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Abstract
In this paper, the deterministic and stochastic eco-epidemiological models with
modified Leslie–Gower functional response are studied. For a deterministic system,
the stability of disease-free equilibrium and positive equilibrium is studied. For a
stochastic system, we verify that the system admits a unique positive global solution
starting from any positive initial value, and we establish the conditions of extinction
for infected prey population and strong persistence in mean for all species. We also
show the system has a stationary distribution under some conditions. Finally, some
numerical simulations are carried out to illustrate the main results.
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1 Introduction
In a real ecosystem, most of the ecological species suffer from various infectious diseases,
which play an important role in regulating population sizes. The study of infectious dis-
eases is epidemiology, and there have been many relevant papers [1–4]. Meanwhile species
do not exist alone, and there usually are competitive and predatory relations among them.
Thus, eco-epidemiology, merging the ecological predator–prey model and the epidemi-
ological model, has developed a new branch of research in theoretical biology. Anderson
and May initiated the field of eco-epidemiology where the predator interacts with infected
prey species with some disease [5]. Much work has been carried out by many researchers
in this field [6–13]. Researchers in this field are motivated by the real-life examples; refer
to Refs. [8, 9, 14] and the references cited therein.

Recently, several researchers have focused their attention to the modified Leslie–Gower
prey–predator model [15–18]. In particular, Partha and Malay [18] have proposed the
following modified Leslie–Gower predator–prey system with B-D functional response:

⎧
⎨

⎩

dx = x(a1 – b1x – m1y
α1x+β1y+γ1

) dt,

dy = y(a2 – m2y
k1+x ) dt.

(1.1)

The term m2y
k1+x is known as a modified Leslie–Gower term. The classical Leslie–Gower for-

mulation: dy
dt = a2y(1– y

αx ), which is based on the assumption that reduction of the predator
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population has a reciprocal relationship with per capita availability of its preferred food.
Indeed, Leslie introduced a predator–prey model where the environmental carrying ca-
pacity of predator is proportional to the number of prey. Then the growth of the predator
population is of logistic form: dy

dt = a2y(1 – y
C ), here C is environment carrying capacity

and is proportional to the prey abundance, C = αx, α > 0 is the conversion factor of prey
into predator. The y

αx term is called the Leslie–Gower term, it measures the loss of the
predator population due to the rarity of its favorite food. The predator usually can switch
over to other populations when their favorite food is severely scarce, but its growth will
be limited, because its favorite food, the prey x, is not in abundance. The situation can be
taken over by adding a positive constant to the denominator; this modification prevents
the extinction of predator population in the absence of prey, then the equation becomes
dy
dt = a2y(1 – y

αx+k ), and thus dy
dt = y(a2 – a2

α
· y

x+ k
α

), that is, we have the second equation of
system (1.1).

The effect of disease in ecological system is an important issue from the mathematical
and ecological points of views. If we consider there is some infection disease in the prey,
that is, the prey is divided into two classes, namely susceptible prey and infected prey, then
model (1.1) becomes as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̄1 = X̄1(r1 – a11X̄1 – β1X̄2) dτ ,

dX̄2 = X̄2(β1X̄1 – c1Ȳ
m1X̄2+n1Ȳ +q1

– a22X̄2 – μ1) dτ ,

dȲ = Ȳ (r2 – c2Ȳ
c3X̄2+k1

) dτ ,

(1.2)

where X̄1(t), X̄2(t) denote the population densities of susceptible prey and infected prey
individuals, respectively. Ȳ (t) denotes the population density of the predator at time t. All
the parameters are positive constants, r1 and r2 stand for the growth rate of susceptible
prey and predator, a11 and a22 reflect the density dependence of susceptible and infected
prey, β1 is transmission rate, μ1 denotes the death rate of infected prey, c1 is the maxi-
mum value at which per capita reduction rate of infected prey can obtain, c2 has a similar
meaning as c1, q1 and k1 measure the extent to which the environment provides protec-
tion to infected prey and predator. We assume the disease only spreads among the prey
population and the infected individuals do not recover or become immune.

In fact, species ecosystems are inevitably affected by environmental perturbations. This
is due to all the parameters in the deterministic system being deterministic, which has
some limitations in mathematical modeling and is quite difficult to fit data perfectly [19].
Considering continuous fluctuations in the environment, such as variation in intensity of
sunlight, temperature, and water level, the parameters involved in models should fluctuate
around some average values. May [20] claimed that fluctuations in the environment would
affect the intrinsic growth rate, death rate, carrying capacity, competition coefficients and
other parameters involved in the system. There is also experimental evidence that environ-
mental noise can play a key role in ecological systems [21]. In recent years, many scholars
have studied the effect of environmental stochasticity on natural or man-made ecosystems
[22–25]. Therefore, it is meaningful to further incorporate the environmental stochastic-
ity into the underlying system (1.2), which could provide us a deeper understanding for
the real ecosystems. We assume that the growth rate of X̄1, Ȳ and death rate of X̄2 are
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subjected to the Gaussian white noise, that is,

r1 → r1 + σ1 dB1(τ ), μ1 → μ1 + σ2 dB2(τ ), r2 → r2 + σ3 dB3(τ ),

where Bi(t) (i = 1, 2, 3) are mutually independent Brownian motions defined on a complete
probability space (�,F , P) (where Ft = σ {(X̄1(t), X̄2(t), Ȳ (t)); 0 ≤ t ≤ τe} is a σ -field gener-
ated by (X̄1(t), X̄2(t), Ȳ (t)); 0 ≤ t ≤ τe). The σ 2

i (i = 1, 2, 3) represent the intensities of the
Gaussian white noise. Then we can obtain the following stochastic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX̄1 = X̄1(r1 – a11X̄1 – β1X̄2) dτ + σ1X̄1 dB1(τ ),

dX̄2 = X̄2(β1X̄1 – c1Ȳ
m1X̄2+n1Ȳ +q1

– a22X̄2 – μ1) dτ + σ2X̄2 dB2(τ ),

dȲ = Ȳ (r2 – c2Ȳ
c3X̄2+k1

) dτ + σ3Ȳ dB3(τ ).

