t)
∂tγ

+ p
∂u
∂x

– q
∂2u
∂x2 = f (x, t), a ≤ x ≤ b, 0 < t ≤ T (1)

with initial condition

u(x, 0) = ω(x), a ≤ x ≤ b, (2)

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0. (3)
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The advection coefficient p is a constant and the diffusivity coefficient q is a positive con-
stant, where g1(t), g2(t), and f (x, t) are continuous functions as the problem required. ∂γ

∂tγ

denotes the Caputo fractional derivative of order γ for the function u(x, t), described as

∂γ u(x, t)
∂tγ

=
1

�(1 – γ )

∫ t

0

∂u(x, τ )
∂τ

dτ

(t – τ )γ
.

The paper is organized as follows. Extended cubic B-spline basis functions are described
in Sect. 2. In Sect. 3, a fully implicit finite difference scheme based on extended cubic B-
spline is presented. The initial state C0 is discussed in Sect. 4. Stability and convergence
are discussed in Sect. 5 and Sect. 6, respectively. Lastly the numerical experiments and
discussions are presented in Sect. 7.

2 Extended cubic B-spline functions
Assume that a = x0 < x1 < · · · < xN–1 < xN = b are the spatial knots on the interval [a, b]
with equal length h = xi – xi–1, i = 1, . . . , N . The extended cubic B-spline basis functions,
which preserve identical properties and are twice differentiable at the knots xi over the
interval [a, b], can be presented as follows [18]:

φi(x,λ) =
1

24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1 – λ)(x – xi–2)3 + 3λ(x – xi–2)4, xi–2 ≤ x < xi–1,

(4 – λ)h4 + 12h3(x – xi–1) + 6h2(2 + λ)(x – xi–1)2

– 12h(x – xi–1)3 – 3λ(x – xi–1)4, xi–1 ≤ x < xi,

(4 – λ)h4 + 12h3(xi+1 – x) + 6h2(2 + λ)(xi+1 – x)2

– 12h(xi+1 – x)3 – 3λ(xi+1 – x)4, xi ≤ x < xi+1,

4h(1 – λ)(xi+2 – x)3 + 3λ(xi+2 – x)4, xi+1 ≤ x < xi+2,

0, otherwise,

(4)

where x and λ ∈ R are a variable and a free parameter, respectively. For –8 ≤ λ ≤ 1, the
extended cubic B-spline functions preserve identical properties as B-spline. When λ = 0,
it should be noted that extended B-spline basis functions become a cubic B-spline basis.
The splines φ–1,φ0, . . . ,φN+1 form a basis over the domain [a, b].

The values of φi(x,λ) and their derivatives at different knots are as follows [18]:

φi(xj,λ) =

⎧⎪⎪⎨
⎪⎪⎩

8+λ
12 , if i – j = 0,

4–λ
24 , if i – j = ±1,

0, else,

(5)

φ′
i(xj,λ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if i – j = 0,

∓ 1
2h , if i – j = ±1,

0, else,

(6)

φ′′
i (xj,λ) =

⎧⎪⎪⎨
⎪⎪⎩

– 2+λ

h2 , if i – j = 0,
2+λ

2h2 , if i – j = ±1,

0, else.

(7)
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3 Description of the scheme based on extended cubic B-spline
Let u(x,λ) be an analytical solution of the given differential equation. The approximated
solution in terms of the extended cubic B-spline is defined as follows:

u(xi, tn) =
i+1∑

k=i–1

Cn
k (t)φk(x,λ), (8)

where i = 0, 1, 2, . . . , N . The time-dependent unknowns Cn
k (t)’s are to be manipulated from

the initial, boundary, and extended cubic B-spline collocation conditions. Each extended
cubic B-spline covers four elements so that each subinterval [xi, xi+1] holds only three non-
zero basis functions φi–1, φi, φi+1. Thus the approximated solution and its derivatives in
terms of parameters can be described as follows [17]:

