
Mahmudov and Emin Advances in Difference Equations  (2018) 2018:81 
https://doi.org/10.1186/s13662-018-1538-6

R E S E A R C H Open Access

Fractional-order boundary value
problems with Katugampola fractional
integral conditions
Nazim I. Mahmudov* and Sedef Emin

*Correspondence:
nazim.mahmudov@emu.edu.tr
Department of Mathematics,
Eastern Mediterranean University,
Gazimagusa, Turkish Republic of
Northern Cyprus

Abstract
In this paper, we study existence (uniqueness) of solutions for nonlinear fractional
differential equations with Katugampola fractional integral conditions. Several fixed
point theorems are used for sufficient conditions of existence (uniqueness) solutions
of nonlinear differential equations such as Banach’s contraction principle, the
Leray–Schauder nonlinear alternative, and Krasnoselskii’s fixed point theorem.
Applications of the main results are also presented.
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1 Introduction
In recent years, boundary value problems for nonlinear fractional differential equations
have been studied by several researchers. In fact, fractional differential equations have
played an important role in physics, chemical technology, biology, economics, control the-
ory, signal and image processing, see [1–25] and the references cited therein.

Boundary value problems of fractional differential equations and inclusions involve dif-
ferent kinds of boundary conditions such as nonlocal, integral, and multipoint boundary
conditions. The fractional integral boundary conditions were introduced lately in [26] and
nonlocal conditions were presented by Bitsadze, see [3].

In [4] authors gave sufficient criteria for existence of solutions for the following Caputo
fractional differential equation:

Dqx(t) = f
(
t, x(t)

)
, 0 < t < T ,

subject to nonlocal generalized Riemann–Liouville fractional integral boundary condi-
tions of the form

x(0) = γ
ρ1–α

�(α)

∫ ξ

0

sρ–1x(s)
(tρ – sρ)1–α

ds := γ ρIαx(ξ ),

x(T) = δ
ρ1–β

�(β)

∫ ε

0

sρ–1x(s)
(ξρ – sρ)1–β

ds := δ ρIβx(ε), 0 < ξ , ε < T ,
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where Dq denotes the Caputo fractional derivative of order q, ρIz , z ∈ {α,β}, is the gen-
eralized Riemann–Liouville fractional integral of order z > 0, ρ > 0, ξ , ε arbitrary, with
ξ , ε ∈ (0, T), γ , δ ∈ R and f : [0, T] × R → R is a continuous function.

In [5] authors established the existence of solutions for the following nonlinear Riemann–
Liouville fractional differential equation subject to nonlocal Erdelyi–Kober fractional in-
tegral conditions:

Dqx(t) = f
(
t, x(t)

)
, t ∈ (0, T),

x(0) = 0, αx(T) =
m∑

i=1

βiIγi ,δi
ηi

x(ξi),

where 1 < q ≤ 2, Dq is the standard Riemann–Liouville fractional derivative of order q, Iγi ,δi
ηi

is the Erdelyi–Kober fractional integral of order δi > 0 with ηi > 0 and γi ∈R, i = 1, 2, . . . , m,
f : [0, T] × R → R is a continuous function and α,βi ∈ R, ξi ∈ (0, T), i = 1, 2, . . . , m, are
given constants.

Motivated by the above papers, in this paper, we study the sufficient conditions of exis-
tence (uniqueness) solutions of nonlocal boundary conditions for the following nonlinear
fractional differential equation of order α ∈ (2, 3]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαx(t) = f (t, x(t)), t ∈ [0, T],

x(T) = β ρIqx(ε), 0 < ε < T ,

x′(T) = γ ρIqx′(η), 0 < η < T ,

x′′(T) = δ ρIqx′′(ζ ), 0 < ζ < T ,

(1)

where Dα is the Caputo fractional derivative. ρIq is the Katugampola integral of q > 0,
ρ > 0, f : [0, T] ×R →R is a continuous function.

The rest of the paper is organized as follows. In Sect. 2, we recall some definitions and
lemmas that we need in the sequel. In Sect. 3, several fixed point theorems are used to give
sufficient conditions for existence (uniqueness) of solutions of (1) such as Banach’s con-
traction principle, Krasnoselskii’s fixed point theorem, and the Leray–Schauder nonlinear
alternative. In Sect. 4, some illustrating examples are given.

