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1 Introduction
Inequalities involving trigonometric functions are used in many applications in various
fields of mathematics such as difference equations and inequalities [1], theory of stability,
theory of approximations, etc. A method called the natural approach, proposed by Mortici
in [2], uses the idea of comparing functions to their corresponding Taylor polynomials.
This method has been successfully applied to prove and approximate a wide category of
trigonometric inequalities [3, 4].

In this paper we extend the ideas of the natural approach by comparing and replacing
functions with their corresponding power series. In particular, we focus on the results of
Mortici in [2] related to Wilker–Cusa–Huygens’s inequalities and give generalizations and
refinements of the inequalities stated in Theorems 1, 2, 3, 4, 5, and 6 in that paper. They
are cited below.

Statement 1 ([2], Theorem 1) For every 0 < x < π/2, we have

–
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x4
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23x6
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Statement 2 ([2], Theorem 2) For every 0 < x < π/2, we have
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Statement 3 ([2], Theorem 3) For every 0 < x < π/2, we have

3 +
(

3
20

x4 –
3

140
x6

)
1

cos x
< 2

sin x
x

+
tan x

x
< 3 +

3
20

x4

cos x
.

Statement 4 ([2], Theorem 4) For every 0 < x < π/2, we have

2 +
(

8x4

45
–

8x6

105

)
1

cos x
<

(
sin x

x

)2

+
tan x

x
< 2 +

8x4

45
1

cos x
.

Statement 5 ([2], Theorem 5) For every 0 < x < π/2, we have

(
x

sin x

)2

+
x

tan x
> 2 +

2
45

x4.

Statement 6 ([2], Theorem 6) For every 0 < x < π/2, we have

3
x

sin x
+ cos x > 4 +

1
10

x4 +
1

210
x6.

2 Preliminaries
First, let us recall some of the well-known power series expansions that will be used in our
proofs.

For x ∈ R, the following power series expansions hold:

sin x =
∞∑

k=0

(–1)k 1
(2k + 1)!

x2k+1, cos x =
∞∑

k=0

(–1)k 1
(2k)!

x2k . (1)

Also, according to [5], for x ∈ R, we have the following power series expansions:

cos3 x =
1
4

∞∑
k=1

(–1)k 32k + 3
(2k)!

x2k (2)

and

sin3 x =
1
4

∞∑
k=1

(–1)k+1 32k+1 – 3
(2k + 1)!

x2k+1. (3)

For x ∈ (0, π
2 ), according to [5], the following series expansions hold:

cosec(x) =
1
x

+
∞∑

k=1

|B2k|(22k – 2)
(2k)!

x2k–1, (4)

cosec2(x) =
1
x2 +

∞∑
k=1

|B2k|(2k – 1)4k

(2k)!
x2k–2, (5)

and

cotan(x) =
1
x

–
∞∑

k=1

|B2k|4k

(2k)!
x2k–1, (6)

where Bi are Bernoulli’s numbers.
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Theorem WD ([6], Theorem 2) Suppose that f (x) is a real function on (a, b), and that n
is a positive integer such that f (k)(a+), f (k)(b–) (k ∈ {0, 1, 2, . . . , n}) exist.

(i) Supposing that (–1)(n)f (n)(x) is increasing on (a, b), then for all x ∈ (a, b) the
following inequality holds:

n–1∑
k=0

f (k)(b–)
k!

(x – b)k +
1

(a – b)n

(
f (a+) –

n–1∑
k=0

(a – b)kf (k)(b–)
k!

)
(x – b)n

< f (x) <
n∑

k=0

f (k)(b–)
k!

(x – b)k . (7)

Furthermore, if (–1)nf (n)(x) is decreasing on (a, b), then the reversed inequality of (7)
holds.

(ii) Supposing that f (n)(x) is increasing on (a, b), then for all x ∈ (a, b) the following
inequality holds:

n–1∑
k=0

f (k)(a+)
k!

(x – a)k +
1

(b – a)n

(
f (b–) –

n–1∑
k=0

(b – a)kf (k)(a+)
k!