(1.3)

To the best of our knowledge, there is little work on model (1.3). In the following, we
mainly consider the following problems:

• The global asymptotic stability of the disease-free equilibrium and local asymptotic
stability of the positive equilibrium of deterministic system will be studied in Sect. 2.

• In virtue of the biological meaning of X̄1, X̄2 and Ȳ , they should be nonnegative. Is
there really a unique global positive solution for model (1.3)? This will be discussed in
Sect. 3.2.

• A basic problem for the eco-epidemiological models is under what conditions the
infected prey population will be extinct or all the species will be in persistence. We
will discuss this in detail in Sect. 3.3.

• A stationary distribution is an important and interesting topic from both the
biological and the mathematical points of views. A natural question is when the
stationary distribution exists for model (1.3); see Sect. 3.4.

2 Deterministic model
For simplicity, we use the transformation of variables to the system (1.2). Let t = r1τ ,
x1(t) = a11

r1
X̄1(τ ), x2(t) = a11

r1
X̄2(τ ), y(t) = a22c2

r1r2
Ȳ (τ ), then we get the following dimension-

less system:

⎧
⎪⎪⎨

⎪⎪⎩

dx1 = x1(1 – x1 – βx2) dt,

dx2 = x2(βx1 – y
mx2+ny+q – ax2 – μ) dt,

dy = by(1 – y
cx2+k ) dt,

(2.1)

where β = β1
a11

, m = m1a22r1c2
a11r2c1

, n = n1r1
c1

, q = q1a22c2
c1r2

, a = a22
a11

, μ = μ1
r1

, b = r2
r1

, c = a22
a11

, k = a22k1
r1

.
For system (2.1) there exists a trivial equilibrium (0, 0, 0); there are three semi-trivial

equilibriums (1, 0, 0), (1, 0, k) and (0, 0, k); if β > μ, and there is another semi-trivial equi-
librium ( a+μβ

β2+a , β–μ

β2+μ
, 0). If we denote the unique positive equilibrium by E∗(x∗

1, x∗
2, y∗), then

x∗
2 is the positive root of the quadratic equation

–
(
β2 + a

)
(m + cn)x2

2 +
[
(β –μ)(m + cn) –

(
β2 + a

)
(nk + q) – c

]
x2 + (β –μ)(nk + q) – k = 0.

Because the equation may have one or two positive roots, here we assume β > k
nk+q + μ,

which ensures the existence of a unique positive equilibrium.
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Theorem 1 If a > c2

4k and μ > β , then the disease-free equilibrium (1, 0, k) is globally
asymptotically stable.

Proof Define a positive definite function V : R3
+ →R+ by

V = (x1 – 1 – ln x1) + x2 +
1
b

(

y – k – k ln
y
k

)

.

We have

dV
dt

= –(x1 – 1)2 – ax2
2 – (μ – β)x2 –

x2y
mx2 + ny + q

–
ckx2

cx2 + k
–

(y – k)2

cx2 + k
+

cx2y
cx2 + k

= –(x1 – 1)2 – ax2
2 – (μ – β)x2 –

x2y
mx2 + ny + q

–
(y – (k + cx2

2 ))2

cx2 + k
+

c2x2
2

4(cx2 + k)

≤ –(x1 – 1)2 –
(

a –
c2

4k

)

x2
2 – (μ – β)x2 –

x2y
mx2 + ny + q

–
(y – (k + cx2

2 ))2

cx2 + k
.

For a > c2

4k and μ > β , it is easy to see that dV
dt is negative definite. According to the Lya-

punov theorem, we find that the disease-free equilibrium (1, 0, k) is globally asymptotically
stable. �

Now, we consider local stability of the positive equilibrium E∗. The Jacobian matrix as-
sociated with (2.1) at E∗ is given by

J(E∗) =

⎡

⎢
⎣

–Fx1 x∗
1 –Fx2 x∗

1 0
Gx1 x∗

2 Gx2 x∗
2 –Gyx∗

2

0 Hx2 –Hy

⎤

⎥
⎦ ,

where

Fx1 = 1, Fx2 = Gx1 = β , Hx2 = bc, Hy = b,

Gx2 =
my∗

(mx∗
2 + ny∗ + q)2 – a, Gy =

mx∗
2 + 1

(mx∗
2 + ny∗ + q)

.

It is obvious that if

a >
my∗

(mx∗
2 + ny∗ + q)2 , (2.2)

then Gx2 < 0.

Theorem 2 If β > k
nk+q + μ and 4na(β2 + a)[q(β2 + a) + m(β – μ)] > m(β2 + 2a)2, then the

positive equilibrium E∗(x∗
1, x∗

2, y∗) is locally asymptotically stable.