2 Preliminaries
In this section, we recall some basic definitions of fractional calculus [1, 2, 27] and some
auxiliary lemmas which we need later.

Definition 1 ([1]) The Riemann–Liouville fractional integral of order p > 0 of a continu-
ous function f : (0,∞) →R is defined by

Jpf (t) =
1

�(p)

∫ t

0
(t – s)p–1f (s) ds,

provided the right-hand side is point-wise defined on (0,∞), where � is the gamma func-
tion defined by �(p) =

∫ ∞
0 e–ssp–1 ds.
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Definition 2 ([1]) The Riemann–Liouville fractional derivative of order p > 0 of a contin-
uous function f : (0,∞) →R is defined by

Dp
0+f (t) =

1
�(n – p)

(
d
dt

)n ∫ t

0
(t – s)n–p–1f (s) ds, n – 1 < p < n,

where n = [p] + 1, [p] denotes the integer part of a real number p.

Definition 3 The Caputo derivative of order p for a function f : [0,∞) →R can be written
as

cDpf (t) = Dp
0+

(

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

)

, t > 0, n – 1 < p < n.

Remark 4 If f (t) ∈ Cn[0,∞), then

cDpf (t) =
1

�(n – p)

∫ t

0

f (n)(s)
(t – s)p+1–n ds = In–pf (n)(t), t > 0, n – 1 < p < n.

Definition 5 [28] Katugampola integral of order q > 0 and ρ > 0, of a function f (t), for all
0 < t < ∞, is defined as

ρIqf (t) =
ρ1–q

�(q)

∫ t

0

sρ–1f (s)
(tρ – sρ)1–q ds,

provided the right-hand side is point-wise defined on (0,∞).

Remark 6 ([28]) The above definition corresponds to the one for Riemann–Liouville frac-
tional integral of order q > 0 when ρ = 1, while the famous Hadamard fractional integral
follows for ρ → 0, that is,

lim
ρ→0

ρIqf (t) =
1

�(q)

∫ t

0

(
log

t
s

)q–1 f (s)
s

ds.

Lemma 7 ([4]) Let ρ, q > 0 and p > 0 be the given constants. Then the following formula
holds:

ρIqtp =
�( p+ρ

ρ
)

�( p+ρq+ρ

ρ
)

tp+ρq

ρq .

Lemma 8 ([1]) For q > 0 and x ∈ C(0, T)∩L(0, T). Then the fractional differential equation
cDqx(t) = 0 has a unique solution

x(t) = c0 + c1t + · · · + cn–1tn–1,

and the following formula holds:

IqDqx(t) = x(t) + c0 + c1t + · · · + cn–1tn–1,

where ci ∈R, i = 0, 1, . . . , n – 1, and n – 1 ≤ q < n.
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Lemma 9 Let 2 < α ≤ 3 and β ,γ , δ ∈R. Then, for any y ∈ C([0, T],R), x is a solution of the
following nonlinear fractional differential equation with Katugampola fractional integral
conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαx(t) = y(t), t ∈ [0, T],

x(T) = β ρIqx(ε), 0 < ε < T ,

x′(T) = γ ρIqx′(η), 0 < η < T ,

x′′(T) = δ ρIqx′′(ζ ), 0 < ζ < T ,

(2)

if and only if

x(t) = Jαy(t) +
1

1(β , ε)
(
β ρIqJαy(ε) – Jαy(T)

)

–
1

1(γ ,η)

(
2(β , ε)
1(β , ε)

– t
)

(
γ ρIqJα–1y(η) – Jα–1y(T)

)

+
1

1(δ, ζ )

(
3(β , ε)

21(β , ε)
–

2(β , ε)2(γ ,η)
1(β , ε)1(γ ,η)

+
2(γ ,η)t
1(γ ,η)

–
t2

2

)(
Jα–2y(T) – δ ρIqJα–2y(ζ )

)
, (3)

where

1(α, ξ ) =
(

1 – α
ξρq

ρq
1

�(q + 1)

)
�= 0, (4)

2(α, ξ ) =
(

T – α
ξρq+1

ρq

�( 1+ρ

ρ
)

�( 1+ρq+ρ

ρ
)