⎧⎪⎪⎨
⎪⎪⎩

un
i = u(xi, tn) = a1Cn

i–1 + a2Cn
i + a1Cn

i+1,

(ux)n
i = ux(xi, tn) = a3Cn

i–1 – a3Cn
i+1,

(uxx)n
i = uxx(xi, tn) = a4Cn

i–1 + a5Cn
i + a4Cn

i+1,

(9)

where a1 = 4–λ
24 , a2 = 8+λ

12 , a3 = 1
2h , a4 = 2+λ

2h2 , a5 = – 2+λ

h2 .
Caputo’s formula [12] can be written as follows:

∂γ (x, tn)
∂tγ

=
1

�(2 – γ )

n–1∑
s=0

bs
u(x, tn–s) – u(x, tn–s–1)

τ γ
+ Rn

τ , (10)

where bs = (s + 1)1–γ – s1–γ . The truncation error Rn
τ is bounded, i.e.,

∣∣Rn
τ

∣∣ ≤ Iτ 2–γ , (11)

where I is a constant.

Lemma 3.1 The coefficients bs fulfill the following properties [21]:
• b0 = 1;
• b0 > b1 > b2 > · · · > bs, bs → 0 as s → ∞;
• bs > 0 for s = 0, 1, . . . , n;
•

∑n
s=0(bs – bs+1) + bn+1 = (1 – b1) +

∑n–1
s=1 (bs – bs+1) + bn = 1.

3.1 Fully implicit scheme
Let un

i = u(xi, tn), f n
i = f (xi, tn), and Cn

i = Ci(tn) for i = 0, 1, . . . , N , n = 0, 1, . . . , M. Then, sub-
stituting (5), (6), (7) in (1), we have

1
τ γ �(2 – γ )

n∑
s=0

bs
[
a1

(
Cn–s+1

i–1 – Cn–s
i–1

)
+ a2

(
Cn–s+1

i – Cn–s
i

)
+ a1

(
Cn–s+1

i+1 – Cn–s
i+1

)]

+ (pa3 – qa4)Cn+1
i–1 + (–qa5)Cn+1

i + (–pa3 – qa4)Cn+1
i+1 = f n+1

i . (12)

After some simplification, the following recurrence relation is obtained:

(ra1 + pa3 – qa4)Cn+1
i–1 + (ra2 + 0 – qa5)Cn+1

i + (ra1 – pa3 – qa4)Cn+1
i+1
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= r
(
a1Cn

i–1 + a2Cn
i + a1Cn

i+1
)
r

n∑
s=1

bs
[
a1

(
Cn–s+1

i–1 – Cn–s
i–1

)
+ a2

(
Cn–s+1

i – Cn–s
i

)

+ a1
(
Cn–s+1

i+1 – Cn–s
i+1

)]
+ f n+1

i ,

where r = 1
τγ �(2–γ ) . The above system has (N + 1) linear equations and (N + 3) unknowns.

To obtain a unique solution, two additional equations are required. These additional equa-
tions are obtained from boundary conditions. The system then becomes

ACn+1 = B

(
bnC0 +

n–1∑
s=0

(bs – bs+1)Cn–s

)
+ F (13)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a1 . . .
ra1 + pa3 – qa4 ra2 – qa5 ra1 – pa3 – qa4

0 ra1 + pa3 – qa4 ra2 – qa5 ra1 – pa3 – qa4
...

. . . . . . . . .
...

. . . . . .
...

. . .
...
0 . . . . . . . . .

. . . . . . 0
...
...

. . .
...

. . . . . .
...

. . . . . .
...

ra1 + pa3 – qa4 ra2 – qa5 ra1 – pa3 – qa4

a1 a2 a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . . . . 0
a1 a2 a1 0 . . . . . . 0
0 a1 a2 a1 . . . . . . 0
... . . .

. . . . . . . . . . . .
...

... . . . . . . . . . a1 a2 a1

0 . . . . . . . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F = [gn+1
1 , f n+1

0 , . . . , f n+1
N , gn+1

2 ]T . Consequently, we have (N +3)× (N +3) system of linear
equations.

