
Xu et al. Advances in Difference Equations  (2018) 2018:103 
https://doi.org/10.1186/s13662-018-1544-8

R E S E A R C H Open Access

Finite difference scheme for multi-term
variable-order fractional diffusion equation
Tao Xu , Shujuan Lü*, Wenping Chen and Hu Chen

*Correspondence: lsj@buaa.edu.cn
School of Mathematics and Systems
Science, Beihang University, Beijing,
P.R. China

Abstract
In this paper, we consider a multi-term variable-order fractional diffusion equation on
a finite domain, which involves the Caputo variable-order time fractional derivative of
order α(x, t) ∈ (0, 1) and the Riesz variable-order space fractional derivatives of order
β(x, t) ∈ (0, 1), γ (x, t) ∈ (1, 2). Approximating the temporal direction derivative by
L1-algorithm and the spatial direction derivative by the standard and shifted
Grünwald method, respectively, a characteristic finite difference scheme is proposed.
The stability and convergence of the difference schemes are analyzed via
mathematical induction. Some numerical experiments are provided to show the
efficiency of the proposed difference schemes.
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1 Introduction
As far as we are concerned, the theory of fractional partial differential equations (FPDE),
as a new and effective mathematical tool, is very popular and important in many scientific
and engineering problems. This is due to the fact that they can well describe the mem-
ory and hereditary properties of different substances [1–5]. For instance, the multi-term
FPDEs have been employed to some models for describing the processes in practice, such
as the oxygen delivery through a capillary to tissues [6], the underlying processes with
loss [7], the anomalous diffusion in highly heterogeneous aquifers and complex viscoelas-
tic materials [8], and so on. For others, one may refer to [1, 9–13].

Recently, researchers have found that many important dynamic processes exhibit
fractional-order behavior that may vary with time and/or space. So it is significant to de-
velop the concept of variable-order calculus. Presently, variable-order calculus has been
applied in many fields such as viscoelastic mechanics [14], geographic data [15], signal
confirmation [16], and diffusion process [17]. Since the kernel of the variable-order oper-
ators has a variable exponent, analytical solutions to variable fractional-order differential
equations are more difficult to obtain. Therefore, the development of numerical methods
to solve variable-order fractional differential equations is an actual and important prob-
lem. Nowadays numerical methods for variable-order fractional differential equations,
which mainly cover finite difference methods [18–26], spectral methods [27–29], matrix
methods [30, 31], reproducing kernel methods [32, 33], and so on, have been studied ex-
tensively by many researchers.
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Roughly speaking, the fractional models can be classified into three principal kinds:
space-fractional differential equation, time-fractional differential equation, and time-
space fractional differential equation. Lately, Shen et al. [18] proposed numerical tech-
niques for the variable-order time fractional diffusion equation. Zhang et al. studied an
implicit Euler numerical method for the time variable fractional-order mobile-immobile
advection-dispersion model in [19]. Lin et al. [20] investigated the stability and conver-
gence of an explicit finite-difference approximation for the variable-order nonlinear frac-
tional diffusion equation. Zhuang et al. [21] proposed explicit and implicit Euler approx-
imations for the variable-order fractional advection-diffusion equation with a nonlinear
source term. Sweilam et al. used an explicit finite difference method to study the variable-
order nonlinear space fractional wave equation [22]. Zhuang et al. [23] proposed an im-
plicit Euler approximation for the time and space variable fractional-order advection-
dispersion model with first-order temporal and spatial accuracy.

But in the existing literature, there is little work on higher-order numerical methods for
the multi-term time-space variable-order fractional differential equations because more
numerical analysis is involved.