)
, (5)

3(α, ξ ) =
(

T2 – α
ξρq+2

ρq

�( 2+ρ

ρ
)

�( 2+ρq+ρ

ρ
)

)
. (6)

Proof Using Lemma 8, the general solution of the nonlinear fractional differential equa-
tion in (2) can be represented as

x(t) = c0 + c1t + c2t2 + Jαy(t), c0, c1, c2 ∈R. (7)

By using the first integral condition of problem (2) and applying the Katugampola integral
on (7), we obtain

c0 + c1T + c2T2 + Jαy(T)

= βc0
ερq

ρq
1

�(q + 1)
+ βc1

ερq+1

ρq

�( 1+ρ

ρ
)

�( 1+ρq+ρ

ρ
)

+ βc2
ερq+2

ρq

�( 2+ρ

ρ
)

�( 2+ρq+ρ

ρ
)

+ β ρIqJαy(ε).
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After collecting the similar terms in one part, we have the following equation:

c0

(
1 – β

ερq

ρq
1

�(q + 1)

)
+ c1

(
T – βc1

ερq+1

ρq

�( 1+ρ

ρ
)

�( 1+ρq+ρ

ρ
)

)

+ c2

(
T2 – βc2

ερq+2

ρq

�( 2+ρ

ρ
)

�( 2+ρq+ρ

ρ
)

)

= β ρIqJαy(ε) – Jαy(T). (8)

Rewriting equation (8) by using (4), (5), and (6), we obtain

c01(β , ε) + c12(β , ε) + c23(β , ε) = β ρIqJαy(ε) – Jαy(T). (9)

Then, taking the derivative of (7) and using the second integral condition of (2), we get

x′(T) = c1 + 2c2T + Jα–1y(T). (10)

Now, applying the Katugampola integral on (10), we have

c1 + 2c2T + Jα–1y(T)

= γ c1
ηρq

ρq
1

�(q + 1)

+ 2c2γ
ηρq+1

ρq

�( 1+ρ

ρ
)

�( 1+ρq+ρ

ρ
)

+ γ ρIqJα–1y(η). (11)

The above equation (11) implies that

c1

(
1 – γ

ηρq

ρq
1

�(q + 1)

)
+ 2c2

(
T – γ

ηρq+1

ρq

�( 1+ρ

ρ
)

�( 1+ρq+ρ

ρ
)

)

= γ ρIqJα–1y(η) – Jα–1y(T). (12)

Also, by using (4) and (5), equation (12) can be written as

c11(γ ,η) + 2c22(γ ,η)

= γ ρIqJα–1y(η) – Jα–1y(T). (13)

By using the last integral condition of (2) and applying Katugampola integral operator on
the second derivative of (10), we have

2c2 + Jα–2y(T) = 2δc2
ζ ρq

ρq
1

�(q + 1)
+ δ ρIqJα–2y(ζ ).

Hence, we obtain the following equation:

2c2

(
1 – δ

ζ ρq

ρq
1

�(q + 1)

)
= δ ρIqJα–2y(ζ ) – Jα–2y(T). (14)
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By using (4), equation (14) can be written as

2c21(δ, ζ ) = δ ρIqJα–2y(ζ ) – Jα–2y(T). (15)

Moreover, equation (15) implies that

c2 =
1

21(δ, ζ )
(
δ ρIqJα–2y(ζ ) – Jα–2y(T)

)
. (16)

Substituting the values of (16) in (13), we get

c1 =
1

1(γ ,η)
(
γ ρIqJα–1y(η) – Jα–1y(T)

)

–
2(γ ,η)

1(γ ,η)1(δ, ζ )
(
δ ρIqJα–2y(ζ ) – Jα–2y(T)

)
. (17)

Now, substituting the values of (16) and (17) in (9), we obtain

c0 =
1

1(β , ε)
(
β ρIqJαy(ε) – Jαy(T)

)

–
2(β , ε)

1(β , ε)1(γ ,η)
(
γ ρIqJα–1y(η) – Jα–1y(T)

)

–
3(β , ε)

21(β , ε)1(δ, ζ )
(
δ ρIqJα–2y(ζ ) – Jα–2y(T)

)

+
2(β , ε)2(γ ,η)

1(β , ε)1(γ ,η)1(δ, ζ )
(
δ ρIqJα–2y(ζ ) – Jα–2y(T)

)
. (18)

Finally, substituting the values of (18), (17), and (16) in equation (7), we obtain the general
solution of problem (2) which is (3). Converse is also true by using the direct computa-
tion. �

3 Main results
Let us denote by C = C([0, T],R) the Banach space of all continuous functions from
[0, T] → R endowed with a topology of uniform convergence with the norm defined by
‖x‖ = sup{|x(t)| : t ∈ [0, T]}.