Proof The characteristic equation for J(E∗) is

λ3 +
(
Hy – Gx2 x∗

2 + Fx2 x∗
1
)
λ2

+
[
Hx2 x∗

2Gy – Gx2 x∗
2Fx1 x∗

1Hy +
(
Hy – Gx2 x∗

2
)
Fx1 x∗

1 + Gx1 x∗
1Fx2 x∗

2
]
λ

+ Fx1 x∗
1Hx2 x∗

2Gy + Gx1 x∗
1Fx2 x∗

2Hy – Fx1 x∗
1Gx2 x∗

2Hy = 0.
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If Gx2 < 0, according to the Routh–Hurwitz criterion, then E∗(x∗
1, x∗

2, y∗) is locally asymp-
totically stable. Because of

mx∗
2 + ny∗ + q =

y∗

β – μ – (β2 + a)x∗
2

, (2.3)

(2.2) is equivalent to the condition

ay∗ > m
(
β – μ –

(
β2 + a

)
x∗

2
)2. (2.4)

Solving (2.3) yields

y∗ =
(mx∗

2 + q)(β – μ – (β2 + a)x∗
2)

1 – n(β – μ) + n(β2 + a)x∗
2

. (2.5)

Substituting (2.5) to (2.4) and rearranging, we get

(
β2 + a

)2(x∗
2
)2 +

[
2a + β2

n
– 2(β – μ)

(
β2 + a

)
]

x∗
2 + (β – μ)2 +

aq
mn

–
β – μ

n
> 0, (2.6)

the discriminant of the above quadratic expression is given by

	 =
[

2a + β2

n
– 2(β – μ)

(
β2 + a

)
]2

– 4
(
β2 + a

)2
[

(β – μ)2 +
aq
mn

–
β – μ

n

]

, (2.7)

if 	 < 0, that is,

4na
(
β2 + a

)[
q
(
β2 + a

)
+ m(β – μ)

]
> m

(
β2 + 2a

)2,

then condition (2.6) holds for any positive x∗
2. Therefore if the conditions β > k

nk+q + μ

and 4na(β2 + a)[q(β2 + a) + m(β – μ)] > m(β2 + 2a)2 are satisfied simultaneously, then the
unique positive equilibrium E∗ has locally asymptotic stability. �

3 Stochastic model
Based on the system (2.1), the stochastic system (1.3) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx1 = x1(1 – x1 – βx2) dt + σ1x1 dB1(t),

dx2 = x2(βx1 – y
mx2+ny+q – ax2 – μ) dt + σ2x2 dB2(t),

dy = by(1 – y
cx2+k ) dt + σ3y dB3(t).

(3.1)

In this section, we will discuss the existence of positive solution, persistence and extinc-
tion of the species as well as the stationary distribution for stochastic system (3.1). Some
definitions and lemmas will be used later and we list them in the following subsection.

3.1 Preliminaries
Denote

〈
x(t)

〉
:=

1
t

∫ t

0
x(s) ds,

〈
x(t)

〉

∗ := lim inf
t→∞

1
t

∫ t

0
x(s) ds,

〈
x(t)

〉∗ := lim sup
t→∞

1
t

∫ t

0
x(s) ds.
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Definition 1 The population x(t) is said to be in strong persistence in mean if 〈x(t)〉∗ > 0.

Lemma 1 ([25]) Suppose x(t) ∈ C(� × [0,∞),R0
+), where R0

+ = {a | a > 0, a ∈ R}.
(1) If there exist two positive constants T and λ0 such that

ln x(t) ≤ λt – λ0
∫ t

0 x(s) ds +
∑n

i=1 αiBi(t) for all t ≥ T , where αi (1 < i < n) are
constants, then

⎧
⎨

⎩

〈x(t)〉∗ ≤ λ
λ0

a.s., if λ ≥ 0;

limt→∞ x(t) = 0 a.s., if λ < 0.

(2) If there exist three positive constants T , λ and λ0 such that

ln x(t) ≥ λt – λ0

∫ t

0
x(s) ds +

n∑

i=1

αiBi(t),

for all t ≥ T , then 〈x(t)〉∗ ≥ λ
λ0

a.s.

To verify the existence of a stationary distribution, we state a useful lemma.
Let X(t) be a time-homogeneous Markov process in R

n
+ described by the following

stochastic differential equation:

dX(t) = b(X) dt +
k∑

r=1

σr(X) dBr(t).

The diffusion matrix is defined as follows:

A(X) =
(
aij(x)

)
, aij(x) =

k∑

r=1

σ i
r (x)σ j

r(x).

Lemma 2 ([26]) The Markov process X(t) has a stationary distribution π (·), if there exists
a bounded domain U ∈R

d with regular boundary such that its closure Ū ⊆ R
d , having the

following properties:
(i) In the open domain U and some neighborhood thereof, the smallest eigenvalue of the

diffusion matrix A(t) is bounded away from zero.
(ii) If x ∈R

d \ U , the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈K Exτ < ∞ for every compact subset K ⊆R

d . Moreover, if f (·) is a
function integrable with respect to the measure π , then

P
(

lim
T→∞

1
T

∫ T

0
f
(
Xx(t)

)
=

∫

Rd
f (x)π (dx)

)

= 1

for all x ∈R
d .

3.2 Existence and uniqueness of positive solution
Lemma 3 For all x > 0, the following inequality holds:

x ≤ 2(x + 1 – ln x).
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Theorem 3 For any initial value (x1(0), x2(0), y(0)) ∈ R
3
+, there exists a unique solution

(x1(t), x2(t), y(t)) ∈ R
3
+ for the system (3.1) on t ≥ 0 and the solution will remain in R

3
+ with

probability one, namely (x1(t), x2(t), y(t)) ∈R
3
+ for all t ≥ 0 a.s.

