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Abstract
Taking the delay due to the latent period of computer viruses and the delay due to
the period that the anti-virus software uses to clean the computer viruses as the
bifurcation parameters, local Hopf bifurcation of an epidemic model over the Internet
is studied. We discuss the existence of the Hopf bifurcation under four conditions:
(1) τ1 > 0, τ2 = 0, (2) τ1 = 0, τ2 > 0, (3) τ1 = τ2 = τ > 0, and (4) τ1 > 0, τ2 ∈ (0,τ20).
Properties of the Hopf bifurcation about condition (4) are investigated by means of
the center manifold theorem and the normal form theory. Finally, some simulations
are presented to support our obtained results.

Keywords: Computer virus; Hopf bifurcation; Stability; SLBQRS model

1 Introduction
The Internet is an indispensable part of our everyday life and it offers us more and
more functionalities and facilities. Meanwhile, its rapid development has witnessed
the overflow of computer viruses. The epidemic dynamics has been considered as an
effective approach to the assessment of the propagation of computer viruses in the
Internet [1, 2]. Since the seminal work of Kephart and White [3], many computer
virus models, such as SIRS (Susceptible–Infectious–Recovered–Susceptible) models
[4–7], SEIRS (Susceptible–Exposed–Infectious–Recovered–Susceptible) models [8–11],
SEIQRS (Susceptible–Infectious–Quarantined–Recovered–Susceptible) models [12–14],
SVEIR (Susceptible–Vaccinated–Exposed–Infectious–Recovered) models [15–17] and so
on, have been proposed by scholars at home and abroad.

However, most of the models above neglect time delays during the spreading process
of the computer viruses in the Internet. As is known, time delays may induce Hopf bi-
furcation and the occurrence of a Hopf bifurcation makes the computer viruses in the
Internet be out of control. Some research has been devoted to the computer virus mod-
els with time delay. In [5, 6], Ren et al. investigated the Hopf bifurcation of a delayed
SIRS computer virus propagation model. In [18], Dong et al. proposed a delayed SEIR
(Susceptible–Exposed–Infectious–Recovered) computer virus model with multistate an-
tivirus and studied the dynamical behaviors, which include local asymptotical stability and
local Hopf bifurcation, by regarding the time delay as bifurcating parameter. Considering
the fact that the recovered computers may be infected again after a temporary immunity
period, Zhang and Yang [19] proposed a computer virus model with two delays based on
the work in [18] and studied the Hopf bifurcation by regarding the possible combinations
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of the two delays as a bifurcation parameter. In addition, many researchers introduced
the quarantine strategy into mathematical models and investigated the Hopf bifurcation
of the models in order to describe dynamics of computer viruses in a network [20–23].
Recently, Zhang and Wang [24] proposed the following SLBQRS (Susceptible–Latent–
Breaking–Quarantined–Recovered–Susceptible) computer virus model with latent and
breaking-out over the Internet:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = μ – βS(t)(L(t) + B(t)) + εR(t) – μS(t),

dL(t)
dt = βS(t)(L(t) + B(t)) – (μ + α)L(t),

dB(t)
dt = αL(t) – (μ + γ + η + σ )B(t),

dQ(t)
dt = γ B(t) – (μ + σ + δ)Q(t),

dR(t)
dt = δQ(t – τ ) – (μ + ε)R(t) + ηB(t – τ ).

(1)

Here, S(t), L(t), B(t), Q(t), and R(t) represent the percentages of the susceptible com-
puter, the latent computer, the breaking computer, the quarantined computer, and the
recovered computer at time t, respectively. μ, σ , α, β , γ , ε, η, and δ are the parameters
of system (1) and they have the same meanings as those in [24]. τ is the time delay due to
the period that the anti-virus software uses to clean the computer viruses in the breaking
and the quarantined computers. Zhang and Wang [24] investigated the effect of the time
delay τ on the stability of system (1).

One of the typical features of the computer viruses in the Internet is their latent char-
acteristic [5, 25], and there is a time delay before the latent computers develop themselves
into the breaking ones. Thus, we incorporate the time delay due to the latent period of the
latent computers in system (1) and consider the following SLBQRS computer virus with
two delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = μ – βS(t)(L(t) + B(t)) + εR(t) – μS(t),

dL(t)
dt = βS(t)(L(t) + B(t)) – μL(t) – αL(t – τ1),

dB(t)
dt = αL(t – τ1) – (μ + γ + η + σ )B(t),

dQ(t)
dt = γ B(t) – (μ + σ + δ)Q(t),

dR(t)
dt = δQ(t – τ2) – (μ + ε)R(t) + ηB(t – τ2),

(2)

where τ1 is the time delay due to the latent period of the viruses and τ2 is the time delay
due to the period that the anti-virus software uses to clean the computer viruses in the
breaking and the quarantined computers.

The structure of this paper is as follows. In the next section, we study the local stabil-
ity of the viral equilibrium of system (2) and the existence of a local Hopf bifurcation of
system (2). In Sect. 3, properties of the Hopf bifurcation are investigated. In Sect. 4, some
numerical simulations are presented in order to verify our obtained theoretical results.
Section 5 summarizes this work.