4 Initial state C0

To start iteration on Eq. (12), a suitable initial vector C0 = [C0
–1, C0

0 , . . . , C0
N+1]T is con-

structed from the initial conditions. We utilize the initial condition together with its
derivatives as follows:
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• (u0
i )x = d

dx (ω(xi)), i = 0, N ;
• u0

i = u(xi, 0) =
∑N+1

i=1 C0
i (0)φ(xi), i = 0, 1, . . . , N .

This gives a linear system of order (N + 3) × (N + 3). The above system can be written in
the matrix form as follows:

DC0 = E.

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a3 0 –a3 0 . . . . . . 0
a1 a2 a1 0 . . . . . . 0
0 a1 a2 a1 . . . . . . 0
... . . .

. . . . . . . . . . . .
...

... . . . . . . . . . a1 a2 a1

0 . . . . . . . . . a3 0 –a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and E = [ω′
0,ω0,ω1, . . . ,ωN ,ω′

N ]T .

5 Stability
The concept of stability is associated with the requirement that errors which are intro-
duced in the computational procedure die out as the procedure continues [27]. As the
fractional advection–diffusion equation is linear, the stability of proposed schemes can
be investigated by the Fourier method. Suppose U(x, t) in the approximation of (12). We
define

ξn
i = un

i – Un
i , i = 1, . . . , N – 1, n = 0, 1, . . . , M, (15)

and vector

ξn =
[
ξn

1 , ξn
2 , . . . , ξn

N–1
]T . (16)

Equation (15) satisfies Eq. (12), we obtain the round-off error equations as follows:

(ra1 + pa3 – qa4)ξn+1
i–1 + (ra2 – qa5)ξn+1

i + (ra1 – pa3 – qa4)ξn+1
i+1

= r
(
a1ξ

n
i–1 + a2ξ

n
i + a1ξ

n
i+1

)
– r

n∑
s=1

bs
[
a1

(
ξn–s+1

i–1 – ξn–s
i–1

)
+ a2

(
ξn–s+1

i – ξn–s
i

)

+ a1
(
ξn–s+1

i+1 – ξn–s
i+1

)]
. (17)

Then initial and boundary conditions become

ξ 0
i = ω(xi), i = 1, 2, . . . , N , (18)

and

ξn
0 = g1(tn), ξn

N = g2(tn), n = 0, 1, . . . , M. (19)
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Define grid functions based on the Fourier method as follows:

ξn =

⎧⎨
⎩

ξn
i , xi – h

2 < x ≤ xi + h
2 , i = 1, 2, . . . , N – 1,

0, a ≤ x ≤ a + h
2 or b – h

2 ≤ x ≤ b.
(20)

Then ξn(x) can be expressed in the form of Fourier series

ξn(x) =
∞∑

–∞
ηn(m) exp

(
i2πmx/(b – a)

)
, n = 1, 2, . . . , M, (21)

where

ηn(m) =
1

b – a

∫ b

a
ξn(x) exp

(
–i2πmx/(b – a)

)
dx. (22)

Note the natural definition of norm:

∥∥ξn∥∥
2 =

(N–1∑
i=1

h
∣∣ξn

i
∣∣2

)1/2

=

[∫ a+h/2

a

∣∣ξn∣∣2 dx +
M–1∑
i=1

∫ xi+h/2

xi–h/2

∣∣ξn∣∣2 dx +
∫ b

b–h/2

∣∣ξn∣∣2 dx

]1/2

=
[∫ b

a

∣∣ξn∣∣2 dx
]1/2

.

