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1 Introduction
In the last few decades, fractional-order differential equations equipped with a variety of
boundary conditions have been studied. The literature on the topic includes the existence
and uniqueness results related to classical, periodic/anti-periodic, nonlocal, multi-point,
and integral boundary conditions, for instance, see [1–18].

In this paper, motivated by the aforementioned works, we consider a more general class
of boundary value problems of Caputo type fractional differential equations and non-
separated type multi-point and multi-strip boundary conditions. Precisely, we investigate
the existence and uniqueness of solutions for the following fractional differential equation:

cDqx(t) = f
(
t, x(t),c Dβx(t)

)
, 0 < β < 1, 1 < q ≤ 2, t ∈ [0, 1], (1.1)

supplemented with the boundary conditions of the form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ax(0) + bx(1) =
∑m–2

i=1 αix(σi) +
∑p–2

j=1 rj
∫ ηi
ξj

x(s) ds,

cx′(0) + dx′(1) =
∑m–2

i=1 δix′(σi) +
∑p–2

j=1 γj
∫ ηj
ξj

x′(s) ds,

0 < σ1 < σ2 < · · · < σm–2 < · · · < ξ1 < η1 < ξ2 < η2 < · · · < ξp–2 < ηp–2 < 1,

(1.2)

where cDq, cDβ denote the Caputo fractional derivatives of order q and β , respectively,
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f is a given continuous function, a, b, c, d are real constants, and αi, δi (i = 1, 2, . . . , m –
2), rj,γj (j = 1, 2, . . . , p – 2) are positive real constants.

Here we remark that the boundary conditions (1.2) can be interpreted in the sense that
the linear combinations of values of the unknown function and its derivative at the end
points of the interval under consideration are proportional to the sum of their respec-
tive multi-point and multi-strip values. It is imperative to mention that nonlocal bound-
ary conditions play a key role in formulating physical, chemical, or other processes in-
volving some peculiarities occurring inside the domain, for instance, see [19]; while the
integral boundary conditions find useful applications in the computational fluid dynam-
ics (CFD) studies of blood flow [20] and regularization of ill-posed parabolic backward
problems in time partial differential equations (e.g., mathematical models for bacterial
self-regularization [21]).

The rest of the paper is organized as follows. We recall some basic concepts of frac-
tional calculus and introduce the integral operator associated with the given problem in
Sect. 2. Existence results, which rely on Schauder’s fixed point theorem, nonlinear alter-
native for single valued maps, and Krasnoselskii’s fixed point theorem, are presented in
Sect. 3. In Sect. 4, we obtain the uniqueness results by means of Boyd and Wong’s fixed
point theorem and Banach’s fixed point theorem together with Hölder’s inequality. Exam-
ples illustrating the obtained results are presented in Sect. 5, and the paper concludes with
some interesting observations in Sect. 6.

2 Preliminaries
First of all, we recall some basic definitions [22]. For α > 0, [α] denotes the integer part of
the real number α.

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 for a locally in-
tegrable real-valued function f on 0 ≤ t < b < ∞ is defined as

Iαy(t) =
1

	(α)

∫ t

0
(t – s)α–1y(s) ds.

Definition 2.2 Let f ∈ L1[a, b], –∞ ≤ a < t < b ≤ +∞ and f ∗Kn–α ∈ W n,1[a, b], n = [α]+1,
α > 0, where W n,1[a, b] is the Sobolev space defined as

W n,1[a, b] =
{

f ∈ L1[a, b] :
dn

dtn f ∈ L1[a, b]
}

.

The Riemann–Liouville fractional derivative Dα
a of order α > 0 (n – 1 < α < n, n ∈ N) is

defined as

Dα
a f (t) =

dn

dtn I1–α
a f (t) =

1
	(n – α)

dn

dtn

∫ t

a
(t – s)n–1–αf (s) ds.

Definition 2.3 If f ∈ Cn[a, b], then the Caputo fractional derivative cDα
a of order α ∈ R

(n – 1 < α < n, n ∈N) is defined as

cDα
a f (t) = I1–α

a f (n)(t) =
1

	 (n – α)

∫ t

a
(t – s)n–1–α f (n) (s)ds.