In this paper, we consider the following multi-term time-space variable-order fractional
diffusion equations with initial-boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pα,α1,...,αS (C
0Dt)u(x, t) – p(x, t) xRβ(x,t)u(x, t) – q(x, t) xRγ (x,t)u(x, t)

+ c(x, t)u(x, t) = f (x, t), (x, t) ∈ � = (0, L) × (0, T], (1)

u(x, 0) = φ(x), 0 ≤ x ≤ L, (2)

u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T . (3)

Here, the operator Pα,α1,...,αS (C
0Dt)u(x, t) is defined by

Pα,α1,...,αS (C
0Dt)u(x, t) = C

0Dα0(x,t)
t u(x, t) +

S∑

s=1

as(x, t) C
0Dαs(x,t)

t u(x, t),

where C
0Dαs(x,t)

t (s = 0, 1, . . . , S) are left-hand side variable-order Caputo fractional deriva-
tives defined by [21]

C
0Dαs(x,t)

t u(x, t) =
1

�(1 – αs(x, t))

∫ t

0
(t – z)–αs(x,t) ∂u(x, z)

∂z
dz, 0 < αs(x, t) < 1.

0 < αS(x, t) < αS–1(x, t) < · · · < α1(x, t) < α0(x, t), 0 < α ≤ α0(x, t) ≤ α < 1, as(x, t) ≥ 0. The
space fractional derivatives xRβ(x,t),x Rγ (x,t) are generalized Riesz fractional derivatives de-
fined by [20, 21]

xRζ (x,t)u(x, t) = – sec
(
ζ (x, t)π/2

)(
ρ 0Dζ (x,t)

x + σ xDζ (x,t)
L

)
u(x, t).

Here, left-hand side and right-hand side variable-order Riemann–Liouville fractional
derivatives are defined by

Dζ (x,t)
+ u(x, t) =

[
1

�(n – ζ (x, t))
dn

dθn

∫ θ

0
(θ – η)n–ζ (x,t)–1u(η, t) dη

]

θ=x
,
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Dζ (x,t)
– u(x, t) =

[
(–1)n

�(n – ζ (x, t))
dn

dθn

∫ L

θ

(η – θ )n–ζ (x,t)–1u(η, t) dη

]

θ=x
,

where n is a positive integer and n – 1 < ζ (x, t) < n. 1 < β ≤ β(x, t) ≤ β < 2, 0 < γ ≤ γ (x, t) ≤
γ < 1,ρ ≥ 0,σ ≥ 0,ρ + σ = 1, p(x, t) ≥ 0, q(x, t) ≥ 0, c(x, t) ≥ 0. We use L1-algorithm to ap-
proximate the temporal direction derivative, the standard and shifted Grünwald method
to approximate the spatial direction derivative, and propose an unconditionally stable fi-
nite difference scheme. Furthermore, we prove the convergence of the scheme by using
errors estimation method, and the convergence rate of order (τ + h) is obtained.

The remainder of the paper is organized as follows. In Sect. 2, we give some preliminar-
ies, which is necessary for our following analysis. A finite difference scheme for equations
(1)–(3) is proposed, and the unconditional stability and convergence of the approximation
scheme are proved in Sect. 3. Numerical examples are given in Sect. 4 to demonstrate the
effectiveness of the scheme. Finally, we conclude this paper in Sect. 5.

2 Preliminaries and discretization of the diffusion equation
Let tk = kτ , k = 0, 1, 2, . . . , n, xi = ih, i = 0, 1, 2, . . . , m, where τ = T/n and h = L/m are time
and space steps, respectively. For an arbitrary function of two variables u(x, t), we denote
uk

i = u(xi, tk). Let P(x, t) = p(x, t) × (– secβ(x, t)π/2), Q(x, t) = q(x, t) × (– secγ (x, t)π/2).
For a variable-order Caputo derivative, the authors proposed the L1 operator in [19] as

follows:

Lαk
i

τ uk
i =

τ–αk+1
i

�(2 – αk+1
i )

k∑

j=0

(
uk+1–j

i – uk–j
i

)
Gα,k+1

i,j ,

where Gα,k+1
i,j = (j + 1)1–αk+1

i – j1–αk+1
i , and gave the following approximation result.

Lemma 2.1 ([19]) Suppose that ∂2u(x,t)
∂t2 ∈ C(�), 0 < α(x, t) < 1, we have

∣
∣Rαk

i
τ

∣
∣ =

∣
∣C

0Dαk
i

t uk
i – Lαk

i
τ uk

i
∣
∣ ≤ max | ∂2u(xi ,t)

∂t2 |T1–αk+1
i

2�(2 – αk+1
i )

τ .