)
(x – a)n

> f (x) >
n∑

k=0

f (k)(a+)
k!

(x – a)k . (8)

Furthermore, if f (n)(x) is decreasing on (a, b), then the reversed inequality of (8) holds.

Let us mention that an interesting application of Theorem WD is given in [7], see also [8].

3 Main results
We need the following theorem for the proofs of Theorems 1, 2, 3, and 4.

Proposition 1 Let the series f (x) =
∑∞

k=1(–1)k+1A(k)x2k converge for x ∈ (0, c), c ∈ R+. Sup-
pose that the following statements are true:

(i) If c < 1, then the sequence {A(k)}k∈N is a positive decreasing sequence that converges
to 0.

(ii) If c ≥ 1, then the sequence {A(k)}k∈N is a positive sequence, limk→+∞ c2kA(k) = 0 and
A(k) > c2A(k + 1) for k ≥ 1.

Then, for all x ∈ (0, c) and for all n ∈ N and m ∈ N , we have

2n∑
k=1

(–1)k+1A(k)x2k < f (x) <
2n+1∑
k=1

(–1)k+1A(k)x2k (9)

and
∣∣∣∣∣f (x) –

m∑
k=1

(–1)kA(k)x2k

∣∣∣∣∣ < A(m + 1)x2m+2 < c2m+2A(m + 1). (10)

Proof Suppose that c < 1. Then, for every x ∈ (0, c), the positive sequence {A(k)x2k}k∈N de-
creases monotonically and limk→∞ A(k)x2k = 0. Thus, assertions (9) and (10) immediately
follow from Leibniz’s theorem for the alternating series.
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Suppose now that c ≥ 1. We have

f (x) =
∞∑

k=1

(–1)k+1A(k)x2k

=
∞∑

k=1

(–1)k+1A(k)c2k
(

x
c

)2k

.

Let us introduce the substitution t = x
c in the previous power series and consider the series

∞∑
k=1

(–1)k+1A(k)c2kt2k for t ∈ (0, 1). (11)

For the assumption A(k) > c2A(k + 1), we have

A(k) > c2A(k + 1) ⇐⇒ A(k)c2k > c2k+2A(k + 1) for k ≥ 1.

Hence, we conclude that for every t ∈ (0, 1) power series (11) satisfies Leibniz’s theorem
for the alternating series, and for all n, m ∈ N we have

2n∑
k=1

(–1)k+1A(k)c2kt2k <
∞∑

k=1

(–1)k+1A(k)c2kt2k <
2n+1∑
k=1

(–1)k+1A(k)c2kt2k (12)

and
∣∣∣∣∣

∞∑
k=1

(–1)k+1A(k)c2kt2k –
m∑

k=1

(–1)k+1A(k)c2kt2k

∣∣∣∣∣ < A(m + 1)c2m+2t2m+2

< A(m + 1)c2m+2. (13)

Returning the variable x = tc to (12) and (13) gives the assertions of proposition. �

3.1 Refinements of the inequalities in Statement 1
We propose the following improvement and generalization of Statement 1.

Theorem 1
(i) For every x ∈ (0, π

2 ) and every n ∈ N , we have

2n∑
k=2

(–1)kA(k)x2k < cos x –
(

sin x
x

)3

<
2n+1∑
k=2

(–1)kA(k)x2k , (14)

where

A(k) =
32k+3 – 32k3 – 96k2 – 88k – 27

4(2k + 3)!
.

(ii) For every x ∈ (0, π
2 ) and every m ∈ N , we have the following error estimation:

∣∣∣∣∣cos x –
(

sin x
x

)3

–
m∑

k=1

(–1)kA(k)x2k

∣∣∣∣∣ < A(m + 1)x2m+2. (15)
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Examples Let x ∈ (0, π
2 ).