We define an operator H : C → C on problem (1) as

(Hx)(t) = Jαf
(
s, x(s)

)
(t) +

1
1(β , ε)

(
β ρIqJαf

(
s, x(s)

)
(ε)

– Jαf
(
s, x(s)

)
(T)

)
–

1
1(γ ,η)

(
2(β , ε)
1(β , ε)

– t
)

× (
γ ρIqJα–1f

(
s, x(s)

)
(η) – Jα–1f

(
s, x(s)

)
(T)

)

+
1

1(δ, ζ )

(
3(β , ε)

21(β , ε)
–

2(β , ε)2(γ ,η)
1(β , ε)1(γ ,η)

+
2(γ ,η)t
1(γ ,η)

–
t2

2

)(
Jα–2f

(
s, x(s)

)
(T)

– δ ρIqJα–2f
(
s, x(s)

)
(ζ )

)
. (19)
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Also, we define the notations

� =
Tα

�(α + 1)
+

1
|1(β , ε)|�(α + 1)

×
(

|β| �( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq + Tα

)

+
1

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)

×
(

|γ | �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq + Tα–1
)

+
1

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)|

+
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)| +

|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

×
(

|δ| �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq + Tα–2
)

(20)

and

�1 =
|β|

|1(β , ε)|�(α + 1)
�( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq

+
|γ |

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)
�( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq

+
|δ|

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)| +

|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)
�( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq . (21)

In the following subsections, we prove existence (uniqueness) results for the boundary
value problem (1) by using Banach’s fixed point theorem, the Leray–Schauder nonlinear
alternative, and Krasnoselskii’s fixed point theorem.

3.1 Existence and uniqueness result
Theorem 10 Let f : [0, T] ×R→ R be a continuous function. Assume that:

(S1) |f (t, x) – f (t, y)| ≤ L‖x – y‖ for all t ∈ [0, T], L > 0, x, y ∈R;
(S2) L� < 1, where � is defined by (20).
Then the boundary value problem (1) has a unique solution on [0, T].

Proof By using the operator H , which is defined by (19), we obtain

∣
∣(Hx)(t) – (Hy)(t)

∣
∣ ≤ Jα

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣(T)

+
|β|

|1(β , ε)|
ρIqJα

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣(ε)
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+
1

|1(β , ε)| Jα
∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣(T)

+
|γ |

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× ρIqJα–1∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(η)

+
1

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× Jα–1∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(T)

+
1

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× Jα–2∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(T)

+
|δ|

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× ρIqJα–2∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(ζ )

≤ L‖x – y‖
{

Jα(1)(T) +
1

|1(β , ε)|
(|β| ρIqJα(1)(ε)

+ Jα(1)(T)
)

+
1

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

(|γ | ρIqJα–1(1)(η)

+ Jα–1(1)(T)
)

+
1

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)
(|δ| ρIqJα–2(1)(ζ )

+ Jα–2(1)(T)
)}

≤ L
{

Tα

�(α + 1)
+

1
|1(β , ε)|�(α + 1)

×
(

|β| �( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq + Tα

)

+
1

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)

×
(

|γ | �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq + Tα–1
)

+
1

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)|
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+
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)| +

|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

×
(

|δ| �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq + Tα–2
)}

‖x – y‖

= L�‖x – y‖

for any x, y ∈ C and for each t ∈ [0, T]. This implies that ‖Hx–Hy‖ ≤ L�‖x–y‖. As L� < 1,
the operator H : C → C is a contraction mapping. As a result, the boundary value problem
(1) has a unique solution on [0, T]. �

3.2 Existence results
Lemma 11 Let E be a Banach space, C be a closed, convex subset of E, U be an open subset
of C and 0 ∈ U . Suppose that A : U → C is a continuous, compact map. Then either

(i) A has a fixed point in U , or
(ii) there are x ∈ ∂U (the boundary of U in C) and μ ∈ (0, 1) with x = μA(x).