For a variable-order Grünwald–Letnikov fractional derivative, [21, 34] proposed the fol-
lowing “standard” and “shifted” operators:

+Dζ k
i

h uk
i = h–ζ k

i

i∑

j=0

gj
ζ k

i
uk

i–j, –Dζ k
i

h uk
i = h–ζ k

i

m–i∑

j=0

gj
ζ k

i
uk

i+j,

+Dζ k
i

h uk
i = h–ζ k

i+1

i+1∑

j=0

gj
ζ k

i+1
uk

i+1–j, –Dζ k
i

h uk
i = h–ζ k

i–1

m–i+1∑

j=0

gj
ζ k

i–1
uk

i–1+j,

where gj
ζ k

i
is the Grünwald weights defined by gj

ζ k
i

= �(j–ζ k
i )

�(–ζ k
i )�(j+1)

, j = 0, 1, 2, . . . .
Suppose that the function f (x) is (m – 1)-continuously differentiable in the interval [0, L]

and that f m(x) is integrable in [0, L]. Then, for every ζ (x, t) (0 ≤ m – 1 < ζ (x, t) < m), the
Riemann–Liouville fractional derivative exists and coincides with the Grünwald–Letnikov
fractional derivative [1, 35]. So the Grünwald–Letnikov operator can be used to approxi-
mate the Riemann–Liouville derivative.
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Define the function space as follows:

�1+ζ =
{

u(x, t)
∣
∣
∣ max

0≤t≤T

∫

R

(
1 + |ω|)1+ζ ∣∣F

[
u(t, x)

]∣
∣dω < ∞

}

,

where F[u(t, x)](ω) =
∫

eiωxu(x, t) dx. So the following results can be obtained.

Lemma 2.2 ([21, 34]) For 0 ≤ n – 1 < ξ (x, t) < n, if u(x, t) ∈ �1+ζ and R
0Dξ (x,t)

x u(x, t),
R
xDξ (x,t)

L u(x, t) ∈ C1(�), then we can obtain the “standard” Grünwald approximation

∣
∣Rζ k

i
+

∣
∣ =

∣
∣Dζ k

i
+ uk

i – +Dζ k
i

h uk
i
∣
∣ ≤ Ch,

∣
∣Rζ k

i–
∣
∣ =

∣
∣Dζ k

i– uk
i – –Dζ k

i
h uk

i
∣
∣ ≤ Ch

and the “shifted” Grünwald approximation

∣
∣Rζ k

i
+

∣
∣ =

∣
∣Dζ k

i
+ uk

i – +Dζ k
i

h uk
i
∣
∣ ≤ Ch,

∣
∣Rζ k

i
–

∣
∣ =

∣
∣Dζ k

i
– uk

i – –Dζ k
i

h uk
i
∣
∣ ≤ Ch.

It was shown in [34] that when β ∈ (1, 2) using the “standard” Grünwald formula will be
unconditionally unstable. So we adopt the “shifted” Grünwald formula to approximate the
space fractional derivatives xRβ(x,t)u(x, t) and the “standard” Grünwald formula to approx-
imate the space fractional derivatives xRγ (x,t)u(x, t).

At the end of this section, we give the following discretization schemes for Eq. (1)–(3):

Lαk+1
0i

τ vk+1
i +

S∑

s=1

ak+1
si Lαk+1

si
τ vk+1

i – Pk+1
i

(
ρ –Dβk+1

i
h vk+1

i + σ +Dβk+1
i

h vk+1
i

)

– Qk+1
i

(
ρ –Dγ k+1

i
h vk+1

i + σ +Dγ k+1
i

h vk+1
i

)
+ ck+1

i vk+1
i = f k+1

i ,

i = 0, 1, 2, . . . , m; k = 0, 1, 2, . . . , n – 1.

v0
i = φ(ih), i = 0, 1, 2, . . . , m;

vk
0 = 0, vk

m = 0, k = 0, 1, 2, . . . , n – 1.

(4)

These are linear implicit schemes, each layer of iterative needs to solve a system of linear
algebraic equations. Now we rewrite algorithm (4) as a vector form. To this end, we give
the following notation.