For n = 1, we get Statement 1.
For n > 1, we have the following new results:
• Taking n = 2 in (14) gives

1
15

x4 +
23

1890
x6 –

41
37,800

x8 < cos x –
(

sin x
x

)3

< –
1

15
x4 +

23
1890

x6 –
41

37,800
x8 +

53
831,600

x10;

• Taking n = 3 in (14) gives

–
1

15
x4 +

23
1890

x6 –
41

37,800
x8 +

53
831,600

x10 –
74,677

27,243,216,000
x12

< cos x –
(

sin x
x

)3

< –
1

15
x4 +

23
1890

x6 –
41

37,800
x8 +

53
831,600

x10

–
74,677

27,243,216,000
x12 +

989
10,897,286,400

x14;

• Taking n = 4 in (14) gives

–
x4

15
+

23x6

1890
–

41x8

37,800
+

53x10

831,600
–

74,677x12

27,243,216,000
+

989x14

10,897,286,400

–
79,649x16

33,345,696,384,000

< cos x –
(

sin x
x

)3

< –
x4

15
+

23x6

1890
–

41x8

37,800
+

53x10

831,600
–

74,677x12

27,243,216,000
+

989x14

10,897,286,400

–
79,649x16

33,345,696,384,000
+

454,007x18

8,869,955,238,144,000

etc.

Proof of Theorem 1 Consider the function

f (x) = cos x –
(

sin x
x

)3

for x ∈
(

0,
π

2

)
.

Based on power series expansions (1) and (3), we have

f (x) =
∞∑

k=1

(–1)kA(k)x2k =
∞∑

k=2

(–1)kA(k)x2k
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for all x ∈ R, where

A(k) =
1
4

32k+3 – 3
(2k + 3)!

–
1

(2k)!
=

32k+3 – 32k3 – 96k2 – 88k – 27
4(2k + 3)!

. (16)

For c = π/2, we have

A(k) > 0 for k ≥ 2, and lim
k→∞

c2kA(k) = 0.

Also,

c2A(k + 1) < A(k) ⇐⇒

32k5 + 240k4 +
(
680 – 8c2)k3 +

(
900 – 45c2)k2 +

(
548 –

161c2

2

)
k – 45c2 +

477
4

<
3(4c2k2 + 18c2k + 20c2 – 9)

4
9k+1.

As the last inequality holds for k ≥ 1, the assertions of Theorem 1 immediately follow from
Proposition 1. �

3.2 Refinements of the inequalities in Statement 2
We propose the following improvement and generalization of Statement 2.

Theorem 2
(i) For every x ∈ (0, π

2 ) and every n ∈ N , we have

2n∑
k=2

(–1)k+1B(k)x2k <
sin x

x
–

cos x + 2
3

<
2n+1∑
k=2

(–1)k+1B(k)x2k , (17)

where

B(k) =
2
3

k – 1
(2k + 1)!

.

(ii) For every x ∈ (0, π
2 ) and every m ∈ N , we have the following error estimation:

∣∣∣∣∣
sin x

x
–

cos x + 2
3

–
m∑

k=0

(–1)k+1B(k)x2k

∣∣∣∣∣ < B(m + 1)x2m+2. (18)

Examples Let x ∈ (0, π
2 ).

For n = 1, we get Statement 2.
For n > 1, we have the following new results:
• Taking n = 2 in (17) gives

–
1

180
x4 +

1
3780

x6 –
1

181,440
x8 <

sin x
x

–
1
3

cos x –
2
3

< –
1

180
x4 +

1
3780

x6 –
1

181,440
x8 +

1
14,968,800

x10;
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• Taking n = 3 in (17) gives

–
x4

180
+

x6

3780
–

x6

181,440
+

x10

14,968,800
–

x12

1,868,106,240

<
sin x

x
–

1
3

cos x –
2
3

< –
x4

180
+

x6

3780
–

x8

181,440
+

x10

14,968,800
–

x12

1,868,106,240
+

x14

326,918,592,000

etc.

Proof of Theorem 2 Consider the function

f (x) =
sin x

x
–

1
3

cos x –
2
3

for x ∈
(

0,
π

2

)
.

Based on power series expansion (1), we have

f (x) = –
2
3

+
∞∑

k=0

(–1)k+1 2
3

k – 1
(2k + 1)!

x2k =
∞∑

k=2

(–1)k+1 2
3

k – 1
(2k + 1)!

x2k .