Theorem 12 Let f : [0, T] ×R→ R be a continuous function. Assume that:
(S3) There exist a nonnegative function � ∈ C([0, T],R) and a nondecreasing function

� : [0,∞) → (0,∞) such that

∣∣f (t, u)
∣∣ ≤ �(t)�

(|u|) for any (t, u) ∈ [0, T] ×R;

(S4) There exists a constant M > 0 such that

M
�(M)‖�‖� > 1,

where � in (20).
Then problem (1) has at least one solution on [0, T].

Proof Let Bd = {x ∈ C : ‖x‖ ≤ d} be a closed bounded subset in C([0, T],R). Notice that
problem (1) is equivalent to the problem of finding a fixed point of H .

As a first step, we show that the operator H , which is defined by (19), maps bounded
sets into bounded sets in C([0, T],R). Then, for t ∈ [0, T], we have

∣
∣H(x)(t)

∣
∣ ≤ Jα

∣
∣f

(
s, x(s)

)∣∣(T)

+
1

|1(β , ε)|
(|β| ρIqJα

∣
∣f

(
s, x(s)

)∣∣(ε)

+ Jα
∣∣f

(
s, x(s)

)∣∣(T)
)

+
1

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× (|γ |Jα–1∣∣f
(
s, x(s)

)∣∣(η) + Jα–1∣∣f
(
s, x(s)

)∣∣(T)
)

+
1

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)
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× (
Jα–2∣∣f

(
s, x(s)

)∣∣(T) + |δ| ρIqJα–2∣∣f
(
s, x(s)

)∣∣(ζ )
)

≤ �
(‖x‖)Jα�(s)(T)

+
�(‖x‖)

|1(β , ε)|
(|β| ρIqJα�(s)(ε)

+ Jα�(s)(T)
)

+
�(‖x‖)

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× (|γ |ρIqJα–1�(s)(η) + Jα–1�(s)(T)
)

+
�(‖x‖)

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× (
Jα–2�(s)(T) + |δ| ρIqJα–2�(s)(ζ )

)

≤ ‖�‖�(d)
{

Tα

�(α + 1)
+

1
|1(β , ε)|�(α + 1)

×
(

|β| �( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq + Tα

)

+
1

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)

×
(

|γ | �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq + Tα–1
)

+
1

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)|

+
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)| +

|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

×
(

|δ| �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq + Tα–2
)}

= ‖�‖�(d)�,

which leads to ‖H(x)‖ ≤ ‖�‖�(d)�. By (S4) there exists d > 0 such that �(d)‖�‖� < d.
Next, we show that the map H : C([0, T],R) → C([0, T],R) is completely continuous.

Therefore, to prove that the map H is completely continuous, we show that H is a map
from bounded sets into equicontinuous sets of C([0, T],R). Let us choose t1, t2 from the
interval [0, T] and also t1 < t2. Then we have

∣∣(Hx)(t2) – (Hx)(t1)
∣∣

≤ ∣
∣Jαf

(
s, x(s)

)
(t2) – Jαf

(
s, x(s)

)
(t1)

∣
∣

+
|t2 – t1|

|1(γ ,η)|
(|γ |qJα–1∣∣f

(
s, x(s)

)∣∣(η) + Jα–1∣∣f
(
s, x(s)

)∣∣(T)
)

+
1

|1(δ, ζ )|
( |2(γ ,η)|

|1(γ ,η)| |t2 – t1| +
|t2

2 – t2
1 |

2

)
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× (
Jα–2∣∣f

(
s, x(s)

)∣∣(T) + |δ| ρIqJα–2∣∣f
(
s, x(s)

)∣∣(ζ )
)

≤ �(‖x‖)�(s)
�(α)

[∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

∫ t2

t1

(t2 – s)α–1 ds
]

+ |t2 – t1| �(‖x‖)
|1(γ ,η)|

(
|γ |Jα–1�(s)(η) + Jα–1�(s)(T)