Let bk+1
i = ταk+1

0i �(2 – αk+1
0i ) and

Mk+1
i,j = Gα0,k+1

i,j +
S∑

s=1

�(2 – αk+1
0i )

�(2 – αk+1
si )

ak+1
si

ταk+1
0i –αk+1

si Gαs ,k+1
i,j . (5)

Ek+1
i = (Mk+1

i,0 )–1bk+1
i Pk+1

i , Fk+1
i = (Mk+1

i,0 )–1bk+1
i Qk+1

i , Hk+1
i = (Mk+1

i,0 )–1bk+1
i ck+1

i .
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For i = 1, 2, . . . , m – 1, j = 1, 2, . . . , m – 1, k = 0, 1, 2, . . . , n,

Ak
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Ek
i σh–βk

i–1 gj–i+1
βk

i–1
– Fk

i σh–γ k
i gj–i

γ k
i

, j ≥ i + 2,

–Ek
i (ρh–βk

i+1 g0
βk

i+1
+ σh–βk

i–1 g2
βk

i–1
) – Fk

i σh–γ k
i g1

γ k
i

, j = i + 1,

1 – Ek
i (ρh–βk

i+1 g1
βk

i+1
+ σh–βk

i–1 g1
βk

i–1
) – Fk

i h–γ k
i + Hk

i , j = i,

–Ek
i (ρh–βk

i+1 g2
βk

i+1
+ σh–βk

i–1 g0
βk

i–1
) – Fk

i ρh–γ k
i g1

γ k
i

, j = i – 1,

–Ek
i ρh–βk

i+1 gi–j+1
βk

i+1
– Fk

i ρh–γ k
i gi–j

γ k
i

, j ≤ i – 2.

(6)

For i = 1, 2, . . . , m – 1, k = 1, 2, . . . , n,

Bk
i =

(
Mk

i,0
)–1

k∑

j=1

(
Mk

i,k–j – Mk
i,k–j+1

)
vj

i +
(
Mk

i,0
)–1Mk

i,kv0
i +

(
Mk

i,0
)–1bk

i f k+1
i . (7)

Denote Ak = (Ak
ij), Bk = (Bk

1, Bk
2, . . . , Bk

m–1)T , V k = (vk
1, vk

2, . . . , vk
m–1)T , φ = (φ1,φ2, . . . ,φm–1)T .

Therefore, the discrete scheme (4) can be expressed in the following vector form:

⎧
⎨

⎩

Ak+1V k+1 = Bk+1, k = 0, 1, . . . , n – 1,

V 0 = φ.
(8)

3 Solvability, stability and convergence
In this section, we consider the solvability, stability and convergence of the discrete scheme
(4) or (8). For this purpose, we give the following two lemmas.

Lemma 3.1 Suppose 0 < α ≤ αs(x, t) ≤ α < 1 (s = 0, 1, 2, . . . , S), and Mk
i,j given by (5). Then

Mk
i,j – Mk

i,j+1 > 0, i = 1, 2, . . . , m, j = 0, 1, . . . , k – 1,

(
Mk

i,0
)–1

k∑

j=1

(
Mk

i,k–j – Mk
i,k–j+1

)
+

(
Mk

i,0
)–1Mk

i,k = 1, i = 1, 2, . . . , m,

for k = 1, 2, . . . , n.

Proof Let f (x) = (x + 1)1–α(xi ,tk ) – x1–α(xi ,tk ), we have

f
′
(x) =

(
1 – α(xi, tk)

)[
(x + 1)–α(xi ,tk ) – x–α(xi ,tk )] < 0, x > 0,

so the function f (x) is strictly decreasing. Therefore, for j > 0, we have f (j+1) < f (j), namely

2(j + 1)1–αk
i – j1–αk

i – (j + 2)1–αk
i > 0.

It is easy to see that Mk
i,0 > Mk

i,1. Moreover, for j = 1, . . . , m – 1, we have

Mk
i,k–j – Mk

i,k–j+1

= 2(k – j + 1)1–αk
0i – (k – j)1–αk

0i – (k – j + 2)1–αk
0i
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+
S∑

s=1

�(2 – αk
0i)

�(2 – αk
si)

ak
siτ

αk
0i–αk

si
[
2(k – j + 1)1–αk

si – (k – j)1–αk
si – (k – j + 2)1–αk

si
]

≥ 0.