Proof Since the coefficients of system (3.1) are locally Lipschitz continuous, for any given
initial value (x1(0), x2(0), y(0)) ∈ R

3
+, there exists a unique local solution (x1(t), x2(t), y(t))

on t ∈ [0, τe), where τe is the explosion time [27]. To verify that this solution is global, we
need to prove τe = +∞ a.s.

Let r0 > 0 be sufficiently large for every coordinate (x1(0), x2(0), y(0)) lying within the
interval [ 1

r0
, r0]. For each integer r ≥ r0, we define the stopping time

τr = inf

{

t ∈ [0, τe) : x1(t) /∈
(

1
r

, r
)

or x2(t) /∈
(

1
r

, r
)

or y(t) /∈
(

1
r

, r
)}

,

τr is increasing as r → ∞, τ∞ = limr→∞ τr , τ∞ ≤ τe. To prove τe = ∞, it is sufficient to
prove that τ∞ = ∞. To prove the result, let us assume the statement to be false, then there
exist two constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε, (3.2)

thus there exists an integer r1 ≥ r0 such that

P{τr ≤ T} ≥ ε, (3.3)

for all r ≥ r1. Define V = x1 + 1 – ln x1 + x2 + 1 – ln x2 + y + 1 – ln y. As x + 1 – ln x > 0, for
all x > 0, the function V (·) is positive definite for all (x1(t), x2(t), y(t)) ∈ R

3
+. Calculating the

differential of V , and using Itô’s formula, we get

dV =
(

1 –
1
x1

)

dx1 +
1

2x2
1

(dx1)2 +
(

1 –
1
x2

)

dx2 +
1

2x2
2

(dx2)2 +
(

1 –
1
y

)

dy

+
1

2y2 (dy)2

=
[

(x1 – 1)(1 – x1 – βx2) +
σ 2

1
2

+ (x2 – 1)
(

βx1 –
y

mx2 + ny + q
– ax2 – μ

)

+
σ 2

2
2

+ b(y – 1)
(

1 –
y

cx2 + k

)

+
σ 2

3
2

]

dt + σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t)

+ σ3(y – 1) dB3(t)

=
(

x1 – x2
1 – 1 + x1 + βx2 –

x2y
mx2 + ny + q

– ax2
2 – μx2 – βx1

+
y

mx2 + ny + q
+ ax2 + μ + by –

by2

cx2 + k
– b +

by
cx2 + k

+
σ 2

1 + σ 2
2 + σ 2

3
2

)

dt

+ σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t) + σ3(y – 1) dB3(t)

≤
[

2x1 + (β + a)x2 +
y

mx2 + ny + q
+ by +

by
cx2 + k

+ μ +
σ 2

1 + σ 2
2 + σ 2

3
2

]

dt

+ σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t) + σ3(y – 1) dB3(t)



Wei et al. Advances in Difference Equations  (2018) 2018:119 Page 8 of 17

≤
[(

μ +
σ 2

1 + σ 2
2 + σ 2

3
2

+
1
n

)

+ 2x1 + (β + a)x2 +
by
k

]

dt

+ σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t) + σ3(y – 1) dB3(t). (3.4)

Defining the positive constants

C1 = μ +
σ 2

1 + σ 2
2 + σ 2

3
2

+
1
n

, C2 = max

{

4, 2(β + a),
2b
k

}

,

and using Lemma 3, we have

2x1 + (β + a)x2 +
by
k

≤ 4(x1 + 1 – ln x1) + 2(β + a)(x2 + 1 – ln x2) +
2b
k

(y + 1 – ln y)

≤ C2V . (3.5)

Using (3.4) and (3.5), we have

dV ≤ (C1 + C2V ) dt + σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t) + σ3(y – 1) dB3(t).

Finally, assume C3 = max{C1, C2}, and hence

dV ≤ C3(V + 1) dt + σ1(x1 – 1) dB1(t) + σ2(x2 – 1) dB2(t) + σ3(y – 1) dB3(t).

Therefore, for t1 ≤ T , integrating both sides of the above inequality from 0 to t1 ∧ τr and
then taking the expectation leads to

EV
(
x1(t1 ∧ τr), x2(t1 ∧ τr), y(t1 ∧ τr)

)

≤ V
(
x1(0), x2(0), y(0)

)
+ C3E

∫ t1∧τr

0
(1 + V ) dt

≤ V
(
x1(0), x2(0), y(0)

)
+ C3t1 + C3E

∫ t1∧τr

0
V dt

≤ V (x1(0), x2(0), y(0) + C3T

+ C3E
∫ t1

0
V

(
x1(τr ∧ t), x2(τr ∧ t), y(τr ∧ t)

)
dt

= V (x1(0), x2(0), y(0) + C3T

+ C3

∫ t1

0
EV

(
x1(τr ∧ t), x2(τr ∧ t), y(τr ∧ t)

)
dt.