+
( |2(γ ,η)|

|1(δ, ζ )| +
|t2 + t1|

2
|1(γ ,η)|
|1(δ, ζ )|

)
(
Jα–2�(s)(T) + |δ| ρIqJα–2�(s)(ζ )

)
)

≤ �(d)‖�‖
�(α)

[∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

∫ t2

t1

(t2 – s)α–1 ds
]

+ |t2 – t1| �(d)‖�‖
|1(γ ,η)|

{
1

�(α)

(
Tα–1 + |γ | �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq

)

+
1

�(α – 1)

( |2(γ ,η)|
|1(δ, ζ )| +

|t2 + t1|
2

|1(γ ,η)|
|1(δ, ζ )|

)

×
(

Tα–2 + |δ| �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq

)}
. (22)

It is clear that the right-hand side of (22) is independent of x. Therefore, as t2 – t1 → 0,
inequality (22) tends to zero. That means H is equicontinuous, and by the Arzelà–Ascoli
theorem, the operator H : C([0, T],R) → C([0, T],R) is completely continuous.

In the last step we show that the operator H has a fixed point. Let H(x) = x be a solution.
Then, for t ∈ [0, T],

‖Hx‖ = ‖x‖ ≤ �
(‖x‖)‖�‖�,

which implies that

‖x‖
�(‖x‖)‖�‖� ≤ 1.

In view of (S4), there exists positive M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[0, T],R

)
: ‖x‖ < M

}
.

Then the operator H : U → C([0, T],R) is continuous and completely continuous. From
the choice of U , there is no x ∈ ∂U such that x = μHx for some μ ∈ (0, 1). It can be proved
by using contraction. Assume that there exists x ∈ ∂U such that x = μHx for some μ ∈
(0, 1). Then

‖x‖ = ‖μHx‖ ≤ ‖Hx‖ ≤ �
(‖x‖)‖�‖�,

‖x‖
�(‖x‖)‖�‖� ≤ 1.

This contradicts

‖x‖
�(‖x‖)‖�‖� > 1.
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Consequently, by the nonlinear alternative of Leray–Schauder type, we conclude that
H has a fixed point x ∈ U , which is a solution of problem (1). This completes the
proof. �

Theorem 13 ([29]) Let M be a closed, bounded, convex, and nonempty subset of a Banach
space X. Let A, B be the operators such that (a) Ax + By ∈ M whenever x, y ∈ M; (b) A is
compact and continuous; (c) B is a contraction mapping. Then there exists z ∈ M such that
z = Az + Bz.

Theorem 14 Let f : [0, T] ×R →R be a continuous function, and let condition (S1) hold.
In addition, the function f satisfies the assumptions:

(S5) There exists a nonnegative function � ∈ C([0, T],R) such that

∣∣f (t, u)
∣∣ ≤ �(t)

for any (t, u) ∈ [0, T] ×R.
(S6) L�1 < 1, where �1 is defined by (21).
Then the boundary value problem (1) has at least one solution on [0, T].

Proof We first define the new operators H1 and H2 as

(H1x)(t) = Jαf
(
s, x(s)

)
(t) –

1
1(β , ε)

Jαf
(
s, x(s)

)
(T)

+
1

1(γ ,η)

(
2(β , ε)
1(β , ε)

– t
)

Jα–1f
(
s, x(s)

)
(T)

+
1

1(δ, ζ )

(
3(β , ε)

21(β , ε)
–

2(β , ε)2(γ ,η)
1(β , ε)1(γ ,η)

+
2(γ ,η)t
1(γ ,η)

–
t2

2

)
Jα–2f

(
s, x(s)

)
(T) (23)

and

(H2x)(t) =
β

1(β , ε)
ρIqJαf

(
s, x(s)

)
(ε)

–
γ

1(γ ,η)

(
2(β , ε)
1(β , ε)

– t
)

ρIqJα–1f
(
s, x(s)

)
(η)

–
δ

1(δ, ζ )

(
3(β , ε)

21(β , ε)
–

2(β , ε)2(γ ,η)
1(β , ε)1(γ ,η)

+
2(γ ,η)t
1(γ ,η)

–
t2

2

)
ρIqJα–2f

(
s, x(s)

)
(ζ ). (24)

Then we consider a closed, bounded, convex, and nonempty subset of the Banach space
X as

Bd =
{

x ∈ C : ‖x‖ < d
}

with ‖�‖� ≤ d,

where � is defined by (20). Now, we show that H1x + H2y ∈ Bd for any x, y ∈ Bd , where H1
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and H2 are denoted by (23) and (24), respectively.