Using the Parseval equality [28], we have

∫ b

a

∣∣ξn∣∣2 dx =
∞∑

–∞

∣∣ηn(m)
∣∣2 dx,

we get

∥∥ξn∥∥2
2 =

∞∑
–∞

∣∣ηn(m)
∣∣2 dx. (23)

5.1 Stability for a fully implicit scheme
Let the solution in the form of Fourier series analysis be described as follows:

ξn
j = ηneiσ jh, (24)

where i =
√

–1 and σ = 2πm/(b – a). Using expression (24) in (17), we obtain

(ra1 + pa3 – qa4)ηn+1eiσ (j–1)h + (ra2 – qa5)ηn+1eiσ jh + (ra1 – pa3 – qa4)ηn+1eiσ (j+1)h

= r
(
a1ηneiσ (j–1)h + a2ηn+1eiσ jh + a1ηn+1eiσ (j+1)h) – r

n∑
s=1

bs
[
a1

(
ηn–s+1 – ηn–s)eiσ (j–1)h

+ a2(ηn–s+1 – ηn–s)eiσ jh + a1(ηn–s+1 – ηn–s)eiσ (j+1)h].
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After some calculation and collection of likewise terms, we obtain

ηn+1 =
1

w1
ηn –

1
w1

n∑
s=1

bs(ηn–s+1 – ηn–s), (25)

where w1 = 1 + 24q(2+λ) sin2(σh/2)–12phi sin(σh)
rh2[12+(λ–4)2 sin2(σh/2)] , clearly w1 ≥ 1 for λ > –2.

Proposition 5.1 Suppose that ηn, n = 1, 2, . . . , T × M, is the solution of (25), we have

|ηn| ≤ |η0|, n = 1, 2, . . . , T × M. (26)

Proof Apply the mathematical induction to verify inequality (26). Put n = 0 in (25) which
now takes the form

|η1| =
1

w1
|η0| ≤ |η0|, 1

w1
≥ 1.

Suppose that |ηn| ≤ |η0| is true for n = 1, 2, . . . , T × M – 1. From Eq. (25) we have

|ηn+1| ≤ 1
w1

|ηn| –
1

w1

n∑
s=1

(|ηn+1–s| – |ηn–s|
)

≤ 1
w1

|η0| –
1

w1

n∑
s=1

(|η0| – |η0|
)

≤ |η0|.

Hence (26) is true. �

Theorem 1 The implicit scheme (12) is unconditionally stable.

Proof Utilizing the above proposition and noticing (23), we obtain

∥∥ξn∥∥
2 ≤ ∥∥ξ 0∥∥

2, n = 0, 1, . . . , M,

which shows that implicit scheme (12) with initial and boundary conditions is uncondi-
tionally stable. �

6 Convergence
In this section, we follow Kadalbajoo and Arora’s [29] technique to examine the conver-
gence of the proposed method.

Theorem 2 ([30, 31]) Assume that u(x, t) ∈ C4[a, b], f ∈ C2[a, b], and  = [a = x0, x1, . . . ,
xN = b] is the equidistant partition of [a, b] with step size h. If Û(x, t) is the unique spline
interpolating the solution of the proposed problem at knots x0, . . . , xN ∈ , then there is a
constant mi independent of h, so that for every t ≥ 0, we have

∥∥Di(u(x, t) – U(x, t)
)∥∥∞ ≤ mih4–i, i = 0, 1, 2. (27)
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Lemma 6.1 The extended B-spline set {φ–1,φ0, . . . ,φN+1} described in definition (4) fulfills
the inequality

N+1∑
i=–1

∣∣φi(x,λ)
∣∣ ≤ 7

4
, 0 ≤ x ≤ 1. (28)

Proof By the triangular inequality, we obtain

∣∣∣∣∣
N+1∑
i=–1

φi(x,λ)

∣∣∣∣∣ ≤
N+1∑
i=–1

∣∣φi(x,λ)
∣∣.

For any knot xi, we have

N+1∑
i=–1

∣∣φi(xi,λ)
∣∣ =

∣∣φi–1(xi,λ)
∣∣ +

∣∣φi(xi,λ)
∣∣ +

∣∣φi+1(xi,λ)
∣∣ =

4 – λ

24
+

8 + λ

12
+

4 – λ

24
= 1 <

7
4

.