Using Gronwall’s inequality, we get

EV
(
x1(t1 ∧ τr), x2(t1 ∧ τr), y(t1 ∧ τr)

) ≤ (
V

(
x1(0), x2(0), y(0)

)
+ C3T

)
expC3(t1∧τr)

:= C4. (3.6)

Set �r = {τr ≤ T}, for r ≥ r1. So by (3.3), we get P(�r) ≥ ε, for all ω ∈ �r . Clearly,
at least one of x1(τr ,ω), x2(τr ,ω), x2(τr ,ω) which is equal either to r or to 1

r , therefore
V (x1(τr), x2(τr), y(τr)) is no less than min{r + 1 – ln r, 1

r + 1 + ln r}.
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From (3.2) and (3.6), it follows that

C4 ≥ E[1�r (ω)V
(
x1(τr ,ω), x2(τr ,ω), y(τr ,ω)

)

≥ ε

[

(r + 1 – ln r) ∧
(

1
r

+ 1 + ln r
)]

,

where 1�r is the indicator function of �r .
Letting r → ∞, we get ∞ > C4 = ∞, which leads to a contradiction, so τ∞ = ∞ a.s. �

3.3 Stochastic persistence
In order to obtain the main result, let us consider the following auxiliary system:

⎧
⎪⎪⎨

⎪⎪⎩

dX1 = X1(1 – X1)dt + σ1X1 dB1(t),

dX2 = X2(βX1 – aX2 – μ) dt + σ2X2 dB2(t),

dY = bY (1 – Y
cX2+k ) dt + σ3Y dB3(t).

(3.7)

Obviously, x1 ≤ X1, x2 ≤ X2, y ≤ Y , on t ≥ 0 a.s.

Lemma 4 If β(1 – σ 2
1
2 ) – μ – σ 2

2
2 > 0 and b – σ 2

3
2 < 0, then

lim
t→∞

1
t

∫ t

0
X1(s) ds = 1 –

σ 2
1

2
, lim

t→∞
1
t

∫ t

0
X2(s) ds =

β(1 – σ 2
1
2 ) – μ – σ 2

2
2

a
, and

lim
t→∞ Y (t) = 0.

Proof Applying Itô’s formula to the first equation in (3.7) results in

d ln X1 =
1

X1
dX1 –

1
2X2

1
(dX1)2 =

(

1 – X1 –
σ 2

1
2

)

dt + σ1 dB1(t).

Integrating both sides from 0 to t, we get

ln
X1(t)
X1(0)

=
(

1 –
σ 2

1
2

)

t –
∫ t

0
X1(s) ds + σ1B1(t). (3.8)

Noting that β(1 – σ 2
1
2 ) – μ – σ 2

2
2 > 0, which implies 1 – σ 2

1
2 > 0, combining with Lemma 1,

then

lim
t→∞

1
t

∫ t

0
X1(s) ds = 1 –

σ 2
1

2
. (3.9)

Substituting (3.9) to (3.8) and using limt→∞ B1(t)
t = 0, have

lim
t→∞

ln X1(t)
t

= 0. (3.10)

Applying Itô’s formula to the second equation in (3.7), we obtain

d ln X2 =
(

βX1 – aX2 – μ –
σ 2

2
2

)

dt + σ2 dB2(t).
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Again integrating both sides from 0 to t and dividing by t, we get

ln X2(t)
X2(0)

t
= –

(

μ +
σ 2

2
2

)

+
β

t

∫ t

0
X1(s) ds –

a
t

∫ t

0
X2(s) ds +

σ2B2(t)
t

. (3.11)

Substituting (3.9) into (3.11), noting that limt→∞ B2(t)
t = 0, yields

lim
t→∞

1
t

∫ t

0
X2(s) ds =

β(1 – σ 2
1
2 ) – μ – σ 2

2
2

a
. (3.12)

Similarly, applying Itô’s formula to the third equation in (3.7), we obtain

ln
Y (t)
Y (0)

=
(

b –
σ 2

3
2

)

t – b
∫ t

0

Y (s)
cX2(s) + k

ds + σ3B3(t) ≤
(

b –
σ 2

3
2

)

t + σ3B3(t),

hence limt→∞ Y (t) = 0 whenever b – σ 2
3
2 < 0. �

Theorem 4 For the population, we have
(i) If β – βσ 2

1
2 – μ – σ 2

2
2 < 0 and 1 – σ 2

1
2 > 0, then limt→∞ x2(t) = 0 a.s., that is, the infected

prey population x2(t) will go to extinct.

(ii) If 1 – σ 2
1
2 – β2(1–

σ2
1
2 )–β(μ+

σ2
2
2 )

a > 0, β(1 – σ 2
1
2 ) – μ – σ 2

2
2 – 1

n > 0 and b – σ 2
3
2 > 0, then

lim inft→∞ 1
t
∫ t

0 x1(s) ds ≥ 1 – σ 2
1
2 – β2(1–

σ2
1
2 )–β(μ+

σ2
2
2 )

a a.s.,

lim inft→∞ 1
t
∫ t

0 x2(s) ds ≥ β(1–
σ2

1
2 )–μ–

σ2
2
2 – 1

n
β2+a a.s., and lim inft→∞ 1

t
∫ t

0 y(s) ds ≥ k(b–
σ2

3
2 )

b
a.s., that is all the populations have strong persistence in mean.

Proof (i) If β – βσ 2

2 –μ– σ 2
2
2 < 0 and 1 – σ 2

1
2 > 0, then it follows from Lemma 4 and Lemma 1

that limt→∞ X2(t) = 0. By the stochastic differential equation comparison theorem, we
have limt→∞ x2(t) = 0.