‖H1x + H2y‖ ≤ Jα
∣∣f

(
s, x(s)

)∣∣(T)

+
1

|1(β , ε)|
(
Jα

∣
∣f

(
s, x(s)

)∣∣(T) + |β| ρIqJα
∣
∣f

(
s, x(s)

)∣∣(ε)
)

+
1

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× (
Jα–1∣∣f

(
s, x(s)

)∣∣(T) + |γ | ρIqJα–1f
(
s, x(s)

)
(η)

)

+
1

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× (
Jα–2∣∣f

(
s, x(s)

)∣∣(T) + |δ| ρIqJα–2∣∣f
(
s, x(s)

)∣∣(ζ )
)

≤ Jα�(s)(T)

+
1

|1(β , ε)|
(
Jα�(s)(T) + |β| ρIqJα�(s)(ε)

)

+
1

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× (
Jα–1�(s)(T) + |γ | ρIqJα–1�(s)(η)

)

+
1

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× (
Jα–2�(s)(T) + |δ| ρIqJα–2�(s)(ζ )

)

≤ ‖�‖
{

Tα

�(α + 1)
+

1
|1(β , ε)|�(α + 1)

×
(

Tα + |β| �( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq +
)

+
1

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)

×
(

Tα–1 + |γ | �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq

)

+
1

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)|

+
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)| +

|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

×
(

Tα–2 + |δ| �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq

)}

= ‖�‖� ≤ d.

Therefore, it is clear that ‖H1x + H2y‖ ≤ d. Hence, H1x + H2y ∈ Bd .
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The next step is related to the compactness and continuity of the operator H1. The proof
is similar to that of Theorem 12.

Finally, we show that the operator H2 is a contraction. By using assumption (S1),

‖H2x – H2y‖ ≤ |β|
|1(β , ε)|

ρIqJα
∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣(ε)

+
|γ |

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

× ρIqJα–1∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(η)

+
|δ|

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× ρIqJα–2∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣(ζ )

≤ L‖x – y‖
{ |β|

|1(β , ε)|
ρIqJα(1)(ε)

+
|γ |

|1(γ ,η)|
( |2(β , ε)|

|1(β , ε)| + T
)

ρIqJα–1(1)(η)

+
|δ|

|1(δ, ζ )|
( |3(β , ε)|

2|1(β , ε)| +
|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)
ρIqJα–2(1)(ζ )

}

≤ L
{ |β|

|1(β , ε)|�(α + 1)
�( α+ρ

ρ
)

�( α+ρq+ρ

ρ
)
εα+ρq

ρq

+
|γ |

|1(γ ,η)|�(α)

( |2(β , ε)|
|1(β , ε)| + T

)

× �( α–1+ρ

ρ
)

�( α–1+ρq+ρ

ρ
)
ηα–1+ρq

ρq

+
|δ|

|1(δ, ζ )|�(α – 1)

( |3(β , ε)|
2|1(β , ε)| +

|2(β , ε)||2(γ ,η)|
|1(β , ε)||1(γ ,η)|

+
|2(γ ,η)|T
|1(γ ,η)| +

T2

2

)

× �( α–2+ρ

ρ
)

�( α–2+ρq+ρ

ρ
)
ζ α–2+ρq

ρq

}
‖x – y‖

= L�1‖x – y‖,

which means ‖H2x – H2y‖ ≤ L�1‖x – y‖. As L�1 < 1, the operator H2 is a contraction. For
this reason, problem (1) has at least one solution on [0, T]. �

4 Examples
In this section, some examples are illustrated to show our results.
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Example 1 Consider the following nonlinear fractional differential equation with Katu-
gampola fractional integral conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cD5/2x(t) = sin2(π t)
(et+10) ( |x(t)|

|x(t)|+1 + 1), t ∈ [0, 1
2 ],

x( 1
2 ) = 1

2
5I 1

3 x(3/8), x′( 1
2 ) = 1

2
5I 1

3 x(1/3),

x′′( 1
2 ) = 1

2
5I 1

3 x(2/5).