2 Local stability of viral equilibrium and existence of local Hopf bifurcation
Based on the analysis in [24], we know that system (2) has a unique viral equilibrium
E∗(S∗, L∗, B∗, Q∗, R∗) if R0 = β(α+γ +μ+η+σ )

(α+μ)(γ +μ+η+σ ) > 1, where

S∗ =
(α + μ)(γ + μ + η + σ )
β(α + γ + μ + η + σ )

=
1

R0
, L∗ =

γ + μ + η + σ

α
B∗,
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Q∗ =
γ

μ + σ + δ
B∗, R∗ =

δγ + η(μ + σ + δ)
(μ + ε)(μ + σ + δ)

B∗,

B∗ =
μα(μ + σ + δ)(μ + ε)(1 – R0)

R0αγ δε + (μ + σ + δ)[R0αηε – β(μ + ε)(μ + α + γ + η + σ )]
.

The linearized section of system (2) at E∗(S∗, L∗, B∗, Q∗, R∗) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = a11S(t) + a12L(t) + a13B(t) + a15R(t),

dL(t)
dt = a21S(t) + a22L(t) + a23B(t) + b22L(t – τ1),

dB(t)
dt = a33B(t) + b32L(t – τ1),

dQ(t)
dt = a43B(t) + a44Q(t),

dR(t)
dt = a55R(t) + c53Q(t – τ2) + c54B(t – τ2),

(3)

where

a11 = –β(L∗ + B∗) – μ, a12 = –βS∗, a13 = –βS∗, a15 = ε,

a21 = β(L∗ + B∗), a22 = βS∗ – μ, a23 = βS∗,

a33 = –(μ + γ + σ + η), a43 = γ , a44 = –(μ + σ + δ),

a55 = –(μ + ε), b22 = –α, b32 = α, c53 = η, c54 = δ.

The characteristic equation is

λ5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ + A0

+
(
B4λ

4 + B3λ
3 + B2λ

2 + B1λ + B0
)
e–λτ1

+ (C1λ + C0)e–λτ2

= 0, (4)

with

A0 = a33a44a55(a12a21 – a11a22),

A1 = a55
[
a11a22(a33 + a44) + a33a44(a11 + a22)

]
+ a11a22a33a44

– a12a21(a33a44 + a33a55 + a44a55),

A2 = a12a21(a33 + a44 + a55) – a11a22(a33 + a44) – a33a44(a11 + a22)

– a55
[
a11a22 + a33a44 + (a11 + a22)(a33 + a44)

]
,

A3 = a11a22 + a33a44 + (a11 + a22)(a33 + a44) – a12a21

+ a55(a11 + a22 + a33 + a44),

A4 = –(a11 + a22 + a33 + a44 + a55),

B0 = a44a55b32(a11a23 – a13a21) – a11a22a33a44b22,

B1 = a13a21b32(a44 + a55) – a23b32(a11a44 + a11a55 + a44a55)

+ b22
[
a11a22(a33 + a44) + a33a44(a11 + a22)

]
,
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B2 = a23b32(a11 + a44 + a55) – a13a21b32

– b22
[
a11a22 + a33a44 + (a11 + a22)(a33 + a44)

]
,

B3 = b22(a11 + a22 + a33 + a44) – a23b32, B4 = –b22,

C0 = (a44c53 – a43c54)a15a21b32, C1 = –a15a21b32c53.

Case 1. τ = 0. When τ = 0, Eq. (4) becomes

λ5 + A04λ
4 + A03λ

3 + A02λ
2 + A01λ + A00 = 0, (5)

where

A00 = A0 + B0 + C0, A01 = A1 + B1 + C1,

A02 = A2 + B2, A03 = A3 + B3, A04 = A4 + B4.

Suppose that the following holds:
(H1) A00 > 0, A04 > 0, A03A04 > A02, A02A03A04 > A2

02 + A01A2
04, and A01A04(2A00 +

A02A03) + A00A02A03 > A01(A2
02 + A01A2

04) + A00(A00 + A2
04A2

03).
It can be concluded that the viral equilibrium (S∗, L∗, B∗, Q∗, R∗) is locally asymptotically

stable in the absence of time delay.
Case 2. τ1 > 0, τ2 = 0. Equation (4) becomes

λ5 + A24λ
4 + A23λ

3 + A22λ
2 + A21λ + A20

+
(
B24λ

4 + B23λ
3 + B22λ

2 + B21λ + B20
)
e–λτ1

= 0, (6)

where

A20 = A0, A21 = A1, A22 = A2, A23 = A3, A24 = A4,

B20 = B0 + C0, B21 = B1 + C1, B22 = B2, B23 = B3, B24 = B4.

Substituting λ = iω1 (ω1 > 0) into Eq. (6) and separating the real and imaginary parts,
one can get that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(B21ω1 – B23ω
3
1) sin τ1ω1 + (B24ω

4
1 – B22ω

2
1 + B20) cos τ1ω1

= A22ω
2
1 – A24ω

4
1 – A20,

(B21ω1 – B23ω
3
1) cos τ1ω1 – (B24ω

4
1 – B22ω

2
1 + B20) sin τ1ω1

= A23ω
3
1 – ω5

1 – A21ω1.