(ii) Applying Itô’s formula to the first and second equations of system (3.1) yields

ln
x1(t)
x1(0)

=
(

1 –
σ 2

1
2

)

t –
∫ t

0
x1(s) ds – β

∫ t

0
x2(s) ds + σ1B1(t), (3.13)

ln
x2(t)
x2(0)

= –
(

μ +
σ 2

2
2

)

t + β

∫ t

0
x1(s) ds –

∫ t

0

y(s)
mx2(s) + ny(s) + q

ds

– a
∫ t

0
x2(s) ds + σ2B2(t), (3.14)

computing (3.13) × β + (3.14), we have

β ln
x1(t)
x1(0)

+ ln
x2(t)
x2(0)

=
[

β

(

1 –
σ 2

1
2

)

–
(

μ +
σ 2

2
2

)]

t – β2
∫ t

0
x2(s) ds

–
∫ t

0

y
mx2 + ny + q

ds – a
∫ t

0
x2(s) ds + βσ1B1(t) + σ2B2(t)

≥
[

β

(

1 –
σ 2

1
2

)

–
(

μ +
σ 2

2
2

)

–
1
n

]

t –
(
β2 + a

)
∫ t

0
x2(s) ds

+ βσ1B1(t) + σ2B2(t). (3.15)
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For x1(t) ≤ X1(t), t ≥ 0 a.s. and (3.10), it is easy to obtain

lim
t→∞

ln x1(t)
x1(0)

t
≤ 0. (3.16)

Substituting (3.16) into (3.15), we can derive that

ln
x2(t)
x2(0)

≥
[

β

(

1 –
σ 2

1
2

)

–
(

μ +
σ 2

2
2

)

–
1
n

]

t –
(
β2 + a

)
∫ t

0
x2(s) ds

+ βσ1B1(t) + σ2B2(t).

Applying Lemma 1, we get

lim inf
t→∞

1
t

∫ t

0
x2(s) ds ≥ β(1 – σ 2

1
2 ) – μ – σ 2

2
2 – 1

n
β2 + a

a.s.

From (3.13), we get

ln
x1(t)
x1(0)

≥
(

1 –
σ 2

1
2

)

t –
∫ t

0
x1(s) ds – β

∫ t

0
X2(s) ds + σ1B1(t),

combining (3.12) and Lemma 1, we get from the above inequality

lim inf
t→∞

1
t

∫ t

0
x1(s) ds ≥ 1 –

σ 2
1

2
–

β2(1 – σ 2
1
2 ) – β(μ + σ 2

2
2 )

a
a.s.

Similarly, applying Itô’s formula to the third equation of system (3.1) yields

d ln y =
[

b –
σ 2

3
2

–
by
k

+
bx2y

k(k + cx2)

]

dt + σ3 dB3(t),

then

ln
y(t)
y(0)

≥
(

b –
σ 2

3
2

)

t –
b
k

∫ t

0
y(s) ds + σ3B3(t).

Using Lemma 1, we obtain

lim inf
t→∞

1
t

∫ t

0
y(s) ds ≥ k(b – σ 2

3
2 )

b
. �

3.4 Existence of stationary distribution
In the following, we will prove the existence of stationary distribution of system (3.1),
which implies the stability in stochastic sense.

Theorem 5 Assume these conditions hold: m ≥ c, k ≤ q, β > k
nk+q + μ, δ < min{Ak(x∗

1)2,

(M2 – mx∗
2+q+c
2ε

)(x∗
2 + M1

2(M2–
mx∗

2+q+c
2ε )

)2, (1 – ε(mx∗
2+q+c)
2 )(y∗)2}, and ε is a positive number satisfy-

ing M2 – mx∗
2+q+c
2ε

> 0, 1 – ε(mx∗
2+q+c)
2 > 0, then, for any given initial value (x1(0), x2(0), y(0)) ∈

R
3
+, there is a stationary distribution π (·) for system (3.1).
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Here A = mx∗
2 + ny∗ + q, M1 = Aσ 2

1 x∗
1

2 + Aσ 2
2 x∗

2
2 + σ 2

3 y∗
2b , M2 = (aA – my∗

q )k, δ = cx∗
2M1 +

c2M2
1

4(M2–
mx∗

2+q+c
2ε )

+ M1k.

Proof Since β > k
nk+1 + μ, there exists a positive equilibrium E∗ = (x∗

1, x∗
2, y∗) of system (2.1)

and

1 = x∗
1 + βx∗

2, 1 =
y∗

cx∗
2 + k

, μ = βx∗
1 –

y∗

mx∗
2 + ny∗ + q

– ax∗
2. (3.17)

Define a positive definite function V : R3
+ →R

+ as follows:

V = A
(

x1 – x∗
1 – x∗

1 ln
x1

x∗
1

)

+ A
(

x2 – x∗
2 – x∗

2 ln
x2

x∗
2

)

+
1
b

(

y – y∗ – y∗ ln
y
y∗

)

= V1 + V2 + V3.

Applying Itô’s formula, we obtain

dV1 = A
(

1 –
x∗

1
x1

)

dx1 +
Ax∗

1
2x2

1
(dx1)2

=
[

A
(
x1 – x∗

1
)
(1 – x1 – βx2) +

Ax∗
1σ

2
1

2

]

dt + Aσ1
(
x1 – x∗

1
)

dB1(t),

dV2 = A
(

1 –
x∗

2
x2

)

dx2 +
Ax∗

2
2x2

2
(dx2)2

=
[

A
(
x2 – x∗

2
)
(

βx1 –
y

mx2 + ny + q
– ax2 – μ

)

+
Ax∗

2σ
2
2

2

]

dt

+ Aσ2
(
x2 – x∗

2
)

dB2(t),

dV3 =
1
b

(

1 –
y∗

y

)

dy +
y∗

2by2 (dy)2

=
[
(
y – y∗)

(

1 –
y

cx2 + k
+

σ 2
3 y∗

2b

)]

dt +
σ3(y – y∗)

b
dB3(t).