In addition, noting that (Mk
i,0)–1Mk

i,0 = 1, we can obtain the second formula of the lemma.
The proof is completed. �

Lemma 3.2 ([23]) For 1 < β ≤ β(x, t) ≤ β < 2, 0 < γ ≤ γ (x, t) ≤ γ < 1, the coefficients gj
βk

i

and gj
γ k

i
(i = 1, 2, . . . , m, k = 1, 2, . . . , n) satisfy

g0
βk

i
= 1; g1

βk
i

< 0; gj
βk

i
> 0, (j ≥ 2);

∞∑

j=0

gj
βk

i
= 0;

l∑

j=0

gj
βk

i
< 0, (l ≥ 1).

g0
γ k

i
= 1; gj

γ k
i

< 0, (j ≥ 1);
∞∑

j=0

gj
γ k

i
= 0;

l∑

j=0

gj
γ k

i
> 0, (l ≥ 1).

3.1 Solvability analysis
Using Lemma 3.2 and a simple computation yields

Ak
ii ≥ 1, Ak

ij ≤ 0, (j �= i),
m–1∑

j=1

Ak
ij ≥ 1, i = 1, . . . , m – 1,

∣
∣Ak

ii
∣
∣ –

m–1∑

j=1

∣
∣Ak

ij
∣
∣ = Ak

ii +
m–1∑

j=1

Ak
ij ≥ 1, i = 1, . . . , m – 1.

(9)

Namely, matrix A is strictly diagonally dominant with positive diagonal terms and non-
positive off-diagonal terms. Therefore, matrix A is invertible. So the following theorem
can be obtained.

Theorem 3.1 Scheme (8) has a unique solution.

3.2 Stability analysis
Theorem 3.2 Suppose V k

i , Ṽ k
i are solutions of schemes (4) with the initial values V k

0 , Ṽ k
0 ,

respectively. Then

∥
∥V k – Ṽ k∥∥∞ ≤ C

∥
∥V 0 – Ṽ 0∥∥∞, k = 0, 1, . . . ,

where ‖V k – Ṽ k‖∞ = max1≤i≤m–1 |vk
i – ṽk

i |.

Proof Denote Xk = V k – Ṽ k = (εk
1 , . . . , εk

m–1)T , then

Ak+1Xk+1 = Bk+1, k = 0, 1, . . . , n – 1, (10)

where the component of Bk+1 is

Bk+1
i =

(
Mk+1

i,0
)–1

k∑

j=1

(
Mk+1

i,k–j – Mk+1
i,k–j+1

)
ε

j
i +

(
Mk+1

i,0
)–1Mk+1

i,k ε0
i . (11)
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Now we prove this theorem applying mathematical induction method.
For k = 1, suppose ‖X1‖∞ = |ε1

l |. Considering the lth equation of (10), we have

∣
∣A1

ll
∣
∣
∣
∣ε1

l
∣
∣ =

∣
∣
∣
∣
∣
B1

l –
m–1∑

j=1,j �=l

A1
ljε

1
j

∣
∣
∣
∣
∣
≤ ∣

∣B1
l
∣
∣ +

m–1∑

j=1,j �=l

∣
∣A1

lj
∣
∣
∣
∣ε1

l
∣
∣,

namely

(
∣
∣A1

ll
∣
∣ –

m–1∑

j=1,j �=l

∣
∣A1

lj
∣
∣

)
∣
∣ε1

l
∣
∣ ≤∣

∣B1
l
∣
∣.

Due to (9) and (11), we can obtain

∣
∣ε1

l
∣
∣ ≤ |B1

l |
|A1

ll| –
∑m–1

j=1,j �=l|A1
lj|

≤ ∣
∣B1

l
∣
∣ =

∣
∣ε0

l
∣
∣ ≤ ∥

∥X0∥∥∞.