(7)

Adding up the squares of both equations gives

ω10
1 + g24ω

8
1 + g23ω

6
1 + g22ω

4
1 + g21ω

2
1 + g20 = 0, (8)



Zhao and Bi Advances in Difference Equations  (2018) 2018:97 Page 5 of 19

with

g20 = A2
20 – B2

20,

g21 = A2
21 – 2A20A22 – B2

21 + 2B20B22,

g22 = A2
22 + 2A20A24 – 2A21A23 – B2

22 + 2B21B23 – 2B20B24,

g23 = A2
23 – 2A22A24 + 2A21 – B2

23 + 2B22B24 – B2
23,

g24 = A2
24 – 2A23 – B2

24.

Let ω2
1 = v1, then Eq. (8) becomes

v5
1 + g24v4

1 + g23v3
1 + g22v2

1 + g21v1 + g20 = 0. (9)

Based on the discussion in [24], we assume that
(H21) Eq. (9) has at least one positive root v10.

Then Eq. (6) has a pair of purely imaginary roots ±iω10 = ±i√v10. For ω10, one has

τ10 =
1

ω10
× arccos

{
h21(ω10)
h22(ω10)

}

, (10)

where

h21(ω10) = (B23 – A24B24)ω8
10 + (A22B24 – A23B23 – B21)ω6

10

+ (A23B21 + A21B23 – A20B24 – A22B22 – A24B20)ω4
10

+ (A20B22 + A22B20 – A21B21) + ω2
10 – A20B20,

h22(ω10) = B24ω
8
10 +

(
B2

23 – 2B22B24
)
ω6

10

+
(
B2

22 + 2B20B24 – 2B21B23
)
ω4

10 +
(
B2

21 – 2B20B22
)
ω2

10 + B2
20.

Differentiating Eq. (6) with respect to τ1,

[
dλ

dτ1

]–1

= –
5λ4 + 4A24λ

3 + 3A23λ
2 + 2A22λ + A21

λ(λ5 + A24λ4 + A23λ3 + A22λ2 + A21λ + A20)

+
4B24λ

3 + 3B23λ
2 + 2B22λ + B21

λ(B24λ4 + B23λ3 + B22λ2 + B21λ + B20)
–

τ1

λ
. (11)

This gives

Re

[
dλ

dτ1

]–1

τ1=τ10

=
f ′(v10)

(B21ω10 – B23ω
3
10)2 + (B24ω

4
10 – B22ω

2
10 + B20)2 , (12)

where v10 = ω2
10 and f1(v1) = v5

1 + g24v4
1 + g23v3

1 + g22v2
1 + g21v1 + g20.

Thus, if (H22): f ′
1(v10) �= 0 holds, then Re[ dλ

dτ1
]τ1=τ10 �= 0. Based on the Hopf bifurcation

theorem in [26], we have the following.

Theorem 1 For system (2), if (H1), (H21), and (H22) hold, then E∗(S∗, L∗, B∗, Q∗, R∗) is
asymptotically stable for τ1 ∈ [0, τ10); a Hopf bifurcation occurs at E∗(S∗, L∗, B∗, Q∗, R∗)
when τ1 = τ10.
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Case 3. τ1 = 0, τ2 > 0. Equation (4) becomes

λ5 + A34λ
4 + A33λ

3 + A32λ
2 + A31λ + A30 + (C31λ + C30)e–λτ2 = 0, (13)

where

A30 = A0 + B0, A31 = A1 + B – 1, A32 = A2 + B2,

A33 = A3 + B3, A34 = A4 + B4, C30 = C0, C31 = C1.

Let λ = iω2 (ω2 > 0) be a root of Eq. (13). Then

{
C31ω2 sin τ2ω2 + C30 cos τ2ω2 = A22ω

2
2 – A24ω

4
2 – p0,

C31ω2 cos τ2ω2 – C30 sin τ2ω2 = A23ω
3
2 – ω5

2 – A21ω2.
(14)

Therefore

ω10
2 + g34ω

8 + g33ω
6 + g32ω

4 + g31ω
2 + g30 = 0, (15)

where

g30 = A2
30 – C2

30, g31 = A2
31 – 2A30A32 – C2

31,

g32 = A2
32 + 2A30A34 – 2A31A33,

g33 = A2
33 + 2A31 – 2A32A34, g34 = A2

34 – 2A33.

Let ω2 = v2, Eq. (15) becomes

v5
2 + g34v4

2 + g33v3
2 + g32v2

2 + g31v2 + g30 = 0. (16)

Similar as in Case 2, we assume that
(H31) Eq. (16) has at least one positive root v20.

Then Eq. (13) has a pair of purely imaginary roots ±iω20 = ±i√v20. For ω20, we have

τ20 =
1

ω20
× arccos

{
h31(ω20)
h32(ω20)

}

, (17)

where

h31(ω20) = –C31ω
6
20 + (A33C31 – A34C30)ω4

20

+ (A32C30 – A31C31)ω2
20 – A30C30,

h32(ω20) = C2
31ω

2
20 + C2

30.

Differentiating both sides of Eq. (13) with respect to τ2, we get

[
dλ

dτ2

]–1

= –
5λ4 + 4A34λ

3 + 3A33λ
2 + 2A32λ + A31

λ(λ5 + A34λ4 + A33λ3 + A32λ2 + A31λ + A30)
+

C31

λ(C31λ + C30)
–

τ2

λ
. (18)
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Thus,

Re

[
dλ

dτ2

]–1

τ2=τ20

=
f ′
2(v20)

C2
30 + C2

31ω
2
20

, (19)

where v20 = ω2
20 and f2(v2) = v5

2 + g34v4
2 + g33v3

2 + g32v2
2 + g31v2 + g30.