In passing we remark that the Caputo fractional derivative cDα
a with a = 0 is denoted by

cDα .
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Remark 2.4 (see [22, 23]) (i) If α > 0,β > 0, f ∈ L(0, 1), then

IαIβ f (t) = Iα+β f (t), DαIαf (t) = f (t), DαIβ f (t) = Iβ–αf (t).

(ii) IαDαf (t) = f (t), 0 < α < 1, f ∈ C([0, 1]), and Dαf ∈ C(0, 1) ∩ L(0, 1).

Next, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 2.5 For g ∈ C[0, 1], the solution of the linear fractional differential equation

cDqx(t) = g(t), 1 < q ≤ 2, t ∈ [0, 1], (2.1)

subject to the boundary conditions (1.2) is equivalent to the fractional integral equation

x(t) =
∫ t

0

(t – s)q–1

	(q)
g(s) ds +

(
2t – 
3)

1
2

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
g(s) ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
g(u) du

)
ds – d

∫ 1

0

(1 – s)q–2

	(q – 1)
g(s) ds

]

+
1


2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
g(s) ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
g(u) du

)
ds – b

∫ 1

0

(1 – s)q–1

	(q)
g(s) ds

]

, (2.2)

where


1 = c + d – μ1 �= 0, 
2 = a + b – μ2 �= 0, 
3 = b – μ3, (2.3)

μ1 =
m–2∑

i=1

δi –
p–2∑

j=1

γj(ηj – ξj), μ2 =
m–2∑

i=1

αi –
p–2∑

j=1

rj(ηj – ξj), (2.4)

μ3 =
m–2∑

i=1

αiσi –
p–2∑

j=1

rj
(η2

j – ξ 2
j )

2
. (2.5)

Proof It is well known [22] that the solution of fractional differential equation (2.1) can be
written as

x(t) =
∫ t

0

(t – s)q–1

	(q)
g(s) ds + b0 + b1t, (2.6)

where b0, b1 ∈ R are arbitrary constants. Using the boundary conditions (1.2) together
with (2.6), we find that

b1 =
1


1

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
g(s) ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
g(u) du

)
ds – d

∫ 1

0

(1 – s)q–2

	(q – 1)
g(s) ds

]

, (2.7)
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b0 = –

3


2
b1 +

1

2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
g(s) ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
g(u) du

)
ds – b

∫ 1

0

(1 – s)q–1

	(q)
g(s) ds

]

, (2.8)

where 
k(k = 1, 2, 3) are given by (2.3). Substituting the values given by (2.7) and (2.8)
in (2.6), we obtain (2.2). The converse follows by direct computation. This completes the
proof. �

In the forthcoming analysis, we define the space

X =
{

x|x ∈ C
(
[0, 1],R

)
and cDβx ∈ C

(
[0, 1],R

)}
,

equipped with the norm

‖x‖X = sup
t∈[0,1]

∣∣x(t)
∣∣ + sup

t∈[0,1]

∣∣cDβx(t)
∣∣,

where cDβ denotes the standard Caputo fractional derivative of order 0 < β ≤ 1. As shown
in [24], (X,‖ · ‖X) is a Banach space.

Introduce an operator F : X → X as follows:

F(x)(t) =
∫ t

0

(t – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

+
(
2t – 
3)


1
2

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

]

+
1


2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– b
∫ 1

0

(1 – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

]

, (2.9)

and observe that problem (1.1)–(1.2) has solutions if and only if operator (2.9) has fixed
points. Furthermore, using the value of F ′(x) given by

F ′(x)(t) =
∫ t

0

(t – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds
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+
1


1

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

]

(2.10)

in Definition (2.3), we get

cDβ (Fx)(t) =
∫ t

0

(t – s)–β

	(1 – β)
F ′(x)(s) ds

=
∫ t

0

(t – s)q–β–1

	(q – β)
f
(
s, x(s), cDβx(s)

)
ds

+
1


1

t1–β

	(2 – β)