Assume that ‖Xj‖∞ ≤ ‖X0‖∞ (j = 1, . . . , k), similar to the case of k = 1. Suppose ‖Xk+1‖∞ =
|εk+1

l |, according to (9), (11), and Lemma 3.1, we have

∣
∣εk+1

l
∣
∣ ≤ ∣

∣Bk+1
l

∣
∣

=
(
Mk+1

l,0
)–1

k∑

j=1

(
Mk+1

l,k–j – Mk+1
l,k–j+1

)∣
∣ε

j
l
∣
∣ +

(
Mk+1

l,0
)–1Mk+1

l,k
∣
∣ε0

l
∣
∣

≤ (
Mk+1

l,0
)–1

k∑

j=1

(
Mk+1

l,k–j – Mk+1
l,k–j+1

)∥
∥X0∥∥∞ +

(
Mk+1

l,0
)–1Mk+1

l,k
∥
∥X0∥∥∞

≤ ∥
∥X0∥∥∞.

Due to the principle of mathematical induction, the proof is completed. �

3.3 Convergence analysis
Theorem 3.3 Suppose that problem (1) has a smooth solution u(x, t). Let vk

i be the numer-
ical solution computed by (4). Then there is a positive constant C independent of τ and h
such that

∥
∥uk

i – vk
i
∥
∥∞ ≤ C(τ + h), i = 1, 2, . . . , m – 1; k = 1, 2, . . . , n.

Proof Denote Y k = Uk – Ṽ k = (ηk
1, . . . ,ηk

m–1)T , then according to (1) and (4), we obtain the
following error equation:

Lαk+1
0i

τ ηk+1
i +

S∑

s=1

ak+1
si Lαk+1

si
τ ηk+1

i – Pk+1
i

(
ρ –Dβk+1

i
h ηk+1

i + σ +Dβk+1
i

h ηk+1
i

)

– Qk+1
i

(
ρ –Dγ k+1

i
h ηk+1

i + σ +Dγ k
i

h ηk+1
i

)
+ ck+1

i ηk+1
i = Rk+1

i ,
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where

Rk+1
i = Rαk+1

0i
τ +

S∑

s=1

ak+1
si Rαk+1

si
τ + Rγ k+1

i
+ + Rγ k+1

i– + Rβk+1
i

+ + Rβk+1
i

– .

We rewrite it in the following vector form:

Ak+1Y k+1 = Bk+1, k = 0, 1, . . . , n – 1, (12)

where the component of Bk+1 is

Bk+1
i =

(
Mk+1

i,0
)–1

k∑

j=1

(
Mk+1

i,k–j – Mk+1
i,k–j+1

)
η

j
i +

(
Mk+1

i,0
)–1bk+1

i Rk+1
i , (13)

similar to the proof of Theorem 3.3.
For k = 1, suppose ‖Y 1‖∞ = |η1

l |. From Lemma 2.1, Lemma 2.2, the definitions of Mk
i,j, bk

i
and (13), we have

∣
∣η1

l
∣
∣ ≤ ∣

∣B1
l
∣
∣ =

∣
∣
(
M1

l,0
)–1b1

l R1
l
∣
∣

=

(

1 +
S∑

s=1

�(2 – α1
0l)

�(2 – α1
sl)

a1
slτ

α1
0l–α1

sl

)

τα1
0l�

(
2 – α1

0l
)
R1

l

≤ C(τ + h).

Assume that ‖Y j‖∞ ≤ C(τ + h) (j = 1, . . . , k). Suppose ‖Y k+1‖∞ = |ηk+1
l |. Similar to the case

of k = 1, we have

∣
∣ηk+1

l
∣
∣ ≤ ∣

∣Bk+1
l

∣
∣

=
(
Mk+1

l,0
)–1

k∑

j=1

(
Mk+1

l,k–j – Mk+1
l,k–j+1

)∣
∣η

j
l
∣
∣ +

(
Mk+1

l,0
)–1bk+1

l
∣
∣Rk+1

l
∣
∣

≤ C
(
Mk+1

l,0
)–1(τ + h)

[ k∑

j=1

(
Mk+1

l,k–j – Mk+1
l,k–j+1

)
+ bk+1

l

]

. (14)

By the definitions of Mk+1
i,k and bk+1

i , we have

Mk+1
i,k

bk+1
i

≥ (k + 1)1–αk+1
0i – k1–αk+1

0i

ταk+1
0i �(2 – αk+1

0i )
≥ (1 – αk+1

0i )k–αk+1
0i

ταk+1
0i �(2 – αk+1

0i )
=

(1 – αk+1
0i )

tαk+1
0i

k �(2 – αk+1
0i )

,

namely

bk+1
i ≤ CMk+1

i,k .