Therefore, if (H32): f ′
2(v20) �= 0 holds, then Re[ dλ

dτ2
]τ2=τ20 �= 0. Based on the Hopf bifurca-

tion theorem in [26], we have the following.

Theorem 2 For system (2), if (H1), (H31), and (H32) hold, then E∗(S∗, L∗, B∗, Q∗, R∗) is
asymptotically stable for τ2 ∈ [0, τ20); a Hopf bifurcation occurs at E∗(S∗, L∗, B∗, Q∗, R∗)
when τ2 = τ20.

Case 4. τ1 = τ2 = τ > 0. Equation (4) becomes

λ5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ + A0

+
(
B4λ

4 + B3λ
3 + B2λ

2 + B1λ + B0
)
e–λτ

+ (C1λ + C0)e–2λτ

= 0. (20)

Multiplying by eλτ , Eq. (20) becomes of the following form:

B4λ
4 + B3λ

3 + B2λ
2 + B1λ + B0

+
(
λ5 + A4λ

4 + A3λ
3 + A2λ

2 + A1λ + A0
)
eλτ

+ (C1λ + C0)e–λτ

= 0. (21)

Assume that λ = iω (ω > 0) is a root of Eq. (21). Then

{
g41(ω) cos τω – g42(ω) sin τω = g43(ω),
g44(ω) sin τω + g45(ω) cos τω = g46(ω),

(22)

with

g41(ω) = A4ω
4 – A2ω

2 + A0 + C0, g42(ω) = ω5 – A3ω
3 + (A1 – C1)ω,

g43(ω) = B2ω
2 – B4ω

4 – B0, g44(ω) = A4ω
4 – A2ω

2 + A0 – C0,

g45(ω) = ω5 – A3ω
3 + (A1 + C1)ω, g46(ω) = B3ω

3 – B1ω.

Thus,

cos τω =
h41(ω)
h40(ω)

, sin τω =
h42(ω)
h40(ω)

, (23)
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where

h40(ω) = ω10 +
(
A2

4 – 2A3
)
ω8 +

(
A2

3 – 2A2A4
)
ω6

+
(
A2

2 + 2A0A4 – 2A1A3
)
ω4 +

(
A2

1 – C2
1 – 2A0A2

)
ω2 + A2

0 – C2
0 ,

h41(ω) = (B3 – A4B4)ω8 + (A4B2 + A2B4 – A3B3 – B1)ω6

+
(
A3B1 – A2B2 – A4B0 + B3(A1 – C1) – B4(A0 – C0)

)
ω4

+
(
A2B0 + B2(A0 – C0) – B1(A1 – C1)

)
ω2 – B0(A0 – C0),

h42(ω) = B4ω
9 + (A4B3 – A3B4 – B2)ω7

+
(
B0 + A3B2 – A4B1 – A2B3 + B4(A1 + C1)

)
ω5

+
(
A2B1 – A3B0 + B3(A0 + C0) – B2(A1 + C1)

)
ω3

+
(
B0(A1 + C1) – B1(A0 + C0)

)
ω.

Then

h2
41(ω) + h2

42(ω) = h2
40(ω). (24)

Next, we suppose that
(H41) Eq. (24) has at least one positive root ω0.

From Eq. (23), we have

τ0 =
1
ω0

× arccos

{
h41(ω0)
h40(ω0)

}

. (25)

Differentiating Eq. (21) with respect to τ , we get

[
dλ

dτ

]–1

=
h411(λ)
h412(λ)

–
τ

λ
, (26)

where

h411(λ) = 4B4λ
3 + 3B3λ

2 + 2B2λ + B1 +
(
5λ4 + 4A4λ

3 + 3A3λ
2 + 2A2λ + A1

)
eλτ ,

h412(λ) =
(
C1λ

2 + C0λ
)
e–λτ –

(
λ6 + A4λ

5 + A3λ
4 + A2λ

3 + A1λ
2 + A0λ

)
eλτ .

Further,

Re

[
dλ

dτ

]–1

τ=τ0

=
F41(ω0) × F43(ω0) + F42(ω0) × F44(ω0)

F2
43(ω0) + F2

44(ω0)
, (27)

with

F41(ω0) = B1 – 3B3ω
2
0 +

(
5ω4

0 – 3A3ω
2
0 + A1

)
cos τ0ω0

–
(
2A2ω0 – 4A4ω

3
0
)

sin τ0ω0,

F42(ω0) = 2B2ω0 – 4B4ω
3
0 +

(
5ω4

0 – 3A3ω
2
0 + A1

)
sin τ0ω0

+
(
2A2ω0 – 4A4ω

3
0
)

cos τ0ω0,
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F43(ω0) =
(
A3ω

4
0 – ω6

0 – (A1 – C1)ω2
0
)

cos τ0ω0

–
(
A4ω

5
0 – A2ω

3
0 + (A0 – C0)ω0

)
sin τ0ω0,

F44(ω0) =
(
A3ω

4
0 – ω6

0 – (A1 + C1)ω2
0
)

sin τ0ω0

+
(
A4ω

5
0 – A2ω

3
0 + (A0 – C0)ω0

)
cos τ0ω0.