The sequence {B(k)}k∈N ,k≥2 satisfies the recurrence relation

B(k + 1) =
k

2(k2 – 1)(2k + 3)
B(k).

For c = π/2, we have

B(k) > 0 for k ≥ 2, and lim
k→∞

c2kB(k) = 0.

Also,

c2B(k + 1) < B(k) ⇐⇒
(

c2k
2(k2 – 1)(2k + 3)

– 1
)

· B(k) < 0

⇐⇒ –
4k3 + 6k2 – (c2 + 4)k – 6

2(k2 – 1)(2k + 3)
· B(k) < 0

⇐⇒ –
2(2k3 – 3) + 4k(k – 1) + k(2k – c2)

2(k2 – 1)(2k + 3)
· B(k) < 0.

As the last inequality holds for every k ≥ 2, the assertions of Theorem 2 follow from Propo-
sition 1. �

3.3 Refinements of the inequalities in Statement 3
We propose the following improvement and generalization of Statement 3.

Theorem 3
(i) For every x ∈ (0, π

2 ) and every n ∈ N , we have

3 +
1

cos x

2n+1∑
k=2

(–1)kC(k)x2k < 2
sin x

x
+

tan x
x

< 3 +
1

cos x

2n∑
k=2

(–1)kC(k)x2k , (19)
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where

C(k) = 2
4k – 3k – 1

(2k + 1)!
.

(ii) For every x ∈ (0, π
2 ) and every m ∈ N , m ≥ 2, we have the following error estimation:

∣∣∣∣∣2
sin x

x
+

tan x
x

–

(
3 +

1
cos x

m∑
k=2

(–1)k+1C(k)x2k

)∣∣∣∣∣ < C(m + 1)
x2m+2

cos x
.

Examples Let x ∈ (0, π
2 ).

For n = 1, we get Statement 3.
For n > 1, we have the following new results:
• Taking n = 2 in (19) gives

2 +
1

cos x

(
3

20
x4 –

3
140

x6 +
3

2240
x8 –

1
19,800

x10
)

< 2
sin x

x
+

tan x
x

< 2 +
1

cos x

(
3

20
x4 –

3
140

x6 +
3

2240
x8

)
;

• Taking n = 3 in (19) gives

2 +
1

cos x

(
3

20
x4 –

3
140

x6 +
3

2240
x8 –

1
19,800

x10

+
151

115,315,200
x12 –

101
4,036,032,000

x14
)

< 2
sin x

x
+

tan x
x

< 2 +
1

cos x

(
3

20
x4 –

3
140

x6 +
3

2240
x8 –

1
19,800

x10 +
151

115,315,200
x12

)

etc.

Proof of Theorem 3 Consider the function

f (x) =
sin 2x

x
+

sin x
x

– 3 cos x

for x ∈ (0, π
2 ). Based on power series expansion (1), we have

f (x) =
∞∑

k=0

(–1)k
(

2(2k+1)

(2k + 1)!
+

1
(2k + 1)!

–
3

(2k)!

)
x2k

=
∞∑

k=2

(–1)k2
4k – 3k – 1

(2k + 1)!
x2k
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for x ∈ (0, π
2 ). For c = π/2, we have

C(k) > 0 for k ≥ 2, and lim
k→∞

c2kC(k) = 0.

Also,

c2C(k + 1) < C(k) ⇐⇒

–2
(

12k3 + 38k2 +
(6c2 + 76)k

2
+ 4c2 + 12

)
< 4k+1(2(k + c)(k – c) + 5k + 3

)
.

As the last inequality holds for k ≥ 2, the assertions of Theorem 2 immediately follow from
Proposition 1. �

3.4 Refinements of the inequalities in Statement 4
We propose the following improvement and generalization of Statement 4.