Substituting the above inequality into (14), we have

∣
∣ηk+1

l
∣
∣ ≤ C(τ + h)

(
Mk+1

l,0
)–1

( k∑

j=1

(
Mk+1

l,k–j – Mk+1
l,k–j+1

)
+ Mk+1

l,k

)

≤ C(τ + h).
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Table 1 Numerical solution, exact solution, and absolute error at T = 1.0 of (15)

x Numerical solution Exact solution Error

0.1 0.0873 0.0900 0.0027
0.2 0.3196 0.3200 0.0004
0.3 0.6315 0.6300 0.0015
0.4 0.9632 0.9600 0.0032
0.5 1.2542 1.2500 0.0042
0.6 1.4434 1.4400 0.0034
0.7 1.4705 1.4700 0.0005
0.8 1.2764 1.2800 0.0036
0.9 0.8042 0.8100 0.0058

Due to the principle of mathematical induction, the theorem is proved. �

4 Numerical examples
In this section, three examples are presented to illustrate the practical application of our
numerical method. Consider the vectors V k = (vk

0, . . . , vk
m), where vk

i is the approximate
solution for xi = ih, i = 0, 1, . . . , m, at a certain time t, and Uk = (uk

0, . . . , uk
m), where uk

i is the
exact solution. The error is defined by the l∞ norms:

∥
∥V k – Uk∥∥∞ = max

0≤i≤m

∣
∣vk

i – uk
i
∣
∣.

Example 4.1 Consider the following fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0Dα(x,t)

t u(x, t) + 2 cos(β(x, t)π/2)xRβ(x,t)u(x, t) – cos(γ (x, t)π/2)xRγ (x,t)u(x, t)

= f (x, t), (x, t) ∈ � = (0, 1) × (0, T],

u(x, 0) = 5x2(1 – x), 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T ,

(15)

where

f (x, t) =
10x2(1 – x)t2–α(x,t)

�(3 – α(x, t))
– 10

(
t2 + 1

)
[

2x2–β(x,t)

�(3 – β(x, t))
–

6x3–β(x,t)

�(4 – β(x, t))

]

+ 5
(
t2 + 1

)
[

2x2–γ (x,t)

�(3 – γ (x, t))
–

6x3–γ (x,t)

�(4 – γ (x, t))

]

.

We take α(x, t) = 0.8 + 0.01 sin(5xt),β(x, t) = 1.8 + 0.01x2t2,γ (x, t) = 0.8 + 0.01x2 sin t, ρ =
1,σ = 0, τ = h = 0.1. The above problem has the exact solution u(x, t) = 5(t2 + 1)x2(1 – x).

Table 1 lists the maximum errors of the proposed method between the exact solution
and the numerical solution for problem (15) at T = 1. Figure 1 shows the behavior of the
exact solution and the numerical solution of the proposed method at t = 0, t = 0.5, t = 1 for
problem (15), respectively. It can be seen that the numerical solution is in good agreement
with the exact solution. Figure 2 shows 3D-drawing of the numerical solution and the exact
solution of problem (15) at T = 1. We can see that the numerical solution is very similar to
the exact solution. From the results displayed in Table 1 and in Figs. 1 and 2, it is obvious
that the proposed method is efficient and able to give numerical solutions coinciding with
the exact solutions.
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Figure 1 The solution behavior of (15) at t = 0,
t = 0.5, t = 1

Figure 2 Three-dimensional numerical solution
(left) and the exact solution (right) of (15)

Example 4.2 Consider the following fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0Dα(x,t)

t u(x, t) + cos(β(x, t)π/2)xRβ(x,t)u(x, t) + ∂u(x, t)/∂x

= f (x, t), (x, t) ∈ � = (0, 8) × (0, T],

u(x, 0) = x2(8–x)
80 , 0 ≤ x ≤ 8,

u(0, t) = 0, u(8, t) = 0, 0 ≤ t ≤ T ,

(16)

where

f (x, t) =
x2(8 – x)t1–α(x,t)

80�(2 – α(x, t))
–

(t + 1)
80

[
16x2–β(x,t)

�(3 – β(x, t))
–

6x3–β(x,t)

�(4 – β(x, t))

]

+
(t + 1)

80
x(16 – 3x).