Based on the Hopf bifurcation theorem in [26], if (H42): F41(ω0) × F43(ω0) + F42(ω0) ×
F44(ω0) �= 0 holds, we have the following.

Theorem 3 For system (2), if (H1), (H41), and (H42) hold, then E∗(S∗, L∗, B∗, Q∗, R∗) is
asymptotically stable for τ ∈ [0, τ0); a Hopf bifurcation occurs at E∗(S∗, L∗, B∗, Q∗, R∗) when
τ = τ0.

Case 5. τ1 > 0, τ2 > 0, and τ2 ∈ (0, τ20). Let λ = iω∗
1 be a root of Eq. (4). Then

{
g51(ω∗

1) sin τ1ω
∗
1 + g52(ω∗

1) cos τ1ω
∗
1 = g53(ω∗

1),
g51(ω∗

1) cos τ1ω
∗
1 – g52(ω∗

1) sin τ1ω
∗
1 = g54(ω∗

1),
(28)

where

g51
(
ω∗

1
)

= B1ω
∗
1 – B3

(
ω∗

1
)3 + C1ω

∗
1 cos τ2ω

∗
1 – C0 sin τ2ω

∗
1,

g52
(
ω∗

1
)

= B4
(
ω∗

1
)4 – B2

(
ω∗

1
)2 + B0 + C1ω

∗
1 sin τ2ω

∗
1 + C0 cos τ2ω

∗
1,

g53
(
ω∗

1
)

= A2
(
ω∗

1
)2 – A4

(
ω∗

1
)4 – A0,

g54
(
ω∗

1
)

= A3
(
ω∗

1
)3 –

(
ω∗

1
)5 – A1ω

∗
1.

Adding up the squares of both equations in Eq. (28) gives

f50
(
ω∗

1
)

+ f51
(
ω∗

1
)

cos τ2ω
∗
1 + f52

(
ω∗

1
)

sin τ2ω
∗
1 = 0, (29)

with

f50
(
ω∗

1
)

=
(
ω∗

1
)10 +

(
A2

4 – 2A3 – B2
4
)(

ω∗
1
)8

+
(
A2

3 + 2A1 – 2A2A4 – 2B2B4 – B2
2
)(

ω∗
1
)6

+
(
A2

2 + 2A0A4 – 2A1A3 – B2
2 – 2B0B4 + 2B1B3

)(
ω∗

1
)4

+
(
A2

1 – 2A0A2 + 2B0B2 – B2
1 – C2

1
)(

ω∗
1
)2 + A2

0 – B2
0 – C2

0 ,

f51
(
ω∗

1
)

= 2
(
(B3C1 – B4C0)

(
ω∗

1
)4 + (B2C0 – B1C1)

(
ω∗

1
)2 – B0C0

)
,

f52
(
ω∗

1
)

= –2
(
B4C1

(
ω∗

1
)5 – (B2C1 – B3C0)

(
ω∗

1
)3 – (B1C0 – B0C1)ω∗

1
)
.

Similar as in Case 4, we suppose that
(H51) Eq. (29) has at least one positive root ω∗

10.
Define

τ ∗
10 =

1
ω∗

10
× arccos

{
g51(ω∗

10) × g54(ω∗
10) + g52(ω∗

10) × g53(ω∗
10)

g2
51(ω∗

10) + g2
52(ω∗

10)

}

. (30)
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Differentiating Eq. (4) with respect to τ1, we obtain

[
dλ

dτ1

]–1

=
h511(λ)
h512(λ)

–
τ1

λ
, (31)

where

h511(λ) = 5λ4 + 4A4λ
3 + 3A3λ

2 + 2A2λ + A1

+
(
4B4λ

3 + 3B3λ
2 + 2B2λ + B1

)
e–λτ1

+ (C1 – τ2C0 – τ2C1λ)e–λ(τ1+τ2),

h512(λ) =
(
B4λ

5 + B3λ
4 + B2λ

3 + B1λ
2 + B0λ

)
e–λτ1

+
(
C1λ

2 + C0λ
)
e–λ(τ1+τ2).

Thus,

Re

[
dλ

dτ1

]–1

τ1=τ∗
10

=
F51(ω∗

10) × F53(ω∗
10) + F52(ω∗

10) × F54(ω∗
10)

F2
53(ω∗

10) + F2
54(ω∗

10)
, (32)

with

F51
(
ω∗

10
)

=
(
B1 – 3B3

(
ω∗

10
)2 + (C1 – τ2C0) cos τ2ω

∗
10

– τ2C1ω
∗
10 sin τ2ω

∗
10

)
cos τ ∗

10ω
∗
10

+
(
2B2ω

∗
10 – 4B4

(
ω∗

10
)3 – (C1 – τ2C0) sin τ2ω

∗
10

– τ2C1ω
∗
10 cos τ2ω

∗
10

)
sin τ ∗

10ω
∗
10 + 5

(
ω∗

10
)4 – 3A3

(
ω∗

10
)2 + A1,

F52
(
ω∗

10
)