Theorem 4
(i) For every x ∈ (0, π

2 ) and every n ∈ N , we have

2 +
1

cos x

2n+1∑
k=2

(–1)kD(k)x2k <
(

sin x
x

)2

+
tan x

x

< 2 +
1

cos x

2n∑
k=2

(–1)kD(k)x2k , (20)

where

D(k) =
1
4

–9 + 32k+2 – 40k – 32k2

(2k + 2)!
.

(ii) For every x ∈ (0, π
2 ) and every m ∈ N , m ≥ 2, we have the following error estimation:

∣∣∣∣∣
(

sin x
x

)2

+
tan x

x
–

(
2 +

1
cos x

m∑
k=2

(–1)k+1D(k)x2k

)∣∣∣∣∣ < D(m + 1)
x2m+2

cos x
.

Examples Let x ∈ (0, π
2 ).

For n = 1, we get Statement 4.
For n > 1, we have the following new results:
• Taking n = 2 in (20) gives

2 +
1

cos x

(
8

45
x4 –

4
105

x6 +
19

4725
x8 –

37
133,650

x10
)

<
(

sin x
x

)2

+
tan x

x

< 2 +
1

cos x

(
8

45
x4 –

4
105

x6 +
19

4725
x8

)
;
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• Taking n = 3 in (20) gives

2 +
1

cos x

(
8

45
x4 –

4
105

x6 +
19

4725
x8 –

37
133,650

x10

+
283

20,638,800
x12 –

3503
6,810,804,000

x14
)

<
(

sin x
x

)2

+
tan x

x

< 2 +
1

cos x

(
8

45
x4 –

4
105

x6 +
19

4725
x8

–
37

133,650
x10 +

283
20,638,800

x12
)

etc.

Proof of Theorem 4 Consider the function

f (x) =
cos x – cos3 x

x2 +
sin x

x
– 2 cos x for x ∈

(
0,

π

2

)
.

Based on power series expansion (2), we have

f (x) =
∞∑

k=0

(–1)k
(

–
1

(2k + 2)!
+

1
4

3(2k+2) + 3
(2k + 2)!

+
1

(2k + 1)!
–

2
(2k)!

)
x2k

=
∞∑

k=0

(–1)k 9k+1 – (32k2 + 40k + 9)
4(2k + 2)!

x2k

=
∞∑

k=2

(–1)k 9k+1 – (32k2 + 40k + 9)
4(2k + 2)!

x2k .

For c = π/2, we have

D(k) > 0 for k ≥ 2, and lim
k→∞

c2kD(k) = 0.

Also,

c2D(k + 1) < D(k) ⇐⇒

32k4 + 152k3 +
(
245 – 8c2)k2 +

(
303

2
– 26c2

)
k + 27 –

81c2

4

<
1
4

9k+1(4k2 + 14k + 12 – 81c2).

As the last inequality holds for k ≥ 2, the assertions of Theorem 2 immediately follow from
Proposition 1. �
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3.5 Refinements of the inequalities in Statement 5
We prove the following generalization of Statement 5.

Theorem 5 For every x ∈ (0, π
2 ) and m ∈ N , m ≥ 2, the following inequalities hold:

2 +
m–1∑
k=2

|B2k|(2k – 2)4k

(2k)!
x2k +

(
2x
π

)2n
(

π2

4
– 2 –

m–1∑
k=2

|B2k|(2k – 2)4k

(2k)!

(
π

2

)2k
)

>
(

x
sin x

)2

+
x

tan x

> 2 +
m∑

k=2

|B2k|(2k – 2)4k

(2k)!
x2k , (21)

where Bi are Bernoulli’s numbers.

Proof of Theorem 5 Consider the function

f (x) =
(

x
sin x

)2

+
x

tan x
for x ∈

(
0,

π

2

)
.

Based on series expansion (5) and (6), we have

f (x) = x2

(
1
x2 +

∞∑
k=1

|B2k|(2k – 1)4k

(2k)!
x2k–2

)
+ x

(
1
x

–
∞∑

k=1

|B2k|4k

(2k)!
x2k–1

)

= 2 +
∞∑

k=1

|B2k|(2k – 1)4k – 4k

(2k)!
x2k

= 2 +
∞∑

k=2

|B2k|(2k – 2)4k

(2k)!
x2k

> 2 +
m∑

k=2

|B2k|(2k – 2)4k

(2k)!
x2k .