(25)

Here, α = 5/2, T = 1
2 , β = 1/2, γ = 1/2, δ = 1/2, ε = 3/8, η = 1/3, ζ = 2/5, ρ = 5, q = 1

3 , and

f (t, x) =
sin2(π t)
(et + 10)

( |x|
|x| + 1

+ 1
)

.

Hence, we have |f (t, x) – f (t, y)| ≤ 1
10‖x – y‖. Then, assumption (S1) is satisfied with L = 1

10 .
By using the Matlab program, ω1( 1

2 , 3
8 ) = 0.9361, ω1( 1

2 , 1
3 ) = 0.9475, ω1( 1

2 , 2
5 ) = 0.9289,

ω2( 1
2 , 3

8 ) = 0.4779, ω2( 1
2 , 1

3 ) = 0.4838, ω3( 1
2 , 3

8 ) = 0.4922, and � = 1.2261 are found. There-
fore, L� = 0.1226 < 1, which implies that assumption (S2) holds true. By using Theorem 10,
the boundary value problem (25) has a unique solution on [0, 1

2 ].

Example 2 Consider the following nonlinear fractional differential equation with Katu-
gampola fractional integral conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D5/2x(t) = ( t2+1
10 )( x2(t)

|x(t)|+1 +
√

|x(t)|
2(1+

√
|x(t)|) + 1

2 ), t ∈ [0, 1
2 ],

x( 1
2 ) = 1

2
5I 1

3 x(3/8), x′( 1
2 ) = 1

2
5I 1

3 x(1/3),

x′′( 1
2 ) = 1

2
5I 1

3 x(2/5),

(26)

where α = 5/2, T = 1
2 , β = 1/2, γ = 1/2, δ = 1/2, ε = 3/8, η = 1/3, ζ = 2/5, ρ = 5, q = 1

3 .
Moreover,

∣
∣f (t, u)

∣
∣ =

∣∣
∣∣

(
t2 + 1

10

)(
u2

|u| + 1
+

√|u|
2(1 +

√|u|) +
1
2

)∣∣
∣∣ ≤ (t2 + 1)(|u| + 1)

10
.

By using assumption (S3), it is easy to see that �(t) = t2+1
10 and �(|u|) = |u| + 1. Moreover,

‖�‖ = 1
8 and � = 1.2261 which was found in the previous example. Now, we need to show

that there exists M > 0 such that

M
�(M)‖�‖� > 1,

and such M > 0 exists if

1 – ‖�‖� > 0.

By using direct computation ‖�‖� = 0.1533 < 1, assumption (S4) is satisfied. Hence, by
using Theorem 12, the boundary value problem (26) has at least one solution on [0, 1

2 ].
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Example 3 Consider the following nonlinear fractional differential equation with Katu-
gampola fractional integral conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cD5/2x(t) = 9 sin2(π t)
(et+10) ( |x(t)|

|x(t)|+1 + 1), t ∈ [0, 1
2 ],

x( 1
2 ) = 1

2
5I 1

3 x(3/8), x′( 1
2 ) = 1

2
5I 1

3 x(1/3),

x′′( 1
2 ) = 1

2
5I 1

3 x(2/5).

(27)

Here, α = 5/2, T = 1
2 , β = 1/2, γ = 1/2, δ = 1/2, ε = 3/8, η = 1/3, ζ = 2/5, ρ = 5, q = 1

3 , and

f (t, x) =
9 sin2(π t)
(et + 10)

( |x|
|x| + 1

+ 1
)

.

Since |f (t, x) – f (t, y)| ≤ 9
10 |x – y|, then it implies that L = 9

10 means (S1) is satisfied but (S2),
which is L� < 1, is not satisfied. [L� = 1.10358 > 1.] Therefore, we consider (S5) which is

∣∣f (t, x)
∣∣ ≤ 9

(et + 10)

( |x|
|x| + 1

+ 1
)

≤ 18
(et + 10)

= �(t).

By using (21), �1 = 0.0561 is found. It is obvious that L�1 = 0.05049 < 1. So, (S6) is satisfied.
Hence, by using Theorem 14, the boundary value problem (27) has at least one solution
on [0, 1

2 ].
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