Also, for x ∈ [xi, xi+1], we have

∣∣φi(x,λ)
∣∣ ≤ 8 + λ

12
,

∣∣φi+1(x,λ)
∣∣ ≤ 8 + λ

12
,

∣∣φi–1(x,λ)
∣∣ ≤ 4 – λ

24
,

∣∣φi+2(x,λ)
∣∣ ≤ 4 – λ

24
.

Then, for any point x ∈ [xi, xi+1], we have

N+1∑
i=–1

∣∣φi(x,λ)
∣∣ =

∣∣φi–1(x,λ)
∣∣ +

∣∣φi(x,λ)
∣∣ +

∣∣φi+1(x,λ)
∣∣ +

∣∣φi+2(x,λ)
∣∣ =

20 + λ

12
.

Since –8 ≤ λ ≤ 1, thus we have 1 ≤ 20+λ
12 ≤ 7

4 . �

Theorem 3 The approximate solution U(x, t) to the exact solution u(x, t) of the time-
dependent fractional partial differential problem (1)–(3) exists. Moreover, if f ∈ C2[0, 1],
we have

∥∥u(x, t) – U(x, t)
∥∥∞ ≤ Mh2 (29)

for every t ≥ 0 and sufficiently small h, where M is a positive constant independent of h.

Proof Let Û(x, t) be the computed spline approximation to the approximated solution
U(x, t), where Û(x, t) =

∑N+1
i=–1 di(t)φi(x). By the triangular inequality, we can write it as

follows:

∥∥u(x, t) – U(x, t)
∥∥∞ ≤ ∥∥u(x, t) – Û(x, t)

∥∥∞ +
∥∥Û(x, t) – U(x, t)

∥∥∞. (30)

Using Theorem 2 error approximation, we get

∥∥Di(u(x, t) – Û(x, t)
)∥∥∞ ≤ mih4–i, i = 0, 1, 2. (31)
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Using the above estimate inequality (31), we obtain

∥∥u(x, t) – U(x, t)
∥∥∞ ≤ m0h4 +

∥∥Û(x, t) – U(x, t)
∥∥∞. (32)

The collocation conditions are

Lu(xi, t) = LU(xi, t) = f (xi, t), i = 0, 1, . . . , N .

Let

LÛ(x, t) = f̂ (xi, t), i = 0, 1, . . . , N .

Thus the given problem in the form of difference equation L(Û(xi, t) – U(xi, t)) at any time
level n can be written as follows:

(ra1 + pa3 – qa4)δn+1
i–1 + (ra2 – qa5)δn+1

i + (ra1 – pa3 – qa4)δn+1
i+1

= r
(
a1δ

n
i–1 + a2δ

n
i + a1δ

n
i+1

)
– r

n∑
s=1

bs
[
a1

(
δn–s+1

i–1 – δn–s
i–1

)
+ a2

(
δn–s+1

i – δn–s
i

)

+ a1
(
δn–s+1

i+1 – δn–s
i+1

)]
+ f n+1, (33)

and the boundary conditions are as follows:

a1δ
n+1
i–1 + a2δ

n+1
i + a1δ

n+1
i+1 = 0, i = 0, N ,

where

δn
i = Cn

i – dn
i , i = –1, 0, 1, . . . , N + 1.

From inequality (31), we obtain

β2
i = h2[f n

i – ˆf n
i
] ≤ mh4, i = 0, 1, . . . , N .

Define βn = max{|βn
i |; 0 ≤ i ≤ N}, en

i = |δn
i | and en = max{|en

i |; 0 ≤ i ≤ N}. Now Eq. (33)
becomes

(ra1 + pa3 – qa4)δ1
i–1 + (ra2 – qa5)δ1

i + (ra1 – pa3 – qa4)δ1
i+1

= r
(
a1δ

0
i–1 + a2δ

0
i + a1δ

0
i+1

)
+

1
h2 β1

i , i = 0, 1, . . . , N .

From the initial condition, e0 = 0.

(ra2 – qa5)δ1
i = –(ra1 – qa4)

(
δ1

i–1 + δ1
i+1

)
– pa3

(
δ1

i–1 – δ1
i+1

)
+

1
h2 β1

i .