=
(
2B2ω

∗
10 – 4B4

(
ω∗

10
)3 – (C1 – τ2C0) sin τ2ω

∗
10

– τ2C1ω
∗
10 cos τ2ω

∗
10

)
cos τ ∗

10ω
∗
10

–
(
B1 – 3B3

(
ω∗

10
)2 + (C1 – τ2C0) cos τ2ω

∗
10

– τ2C1ω
∗
10 sin τ2ω

∗
10

)
sin τ ∗

10ω
∗
10 + 2A2ω

∗
10 – 4A4

(
ω∗

10
)3,

F53
(
ω∗

10
)

=
(
B4

(
ω∗

10
)5 – B2

(
ω∗

10
)3 + B0ω

∗
10 + C0ω

∗
10 cos τ2ω

∗
10

+ C1
(
ω∗

10
)2

sin τ2ω
∗
10

)
sin τ ∗

10ω
∗
10

+
(
B3

(
ω∗

10
)4 – B1

(
ω∗

10
)2 + C0ω

∗
10 sin τ2ω

∗
10

– C1
(
ω∗

10
)2

cos τ2ω
∗
10

)
cos τ ∗

10ω
∗
10,

F54
(
ω∗

10
)

=
(
B4

(
ω∗

10
)5 – B2

(
ω∗

10
)3 + B0ω

∗
10 + C0ω

∗
10 cos τ2ω

∗
10

+ C1
(
ω∗

10
)2

sin τ2ω
∗
10

)
cos τ ∗

10ω
∗
10

–
(
B3

(
ω∗

10
)4 – B1

(
ω∗

10
)2 + C0ω

∗
10 sin τ2ω

∗
10

– C1
(
ω∗

10
)2

cos τ2ω
∗
10

)
sin τ ∗

10ω
∗
10.

Based on the Hopf bifurcation theorem in [26], if (H52): F51(ω∗
10) × F53(ω∗

10) + F52(ω∗
10) ×

F54(ω∗
10) �= 0 holds, we have the following.
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Theorem 4 For system (2), if (H1), (H51), and (H52) hold, and τ2 ∈ (0, τ20), then E∗(S∗, L∗,
B∗, Q∗, R∗) is asymptotically stable for τ ∈ [0, τ ∗

10); a Hopf bifurcation occurs at E∗(S∗, L∗, B∗,
Q∗, R∗) when τ1 = τ ∗

10.

3 Properties of the Hopf bifurcation
In this section, we consider the properties of the Hopf bifurcation when τ1 > 0 and τ2 ∈
(0, τ20). We assume that τ2∗ < τ ∗

10, where τ2∗ ∈ (0, τ20) in this section. Let u1(t) = S(t) – S∗,
u2(t) = L(t) – L∗, u3(t) = B(t) – B∗, u4(t) = Q(t) – Q∗, u5(t) = R(t) – R∗, τ1 = τ ∗

10 + μ, μ ∈ R.
By the transformation t = t/τ1, system (2) becomes

u̇(t) = Lμut + F(μ, ut), (33)

where ut = (u1(t), u2(t), u3(t), u4(t), u5(t))T = (S(t), L(t), B(t), Q(t), R(t))T ∈ R5, ut(θ ) =
u(t + θ ) ∈ C([–1, 0], R5), and Lμ : C → R5, F(μ, ut) → R5 are defined as follows:

Lμφ = (τ0 + μ)
(

M1φ(0) + M3φ

(

–
τ2∗
τ ∗

10

)

+ M2(–1)
)

,

and

F(μ,φ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β(φ1(0)φ2(0) + φ1(0)φ3(0))
β(φ1(0)φ2(0) + φ1(0)φ3(0))

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 0 a15

a21 a22 a23 0 0
0 0 a33 0 0
0 0 a43 a44 0
0 0 0 0 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 b22 0 0 0
0 b32 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 c53 c54 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then there exists a function η(θ ,μ) in θ ∈ [–1, 0] such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ), φ ∈ C. (34)
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In fact,

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(τ ∗
10 + μ)(M1 + M2 + M3), θ = 0,

(τ ∗
10 + μ)(M2 + M3), θ ∈ [– τ2∗

τ∗
10

, 0),
(τ ∗

10 + μ)M3, θ ∈ (–1, – τ2∗
τ∗

10
),

0, θ = –1.

For φ ∈ C([–1, 0], R5), we set

A(μ)φ =

{ dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,μ)φ(θ ), θ = 0,

and

R(μ)φ =

{
0, –1 ≤ θ < 0,
F(μ,φ), θ = 0.

Then system (33) becomes

u̇(t) = A(μ)ut + R(μ)ut . (35)

For ϕ ∈ C1([0, 1], (R5)∗), define

A∗(ϕ) =

{
– dϕ(s)

ds , 0 < s ≤ 1,
∫ 0

–1 dηT (s, 0)ϕ(–s), s = 0,

and define

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (36)

where η(θ ) = η(θ , 0).
According to the discussion above, A(0) and A∗(0) are adjoint operators. And ±iω∗

10 are
the eigenvalues of A(0); they are also the eigenvalues of A∗(0).