Therefore

LV = A
(
x1 – x∗

1
)
(1 – x1 – βx2) + A

(
x2 – x∗

2
)
(

βx1 –
y

mx2 + ny + q
– ax2 – μ

)

+
(
y – y∗)

(

1 –
y

cx2 + k

)

+ M1

= A
(
x1 – x∗

1
)[

x∗
1 – x1 – β

(
x2 – x∗

2
)]

+ A
(
x2 – x∗

2
)
[

β(x1 – x1∗) –
(

y
mx2 + ny + q

–
y∗

mx∗
2 + ny∗ + q

)

– a
(
x2 – x∗

2
)
]

+
(
y – y∗)

(
y∗

cx∗
2 + k

–
y

cx2 + k

)

+ M1

= –A
(
x1 – x∗

1
)2 – aA

(
x2 – x∗

2
)2 +

my∗

mx2 + ny + q
(
x2 – x∗

2
)2

–
(y – y∗)2

cx2 + k
–

mx∗
2 + q

mx2 + ny + q
(
x2 – x∗

2
)(

y – y∗) +
c(x2 – x∗

2)(y – y∗)
cx2 + k

+ M1.
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Noticing that c ≤ m, k ≤ q, and M2 – mx∗
2+q+c
2ε

> 0, then

LV ≤ –A
(
x1 – x∗

1
)2 –

(

aA –
my∗

q

)
(
x2 – x∗

2
)2 –

(y – y∗)2

cx2 + k

+
mx∗

2 + q + c
cx2 + k

∣
∣x2 – x∗

2
∣
∣
∣
∣y – y∗∣∣ + M1

=
(

–A
(
x1 – x∗

1
)2(cx2 + k) –

(

aA –
my∗

q

)
(
x2 – x∗

2
)2(cx2 + k) –

(
y – y∗)2

+
(
mx∗

2 + q + c
)∣
∣x2 – x∗

2
∣
∣
∣
∣y – y∗∣∣

)
/

(cx2 + k) + M1

≤ –Ak(x1 – x∗
1)2 – (aA – my∗

q )k(x2 – x∗
2)2 – (y – y∗)2 + (mx∗

2 + q + c)|x2 – x∗
2||y – y∗|

cx2 + k
+ M1.

Therefore,

(cx2 + k)LV ≤ –Ak
(
x1 – x∗

1
)2 – M2

(
x2 – x∗

2
)2 –

(
y – y∗)2

+
(
mx∗

2 + q + c
)∣
∣x2 – x∗

2
∣
∣
∣
∣y – y∗∣∣ + M1(cx2 + k)

≤ –Ak
(
x1 – x∗

1
)2 – M2

(
x2 – x∗

2
)2 –

(
y – y∗)2

+
mx∗

2 + q + c
2ε

(
x2 – x∗

2
)2 +

ε(mx∗
2 + q + c)

2
(
y – y∗)2

+ M1(cx2 + k)

= –Ak
(
x1 – x∗

1
)2 –

(

M2 –
mx∗

2 + q + c
2ε

)
(
x2 – x∗

2
)2

–
(

1 –
ε(mx∗

2 + q + c)
2

)
(
y – y∗)2 + M1(cx2 + k)

= –Ak
(
x1 – x∗

1
)2 –

(

M2 –
mx∗

2 + q + c
2ε

)[

x2 –
(

x∗
2 +

cM1

2(M2 – mx2+2
2ε

)

)]2

–
(

1 –
ε(mx∗

2 + q + c)
2

)
(
y – y∗)2 + δ.

Noting that if

0 < δ < min

{

Ak
(
x∗

1
)2,

(

M2 –
mx∗

2 + q + c
2ε

)(

x∗
2 +

cM1

2(M2 – mx∗
2+q+c
2ε

)

)2

,

(

1 –
ε(mx∗

2 + q + c)
2

)
(
y∗)2

}

,

then the ellipsoid

Ak
(
x1 – x∗

1
)2 +

(

M2 –
mx∗

2 + q + c
2ε

)[

x2 –
(

x∗
2 +

cM1

2(M2 – mx∗
2+q+c
2ε

)

)]2

+
(

1 –
ε(mx∗

2 + q + c)
2

)
(
y – y∗)2 = δ
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lies entirely inR
3
+. We can take U to be any neighborhood of the ellipsoid such that Ū ⊂R

3
+,

where Ū denotes the closure of U . Thereby, we can get LV < 0 for (x1, x2, y) ∈ R
3
+ \U , which

implies condition (ii) in Lemma 2 is satisfied. Besides, we can rewrite the system (3.1) as
follows:

d

⎡

⎢
⎣

x1(t)
x2(t)
y(t)

⎤

⎥
⎦ =

⎡

⎢
⎣

x1(1 – x1 – βx2)
x2(βx1 – y

mx2+ny+q – ax2 – μ)
by(1 – y

cx2+k )

⎤

⎥
⎦ dt

+

⎡

⎢
⎣

σ1x1

0
0

⎤

⎥
⎦ dB1(t) +

⎡

⎢
⎣

0
σ2x2

0

⎤

⎥
⎦ dB2(t) +

⎡

⎢
⎣

0
0

σ3y

⎤

⎥
⎦ dB3(t).