Taking absolute values of βn
i and δn

i with sufficiently small h gives

e1
i ≤ 6mh4

2rh2(2 + λ) + 12(2 + λ)q + 12ph
, i = 0, 1, . . . , N .
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From the boundary conditions, we get

e1
–1 ≤

(
20 + λ

(4 – λ)((rh2 + 6q)(2 + λ) + 12ph)

)
3mh4,

e1
N+1 ≤

(
20 + λ

(4 – λ)((rh2 + 6q)(2 + λ) + 12ph)

)
3mh4.

This implies

e1 ≤ m1h2, (34)

where m1 is independent of h. Here mathematical induction on n is utilized. Suppose that
el

i ≤ mlh2 for l = 1, 2, . . . , n is true and m = max{ml : 0 ≤ l ≤ n}, then from Eq. (33), we have

(ra1 + pa3 – qa4)δn+1
i–1 + (ra2 – qa5)δn+1

i + (ra1 + pa3 – qa4)δn+1
i+1

= r
[
(b0 – b1)

(
a1δ

n
i–1 + a2δ

n
i + a1δ

n
i+1

)
+ (b1 – b2)

(
a1δ

n–1
i–1 + a2δ

n–1
i + a1δ

n–1
i+1

)
+ · · ·

+ (bn–1 – bn)
(
a1δ

1
i–1 + a2δ

1
i + a1δ

1
i+1

)
+ bn

(
a1δ

0
i–1 + a2δ

0
i + a1δ

0
i+1

)]
+

1
h2 β2.

Taking absolute values of δn
i and βn

i , we have

en+1
i ≤ 6mh2

2rh2(2 + λ) + 12(2 + λ)q + 12ph

(
r

n–1∑
s=0

(bs – bs+1)mh2 + mh2

)

from the boundary conditions

en+1
i ≤ mh2, i = –1, N + 1.

Then, for every n, we have

en+1
i ≤ mh2. (35)

Now we can write, from inequality (35) and Lemma 6.1,

Û(x, t) – U(x, t) =
N+1∑
i=–1

(
di(t) – Ci(t)

)
φi(x,λ).

Taking the norm, we obtain

∥∥Û(x, t) – U(x, t)
∥∥∞ ≤ 1.75mh2.

From Eq. (35) and the above inequality, we obtain

∥∥u(x, t) – Û(x, t)
∥∥∞ +

∥∥Û(x, t) – U(x, t)
∥∥∞ ≤ m0h4 + 1.75mh2 = Mh2,

where M = m0h2 + 1.75m. �
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From relation (11) and the above theorem, it is deduced that the present scheme is con-
vergent, i.e.,

∥∥u(x, t) – U(x, t)
∥∥∞ ≤ Mh2 + Iτ 2–γ ,

where M and I are constants.

7 Illustrative examples and discussions
Some numerical experiments are described in this section to illustrate the performance
of the present scheme. The calculated absolute errors are found by absolute ‖e‖∞ and
Euclidean ‖e‖2 norms, i.e.,

‖e‖∞ =
∥∥U(xi, t) – u(xi, t)

∥∥∞ = max
0≤i≤N

∣∣u(xi, t) – u(xi, t)
∣∣,

‖e‖2 =
∥∥U(xi, t) – u(xi, t)

∥∥
2 =

√√√√h
N∑

i=0

∣∣u(xi, t) – u(xi, t)
∣∣2.

The numerical order of convergence is calculated by the following formula [32]:

Order =
log(‖e‖∞(Ni)) – log(‖e‖∞(Ni+1))

log(Ni+1) – log(Ni)
,

where ‖e‖∞(Ni) and ‖e‖∞(Ni+1) are the absolute error at the number of partitioning Ni

and Ni+1, respectively.