We take α(x, t) = 0.5 + 0.01 sin(5xt),β(x, t) = 1.5 + 0.01x2t2,γ (x, t) = 1, ρ = 1,σ = 0, τ =
0.05, h = 0.1. The above problem has the exact solution u(x, t) = (t+1)x2(8–x)

80 .
A comparison of the numerical solution of the proposed method and the exact solution

for problem (16) is listed in Table 2 and is shown in Fig. 3. It can be seen that the proposed
method is in excellent agreement with the exact solution.
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Table 2 Numerical solution, exact solution, and absolute error at T = 1.0 of (16)

x Numerical solution Exact solution Error

0.80 0.0917 0.0864 0.0053
1.60 0.3107 0.3072 0.0035
2.40 0.6056 0.6048 0.0008
3.20 0.9194 0.9216 0.0022
4.00 1.1948 1.2000 0.0052
4.80 1.3739 1.3824 0.0085
5.60 1.3990 1.4112 0.0122
6.40 1.2125 1.2288 0.0163
7.20 0.7597 0.7776 0.0179

Figure 3 The solution behavior of (16) at t = 0,
t = 0.5, t = 1

Example 4.3 Consider the two-term VO fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0Dα(x,t)

t u(x, t) + C
0Dα(x,t)/2

t u(t) – xRβ(x,t)u(x, t) + u(x, t) = f (x, t),

(x, t) ∈ � = (0, 1) × (0, T],

u(x, 0) = x2(1 – x)2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T ,

(17)

where

f (x, t) = 2x2(1 – x)2
[

t2–α(x,t)

�(3 – α(x, t))
+

t2–α(x,t)/2

�(3 – α(x, t)/2)

]

+
sec(β(x, t)π/2)

2
(
1 + t2)

×
[

2(x2–β(x,t) + (1 – x)2–β(x,t))
�(3 – β(x, t))

–
12(x3–β(x,t) + (1 – x)3–β(x,t))

�(4 – β(x, t))

+
24(x4–β(x,t) + (1 – x)4–β(x,t))

�(5 – β(x, t))

]

+
(
1 + t2)x2(1 – x)2.

We take α(x, t) = 1 – 0.5e–xt ,β(x, t) = 1.7 + 0.1e– x2
1000 – t

50 –1, ρ = σ = 1
2 , τ = h = 0.1. The

above problem has the exact solution u(x, t) = (1 + t2)x2(1 – x)2.
Table 3 gives the numerical solution, the exact solution, and the absolute error at T = 1

of (17). Figure 4 shows the solution behavior of (17) at t = 0.25, t = 0.75, t = 1, respectively.
It can be seen that the numerical solution is in good agreement with the exact solution.
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Table 3 Numerical solution,exact solution and absolute error at T = 1.0 of (17)

x Numerical solution Exact solution Error

0.1 0.0167 0.0162 0.0005
0.2 0.0517 0.0512 0.0005
0.3 0.0884 0.0882 0.0002
0.4 0.1148 0.1152 0.0004
0.5 0.1240 0.1250 0.0010
0.6 0.1138 0.1152 0.0014
0.7 0.0869 0.0882 0.0013
0.8 0.0503 0.0512 0.0009
0.9 0.0159 0.0162 0.0003

Figure 4 The solution behavior of (17) at t = 0.25,
t = 0.75, t = 1

5 Conclusion
In this paper, a finite difference scheme has been proposed to solve a multi-term time-
space variable-order fractional diffusion equation. The stability and convergence have
been analyzed by the mathematical induction method. Numerical examples are provided
to show that the finite difference scheme is computationally efficient. The techniques for
the numerical schemes and related numerical analysis can be applied to solve variable-
order fractional (in space and/or in time) partial differential equations.
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