Let q(θ ) = (1, q2, q3, q4, q5)T eiω∗
10τ∗

10θ and q∗(s) = (1, q∗
2, q∗

3, q∗
4, q∗

5)eiω∗
10τ∗

10s be the eigenvector
of A(0) and A∗(0) corresponding to +iω∗

10τ
∗
10 and –iω∗

10τ
∗
10, respectively. Then

q2 =
a21 + a23q3

iω∗
10 – a22 – b22e–iτ∗

10ω∗
10

, q3 =
b32e–iτ∗

10ω∗
10

iω∗
10 – a33

,

q4 =
(iω∗

10 – a55)q5 – c53e–iτ2∗ω∗
10

c54e–iτ2∗ω∗
10

, q5 =
iω∗

10 – a11 – a12q2 – a13q3

a15
,

q∗
2 = –

iω∗
10 + a11

a21
, q∗

3 = –
(iω∗

10 + a22 + b22eiτ2∗ω∗
10 )q2 + a12

b32eiτ2∗ω∗
10

,

q∗
4 =

c54(iω∗
10 + a55)eiτ2∗ω∗

10

a55(iω∗
10 + a44)

, q∗
5 = –

iω∗
10 + a15

a55
.
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Using Eq. (36), we can get

〈
q∗(s), q(θ )

〉
= D̄

[
1 + q2q̄∗

2 + q3q̄∗
3 + q4q̄∗

4 + q5q̄∗
5

+ τ ∗
10e–iτ∗

10ω∗
10 q2

(
b22q̄∗

2 + b32q̄∗
3
)

+ τ2∗e–iτ2∗ω∗
10 q∗

5(c53q3 + c54q4)
]
.

We choose

D̄ =
[
1 + q2q̄∗

2 + q3q̄∗
3 + q4q̄∗

4 + q5q̄∗
5

+ τ ∗
10e–iτ∗

10ω∗
10 q2

(
b22q̄∗

2 + b32q̄∗
3
)

+ τ2∗e–iτ2∗ω∗
10 q∗

5(c53q3 + c54q4)
]–1

such that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Following the algorithms introduced in [26] and using a computation process similar to

that in [27–29], we obtain

g20 = 2τ ∗
10D̄β

(
q̄∗

2 – 1
)
(q2 + q3),

g11 = τ ∗
10D̄β

(
q̄∗

2 – 1
)(

Re{q2} + Re{q3}
)
,

g02 = 2τ ∗
10D̄β

(
q̄∗

2 – 1
)
(q̄2 + q̄3),

g21 = 2βτ ∗
10D̄

(
q̄∗

2 – 1
)
(

W (1)
11 (0)q2 +

1
2

W (1)
20 (0)q̄2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

+ W (1)
11 (0)q3 +

1
2

W (1)
20 (0)q̄3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)

,

with

W20(θ ) =
ig20q(0)
τ ∗

10ω
∗
10

eiτ∗
10ω∗

10θ +
iḡ02q̄(0)
3τ ∗

10ω
∗
10

e–iτ∗
10ω∗

10θ + E1e2iτ∗
10ω∗

10θ ,

W11(θ ) = –
ig11q(0)
τ ∗

10ω
∗
10

eiτ∗
10ω∗

10θ +
iḡ11q̄(0)
τ ∗

10ω
∗
10

e–iτ∗
10ω∗

10θ + E2,

where E1 and E2 can be determined as follows:

E1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a′
11 –a12 –a13 0 –a15

–a21 a′
22 –a23 0 0

0 –b32e–2iτ∗
10ω∗

10 a′
33 0 0

0 0 –a43 a′
44 0

0 0 –c53e–2iτ2∗ω∗
10 –c54e–2iτ2∗ω∗

10 a′
55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β(q2 + q3)
β(q2 + q3)

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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E2 = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 a13 0 a15

a21 a22 + b22 a23 0 0
0 b32 a33 0 0
0 0 a43 a44 0
0 0 c53 c54 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β(Re{q2} + Re{q3})
β(Re{q2} + Re{q3})

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

a′
11 = 2iω∗

10 – a11,

a′
22 = 2iω∗

10 – a22 – b22e–2iτ∗
10ω∗

10 ,

a′
33 = 2iω∗

10 – a33,

a′
44 = 2iω∗

10 – a44,

a′
55 = 2iω∗

10 – a55.

Then we can obtain

C1(0) =
i

2τ ∗
10ω

∗
10

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
, (37)

μ2 = –
Re{C1(0)}
Re{λ′(τ ∗

10)} , (38)

β2 = 2Re
{

C1(0)
}

, (39)

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ ∗

10)}
τ ∗

10ω
∗
10

. (40)

In conclusion, we have the following results.

Theorem 5 Let E∗(S∗, L∗, B∗, Q∗, R∗) be the viral equilibrium of system (2). (i) The Hopf
bifurcation at the viral equilibrium E∗(S∗, L∗, B∗, Q∗, R∗) is supercritical if μ2 > 0 and sub-
critical if μ2 < 0; (ii) the bifurcating periodic solutions are stable if β2 < 0 and unstable if
β2 > 0; (iii) the period of the bifurcating periodic solutions increases if T2 > 0 and decreases
if T2 < 0.