Since all coefficients are positive, by applying Theorem WD, we get the inequalities in the
statement of the theorem. �

Examples For x ∈ (0, π
2 ) and f (x) = ( x

sin x )2 + x
tan x , we show the inequalities for m = 2, 3, 4, 5.

• For m = 2:

2 +
(

2
π

)4(
–2 +

π2

4

)
x4 > f (x) > 2 +

2
45

x4.

On the right-hand side we see the inequality from Statement 5.
• For m = 3:

2 +
2

45
x4 +

(
2
π

)6(
–2 +

π2

4
–

π4

360

)
x6 > f (x) > 2 +

2
45

x4 +
8

945
x6.



Malešević et al. Advances in Difference Equations  (2018) 2018:90 Page 12 of 15

• For m = 4:

2 +
2

45
x4 +

8
945

x6 +
(

2
π

)8(
–2 +

π2

4
–

π4

360
–

π6

7560

)
x8

> f (x) > 2 +
2

45
x4 +

8
945

x6 +
2

1575
x8.

• For m = 5:

2 +
2

45
x4 +

8
945

x6 +
2

1575
x8 +

(
2
π

)10(
–2 +

π2

4
–

π4

360
–

π6

7560
–

π8

201,600

)
x10

> f (x) > 2 +
2

45
x4 +

8
945

x6 +
2

1575
x8 +

16
93,555

x10.

Remark Let us notice that Theorem WD allows for the approximation error to be esti-
mated. The difference between the right-hand side and the left-hand side of the double
inequality in Theorem 5 can be represented by the following function:

Rn(x) =

(
f
(

π

2

)
– 2 –

n∑
k=1

|B2k|(2k – 2)4k

(2k)!

(
π

2

)2k
)(

2x
π

)2n

.

The maximum values of Rn(x) are reached at π
2 , and their values for n = 3, 4, 5 and 6 are

6.97 × 10–2, 2.26 × 10–2, 6.95 × 10–3, and 2.06 × 10–3, respectively.

3.6 Refinements of the inequalities in Statement 6
We propose the following generalization of Statement 6.

Theorem 6 For every x ∈ (0, π
2 ) and m ∈ N , m ≥ 3, the following inequality holds:

4 +
m–1∑
k=1

3|B2k|(22k – 2) + (–1)k

(2k)!
x2k (22)

+
(

2x
π

)2m
(

f
(

π

2

)
– 4 –

m–1∑
k=1

3|B2k|(22k – 2) + (–1)k

(2k)!

(
π

2

)2k
)

(23)

> 3
x

sin x
+ cos x > 4 +

m∑
k=1

3|B2k|(22k – 2) + (–1)k

(2k)!
x2k , (24)

where Bi are Bernoulli’s numbers.

Proof of Theorem 6 Consider the function

f (x) = 3
x

sin x
+ cos x for x ∈

(
0,

π

2

)
.

Based on the series expansion (1) and (4), we have

f (x) = 4 +
∞∑

k=1

3|B2k|(22k – 2) + (–1)k

(2k)!
x2k .
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It is easy to verify that 3|B2k|(22k – 2) > 1 for k ≥ 2, and that it is equal to 1 for k = 1,
therefore all corresponding coefficients are positive. Now, using Theorem WD, we get the
inequalities in the statement of the theorem. �

Examples For x ∈ (0, π
2 ) and f (x) = 3 x

sin x + cos x, we show the inequalities for m = 3, 4, 5, 6.
• For m = 3:

4 +
1

10
x4 +

(
2
π

)6(
–4 +

3π

2
–

π4

160

)
x6 > f (x) > 4 +

1
10

x4 +
1

210
x6.

On the right-hand side we see the inequality from Statement 6.
• For m = 4:

4 +
1

10
x4 +

1
210

x6 +
(

2
π

)8(
–4 +

3π

2
–

π4

160
–

π6

13,440

)
x8

> f (x) > 4 +
1

10
x4 +

1
210

x6 +
11

16,800
x8.