Here the diffusion matrix is

A = diag
(
σ 2

1 x2
1,σ 2

2 x2
2,σ 2

3 y2).

There exists a positive number M = min{σ 2
1 x2

1,σ 2
2 x2

2,σ 2
3 y2, (x1, x2, y) ∈ Ū} > 0 such that

3∑

i,j=1

aijξiξj = σ 2
1 x2

1ξ
2
1 + σ 2

2 x2
2ξ

2
2 + σ 2

3 y2ξ 2
3 ≥ M

(|ξ |)2,

for all (x1, x2, y) ∈ Ū , ξ ∈ R
3
+, which shows that condition (i) of Lemma 2 is also satisfied.

Consequently, we can conclude that system (3.1) has a stationary distribution π (·). �

4 Numerical simulations
In this section, we numerically simulate the solution of system (3.1) to illustrate the ana-
lytical results. Let β = 0.4, m = 2, n = 4, a = 0.1, μ = 0.05, b = 1.5, k = 1, q = 1, c = 1, time
stepping 	t = 0.01, initial value (0.4, 0.3, 0.2). We choose different values of σi (i = 1, 2, 3) to
observe their influence on the dynamics of system (3.1). Let σ1 = 0.01, σ2 = 0.01, σ3 = 0.01,
the conditions of stochastic persistence and the existence of stationary distribution (see
Theorem 4(2) and Theorem 5) are satisfied, and the population densities fluctuate around
the deterministic steady state (x∗

1, x∗
2, y∗), respectively, as is shown in Fig. 1. Increasing the

Figure 1 Solutions of stochastic system (3.1) with parameter values as mentioned in the text and σ1 = 0.01,
σ2 = 0.01, σ3 = 0.01, black curves are the solutions of deterministic system (2.1), which show that all species
persist. (a) The solution of x1(t); (b) the solution of x2(t); (c) represents the solution of y(t)
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Figure 2 Solutions of stochastic system (3.1) with parameter values as mentioned in the text and σ1 = 0.5,
σ2 = 0.4, σ3 = 0.4, which show that all species persist. (a) The solution of x1(t); (b) the solution of x2(t); (c) the
solution of y(t)

Figure 3 Solutions of stochastic system (3.1) with σ1 = 0.95, σ2 = 0.6, σ3 = 0.7 show that x2 goes to extinct
but x1 and y persists. (a) The solution of x1(t); (b) the solution of x2(t); (c) the solution of y(t)

Figure 4 Solutions of stochastic system (3.1) with σ1 = 1.5, σ2 = 0.6, σ3 = 0.7 show that x1 and x2 go to
extinct but y persists. (a) The solution of x1(t); (b) the solution of x2(t); (c) the solution of y(t)

strengths of environmental forcing to σ1 = 0.5, σ2 = 0.4, σ3 = 0.4, the population densi-
ties also fluctuate around the deterministic steady state while amplitude of fluctuation is
stronger than earlier case as is depicted in Fig. 2. Let σ1 = 0.95, σ2 = 0.6, σ3 = 0.7, then the
conditions of Theorem 4(1) are verified, infected prey will become extinct but susceptible
prey and predator survive as is shown in Fig. 3.

Further, we choose the same parameters as in Fig. 3, but change the intensity of the
white noise σ1, and let σ1 = 1.5, then the susceptible prey also becomes extinct as is shown
in Fig. 4. If we further increase the intensity of the white noise σ3, let σ3 = 1.7 and other
parameters are the same as Fig. 4, then the predator population also goes to extinction as
is depicted in Fig. 5. In this case, all the conditions required for persistence are violated.
One can see that prey and predator population go extinct after some initial large amplitude
oscillation.
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Figure 5 Solutions of stochastic system (3.1) with σ1 = 1.5, σ2 = 0.6, σ3 = 1.7 show that all species go to
extinct. (a) The solution of x1(t); (b) the solution of x2(t); (c) the solution of y(t)

Figure 6 Solutions of stochastic system (3.1) with σ1 = 0.5, σ2 = 0.4, σ3 = 1.7 show that y goes to extinct but
x1 and x2 persist. (a) The solution of x1(t); (b) the solution of x2(t); (c) the solution of y(t)

Finally, in Fig. 6, we choose σ1 = 0.5, σ2 = 0.4, are the same as Fig. 2 and σ3 = 1.7 is the
same as Fig. 5, then the prey will keep having persistence and the predator will die out.

5 Conclusion
In this paper, we consider deterministic and stochastic predator–prey models with disease
in the prey and modified Leslie–Gower functional response. For a deterministic system,
the conditions of stability for disease-free equilibrium and positive equilibrium are ob-
tained. For a stochastic system, we show that there is a unique globally positive solution
starting from any positive initial value, and establish the conditions of extinction for in-
fected prey population as well as strong persistence in mean for all species. Furthermore,
the existence of a stationary distribution for system (3.1) is also established under certain
parametric restrictions. Our analysis results and numerical simulations reveal that the
intensity of environmental fluctuation plays a crucial role for the survival of susceptible,
infected prey and predator species. Figures 3–6 also show that a large amplitude environ-
mental fluctuation can lead to all species going extinct and in that situation one cannot
find any stationary distribution.

Here we have considered the environment noise on intrinsic growth rate and death rate.
It is also interesting to address the transmission rate affected by environment noise and
we leave this for future research.
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