7.1 Problem 1
Consider p = 1, q = 2, solve (1)–(3) with initial and boundary conditions ω(x) = ex, g1(t) =
E(tγ ), g2(t) = eE(tγ ), respectively, and the homogeneous source term is considered on
[0, 1]. The exact analytical solution [25] is

u(x, t) = exE
(
tγ

)
,

where Eγ is the Mittag–Leffler function

Eγ (z) =
∞∑

k=0

zk

�(γ k + 1)
, 0 < γ < 1.

Tables 1–3 show the comparison of ‖ · ‖∞ and ‖ · ‖2 between MCTB-DQM [25] and the
proposed method based on extended cubic B-spline for different values of λ. Our tech-
nique yields better accuracy compared to MCTB-DQM method with O(τ 3 + h2) [25]. By
choosing N = 100, γ = 0.5 at time T = 1, Table 4 shows the comparison at different values
of x. Figure 1 depicts the comparison between approximated and exact values for a fully
implicit scheme. Table 5 reflects the comparison of max error (‖ ·‖∞) and Euclidean norm
(‖ · ‖2) at T = 1 for problem-2.
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Table 1 A comparison of maximum error (‖ · ‖∞) and Euclidean norm (‖ · ‖2) at T = 1 for problem-1

N τ = 1.0× 10–2,γ = 0.2

MCTB-DQM [25] Proposed method

‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 Order CPU time

08 1.4902e–02 1.0412e–02 7.0982e–04 5.2421e–04 . . . 0.09360
16 3.8827e–03 2.6898e–03 6.9478e–05 5.0417e–05 3.35283 0.14040
32 1.0156e–03 6.6522e–04 3.4560e–05 2.5203e–05 1.00747 0.26520
64 2.5720e–04 1.4842e–04 1.7410e–06 1.2739e–06 4.31108 0.73321
128 6.3504e–05 2.2129e–05 3.8083e–07 1.9860e–07 2.19272 2.07481

Table 2 A comparison of maximum error (‖ · ‖∞) and Euclidean norm (‖ · ‖2) at T = 1 for problem-1

N τ = 1.0× 10–2,γ = 0.5

MCTB-DQM [25] Proposed method

‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 Order CPU time

08 6.3092e–03 4.4047e–03 1.9311e–04 1.4246e–04 . . . 0.062400
16 1.6452e–03 1.1394e–03 7.0386e–05 5.1038e–05 1.45609 0.10920
32 4.3121e–04 2.8317e–04 2.6417e–05 1.9079e–05 1.41382 0.23400
64 1.0956e–04 6.4521e–05 5.4923e–06 3.8494e–06 2.26599 0.63960
128 2.7227e–05 1.0443e–05 5.7211e–07 3.0277e–07 3.26304 2.01241

Table 3 A comparison of maximum error (‖ · ‖∞) and Euclidean norm (‖ · ‖2) at T = 1 for problem-1

N τ = 1.0× 10–2,γ = 0.8

MCTB-DQM [25] Proposed method

‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 Order CPU time

08 4.1559e–03 2.9052e–03 2.6864e–05 1.4246e–04 . . . 0.07800
16 1.0852e–03 7.5335e–04 1.0356e–05 7.4698e–06 1.37526 0.14040
32 2.8491e–04 1.8911e–04 1.1811e–06 7.8660e–07 3.13225 0.24960
64 7.2683e–05 4.4967e–05 5.3813e–07 3.2574e–07 1.13407 0.65520
128 1.8220e–05 8.7572e–06 2.4165e–07 1.5278e–07 1.15502 2.01241

Table 4 A comparison of exact solution and approximated solution at T = 1 for problem-1

τ = 1.0× 10–3,γ = 0.5,λ = 0.00001,N = 100

x Exact solution Approximated solution Error

0.1 5.53577911 5.53577900 1.1363e–07
0.2 6.11798209 6.11798186 2.2948e–07
0.3 6.76141588 6.76141555 3.3011e–07
0.4 7.47252019 7.47251979 4.0100e–07
0.5 8.25841200 8.25841157 4.3141e–07
0.6 9.12695678 9.12695636 4.1533e–07
0.7 10.0868472 10.0868468 3.5263e–07
0.8 11.1476902 11.1476900 2.5034e–07
0.9 12.3201030 12.3201029 1.2413e–07