• For m = 5:

4 +
1

10
x4 +

1
210

x6 +
11

16,800
x8

+
(

2
π

)10(
–4 +

3π

2
–

π4

160
–

π6

13,440
–

11π8

4,300,800

)
x10

> f (x) > 4 +
1

10
x4 +

1
210

x6 +
11

16,800
x8 +

53
831,600

x10.

• For m = 6:

4 +
x4

10
+

x6

210
+

11x8

16,800
+

53x10

831,600

+
(

2
π

)12(
–4 +

3π

2
–

π4

160
–

π6

13,440
–

11π8

4,300,800
–

53π10

851,558,400

)
x12

> f (x) > 4 +
x4

10
+

x6

210
+

11x8

16,800
+

53x10

831,600
+

117,911x12

18,162,144,000
.

Remark The difference between the right-hand side and the left-hand side of the double
inequality in Theorem 6 can be represented by the following function:

Rn(x) =

(
f
(

π

2

)
– 4 +

n∑
k=1

3|B2k|(22k – 2) + (–1)k

(2k)!

(
π

2

)2k
)(

2x
π

)2n

.

The maximum values of Rn(x) are reached at π
2 , and their values for n = 3, 4, 5, and 6 are

3.20 × 10–2, 7.78 × 10–3, 1.95 × 10–3, and 4.88 × 10–4, respectively.

4 Conclusion
The idea to compare and replace functions with their corresponding power series to get
more accurate approximations was used in [9, 10], and [7]. Following the same idea, in
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this paper we extended the natural approach. We proposed and proved new inequalities
which represent refinements and generalizations of the inequalities stated in [2], related
to Wilker–Cusa–Huygens’s inequalities.

Note that proofs of the new inequalities (14), (17), (19), (20), (21), and (22) for any fixed
n, m ∈ N can be obtained by substituting x = sin t for t ∈ [0, π

2 ] and using the methods
and algorithms developed in [11] and [12]. However, our approach provides proofs for the
approximation of the corresponding function by the inequality of an arbitrary degree.

The results of the present research can be used to verify as well as to refine a broad
category of inequalities. For example, Bercu ([13], Theorem 2.4) proved the following in-
equalities:

(
x

sin x

)2

+
x

tan x

> 11,220x10 – 205,560x8 – 14,256,000x6 + 512,179,200x4 – 3,157,056,000x2 + 13,716,864,000
242x12 – 8580x10 + 25,560x8 – 1,080,000x6 + 103,680,000x4 – 1,578,528,000x2 + 6,858,432,000

> 2 +
2

45
x4 > 2

for every x ∈ (0, b), where b =
√

240–6
√

1090
17 = 1.5701 . . . < π

2 .
According to Theorem 5, taking m = 7 in (21) gives

(
x

sin x

)2

+
x

tan x
> P7(x) for x ∈

(
0,

π

2

)
,

where

P7(x) = 2 +
7∑

k=2

|B2k|(2k – 2)4k

(2k)!
x2k .

Thus Bercu’s inequality is reduced to the following decidable problem (see [14, 15]): for
every x ∈ (0, π

2 ), it is true that

P7(x)

>
11,220x10 – 205,560, x8 – 14,256,000x6 + 512,179,200x4 – 3,157,056,000x2 + 13,716,864,000

242x12 – 8580x10 + 25,560x8 – 1,080,000x6 + 103,680,000x4 – 1,578,528,000x2 + 6,858,432,000
.

The above inequality is a refinement of the inequality obtained by Bercu. Moreover, the
above inequality shows that Bercu’s inequality holds true over an extended interval (0, π

2 ).
Similarly, Theorems 1, 2, 3, 4, 5, and 6 can be applied to other results and inequalities

from [13, 16], as well as to a broad category of analytical inequalities.
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11. Malešević, B., Makragić, M.: A method for proving some inequalities on mixed trigonometric polynomial functions.

J. Math. Inequal. 10(3), 849–876 (2016)
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