4 Numerical simulations
In this section, we shall carry out some numerical simulations for illustrating our theoret-
ical analysis. By extracting the same values from [24], we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 0.02 – 0.3S(t)(L(t) + B(t)) + 0.3R(t) – 0.02S(t),

dL(t)
dt = 0.3S(t)(L(t) + B(t)) – 0.02L(t) – 0.3L(t – τ1),

dB(t)
dt = 0.3L(t – τ1) – 0.72B(t),

dQ(t)
dt = 0.1B(t) – 0.32Q(t),

dR(t)
dt = 0.1Q(t – τ2) – 0.32R(t) + 0.4B(t – τ2).

(41)

By direct computation, using Matlab software package, we get R0 = 1.3281. Then the
unique viral equilibrium E∗(0.7530, 0.0326, 0.0136, 0.0043, 0.0183) is obtained. Also, we
know that condition (H1) is satisfied based on the analysis in [24].
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Figure 1 Dynamic behavior of system (41): projection on S-B-R with τ1 = 4.3762

Figure 2 Dynamic behavior of system (41): projection on S-B-R with τ1 = 4.5342

Figure 3 Dynamic behavior of system (41): projection on S-B-R with τ2 = 48.2308

Firstly, one can obtain ω10 = 1.0921, τ10 = 4.5186 by some complicated computations.
Based on Theorem 1, we know that the viral equilibrium E∗(0.7530, 0.0326, 0.0136, 0.0043,
0.0183) is asymptotically stable for τ1 < τ10 = 4.5186. E∗(0.7530, 0.0326, 0.0136, 0.0043,
0.0183) loses its stability and a Hopf bifurcation occurs when τ1 > τ10 = 4.5186. Simula-
tions can be shown as in Figs. 1–2. Similarly, we have ω20 = 0.5499, τ20 = 53.3616. The
corresponding dynamical behavior of system (41) can be depicted in Figs. 3–4.
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Figure 4 Dynamic behavior of system (41): projection on S-B-R with τ2 = 68.4658

Figure 5 Dynamic behavior of system (41): projection on S-B-R with τ = 4.0628

Figure 6 Dynamic behavior of system (41): projection on S-B-R with τ = 4.3645

Secondly, by computing, we obtain ω0 = 1.2030, τ0 = 4.2686 for τ1 = τ2 = τ > 0. By Theo-
rem 3, the viral equilibrium E∗(0.7530, 0.0326, 0.0136, 0.0043, 0.0183) is asymptotically sta-
ble for τ < τ0. However, E∗(0.7530, 0.0326, 0.0136, 0.0043, 0.0183) becomes unstable and a
Hopf bifurcation occurs, when τ2 passes through τ0 = 4.2686. Dynamical behavior of sys-
tem (41) in this case can be illustrated by Figs. 5–6.

Lastly, we obtain ω∗
10 = 2.0254, τ ∗

10 = 1.0845 for τ1 > 0 and τ2 = 42.5 ∈ (0, τ20). As is shown
in Fig. 7, the viral equilibrium E∗(0.7530, 0.0326, 0.0136, 0.0043, 0.0183) is asymptotically
stable when τ1 = 0.8345 < τ ∗

10 = 1.0845. However, E∗(0.7530, 0.0326, 0.0136, 0.0043, 0.0183)
will lose its stability and a Hopf bifurcation occurs once τ1 > τ ∗

10 = 1.0845, which can be
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Figure 7 Dynamic behavior of system (41): projection on S-B-R with τ2 = 42.5 ∈ (0,τ20) and τ1 = 0.8345

Figure 8 Dynamic behavior of system (41): projection on S-B-R with τ2 = 42.5 ∈ (0,τ20) and τ1 = 1.7365

exhibited by Fig. 8 with τ1 = 1.7365. Additionally, we obtain C1(0) = –1.9608 + 0.3251i,
β2 = –3.9216 < 0, μ2 = 49.6405 > 0, and T2 = –6.3854 < 0. Based on Theorem 5, we can
conclude that the Hopf bifurcation at τ1 = τ ∗

10 = 1.0845 is supercritical; the bifurcated pe-
riodic solutions are stable and the period of the bifurcated periodic solutions decreases.

5 Conclusions
An epidemic model over the Internet with two delays is investigated in the present paper
by incorporating the time delay due to the latent period of the latent computers in the In-
ternet into the SLBQRS computer virus model considered in the literature [24]. Compared
with the model considered in the literature [24], we not only investigate the effects of the
time delay due to the latent period of the latent computers, but also the effects of the time
delay due to the period that the anti-virus software uses to clean computer viruses in the
breaking and the quarantined computers. Obviously, the computer virus model studied in
the present paper is more general than that considered in the literature [24].

By taking different combinations of the two delays (τ1 and τ2) as the bifurcation parame-
ter, we have successfully studied the local stability of the proposed model and the existence
of the local Hopf bifurcation. It is proved that the propagation of the computer viruses can
be controlled when the delay is below the corresponding critical value and above which
the propagation of the computer viruses will be out of control. For further investigation,
the direction of the Hopf bifurcation and the stability and period of the bifurcated periodic
solutions are also investigated. However, it should be pointed out that the main purpose
of our paper is to investigate the effect of the two delays on system (2), and our study is
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restricted only to the theoretical investigation or experimental studies on the propagation
of computer viruses in networks.

Our further research directions include the possibility of linking the results obtained
in the present paper with the results coming from the networks theory. Especially, the
interest focuses on the impact of the network topology on the propagation of the computer
viruses. We leave this as our near future work.
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