Table 5 A comparison of maximum error (‖ · ‖∞) and Euclidean norm (‖ · ‖2) at T = 1 for problem-2

N τ = 1.25× 10–3,γ = 0.3

CBSCM [21] MCTB-DQM [25] Proposed method

‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2 Order CPU time

08 4.8273e–02 3.4134e–02 1.5762e–02 9.4300e–03 2.2761e–05 5.6903e–06 . . . 6.08404
16 1.2351e–02 8.7334e–03 2.1670e–03 1.1924e–03 7.4956e–06 1.3251e–06 1.60246 8.01845
32 3.1048e–03 2.1955e–03 2.8541e–04 1.5040e–04 1.7463e–06 2.1829e–07 2.1017 15.3193
64 7.7721e–04 5.4957e–04 3.6701e–05 1.8925e–05 1.3761e–07 1.2163e–08 3.6656 34.5386
128 1.9430e–04 1.3739e–04 4.6559e–06 2.3752e–06 2.2313e–08 1.3945e–09 2.62468 93.4914
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Figure 1 Comparison graph of approximated values and exact values with γ = 0.5, N = 50, τ = 0.01

Table 6 A comparison of exact values and approximated values at different knots

x Exact solution Approximated solution Absolute error

0.1 0.58778525 0.58778972 4.4636e–06
0.2 0.95105652 0.95106374 7.2223e–06
0.3 0.95105652 0.95106374 7.2223e–06
0.4 0.58778525 0.58778972 4.4636e–06
0.5 0.00000000 2.96897923 2.9690e–14
0.6 –0.5877853 –0.5877897 4.4636e–06
0.7 –0.9510565 –0.9510637 7.2223e–06
0.8 –0.9510565 –0.9510637 7.2223e–06
0.9 –0.5877853 –0.5877897 4.4636e–06

7.2 Problem 2
Consider p = 0, q = 1, solve (1)–(3) with initial and boundary conditions ω(x) = 0, g1(t) = 0,
g2(t) = 0, respectively, and the homogeneous source term is

f (x, t) =
2t2–γ sin(2πx)

�(3 – γ )
+ 4π2t2 sin(2πx)

on [0, 1]. The exact analytical solution [25] takes the form

u(x, t) = t2 sin(2πx).

Table 6 displays the errors between exact analytical solutions and approximated solu-
tions at different knots corresponding to N = 100, γ = 0.5, λ = –0.00065, τ = 1.0 × 10–2,
and T = 1. Table 7 shows the absolute error for problem 2 corresponding to N = 50,
γ = 0.3, λ = –0.0026305, τ = 0.1, and T = 10. All the graphical results can also be seen
in Figs. 2 and 3.
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Table 7 A comparison of exact values and approximated values at different knots at time T = 10

x Exact solution Approximated solution Absolute error

0.1 58.7785252 58.7785251 1.2446e–07
0.2 95.1056516 95.1056514 2.0138e–07
0.3 95.1056516 95.1056514 2.0138e–07
0.4 58.7785252 58.7785251 1.2446e–07
0.5 0.00000000 –5.8308913 5.8309e–13
0.6 –58.778525 –58.778525 1.2446e–07
0.7 –95.105652 –95.105651 2.0138e–07
0.8 –95.105652 –95.105651 2.0138e–07
0.9 –58.778525 –58.778525 1.2446e–07

Figure 2 Comparison of approximated and exact solution for N = 16, γ = 0.3, τ = 0.01 of problem-2

Figure 3 3D plot for N = 50, γ = 0.3, T = 1 of problem-2

7.3 Conclusion
A fully implicit finite difference scheme based on extended cubic B-spline has been formu-
lated to solve the time fractional advection–diffusion equation. The proposed technique
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was examined and found to be unconditionally stable and convergent with O(τ + h2). This
technique was tested on two test problems, and the results indicated that the method is
feasible and accurate.
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