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

]

. (2.11)

For convenience, we set the notations:

� =
1

	(q + 1)
+ max

t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|σ
q–1
i

	(q)
+

p–2∑

j=1

|γj|
	(q + 1)

∣
∣ηq

j – ξ
q
j
∣
∣ +

|d|
	(q)

]

+
1

|
2|

[m–2∑

i=1

|αi| σ
q
i

	(q + 1)
+

p–2∑

j=1

|rj|
	(q + 2)

∣
∣ηq+1

j – ξ
q+1
j

∣
∣ +

|b|
	(q + 1)

]

, (2.12)

�1 =
1

	(q – β + 1)

+
1

|
1|
1

	(2 – β)

[m–2∑

i=1

|δi|σ
q–1
i

	(q)
+

p–2∑

j=1

|γj|
	(q + 1)

∣∣ηq
j – ξ

q
j
∣∣ +

|d|
	(q)

]

, (2.13)

Z1 =
1

	(q)

(
1 – γ

q – γ

)1–γ

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

1
	(q – 1)

(
1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi|

+
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]

+
1

|
2|
1

	(q)

(
1 – γ

q – γ

)1–γ
[m–2∑

i=1

|αi|

+
p–2∑

j=1

|rj|η
q–γ +1 – ξ q–γ +1

q – γ + 1
+ |b|

]

, γ ∈ (0, q – 1) (2.14)
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and

Z2 =
1

	(q – β)

(
1 – γ

q – β – γ

)1–γ

+
1

|
1|
1

	(2 – β)

(
1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi|

+
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]

. (2.15)

3 Existence results
This section is devoted to the existence results for problem (1.1)–(1.2). Our first existence
result is based on Schauder’s fixed point theorem.

Lemma 3.1 (Schauder’s fixed point theorem [25]) Let U be a closed, convex, and
nonempty subset of a Banach space X. Let P : U → U be a continuous mapping such that
P(U) is a relatively compact subset of X. Then P has at least one fixed point in U .

Theorem 3.2 Assume that f : [0, 1] × R × R → R is a continuous function satisfying the
assumption:

(A1) |f (t, x, y)| ≤ m(t)+d1|x|ρ1 +d2|y|ρ2 , ∀(t, x, y) ∈ [0, 1]×R×R, and m ∈ L
1
γ ([0, 1],R+),

γ ∈ (0, q – 1), di ≥ 0, 0 ≤ ρi < 1, i = 1, 2.
Then the boundary value problem (1.1)–(1.2) has at least one solution on [0, 1].

Proof Denote ‖m‖ = (
∫ 1

0 |m(s)| 1
γ ds)γ . Let Br = {x ∈ X : ‖x‖X ≤ r} with r > 0 to be specified

later. It is clear that Br is a closed, bounded, and convex subset of the Banach space X.
We will show that there exists r > 0 such that the operator F maps Br into Br . For x ∈ Br ,

we have

∣
∣(Fx)(t)

∣
∣

≤
∫ t

0

(t – s)q–1

	(q)
[
m(s) + d1

∣∣x(s)
∣∣ρ1 + d2

∣∣cDβx(s)
∣∣ρ2]ds

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
[
m(s) + d1

∣
∣x(s)

∣
∣ρ1 + d2

∣
∣cDβx(s)

∣
∣ρ2]ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
[
m(u) + d1

∣∣x(u)
∣∣ρ1 + d2

∣∣cDβx(u)
∣∣ρ2]du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
[
m(s) + d1

∣∣x(s)
∣∣ρ1 + d2

∣∣cDβx(s)
∣∣ρ2]ds

]

+
1

|
2|

[m–2∑

i=1

|αi|
∫ σi

0

(σi – s)q–1

	(q)
[
m(s) + d1

∣∣x(s)
∣∣ρ1 + d2

∣∣cDβx(s)
∣∣ρ2]ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
[
m(u) + d1

∣
∣x(u)

∣
∣ρ1 + d2

∣
∣cDβx(u)

∣
∣ρ2]

)
ds

+ |b|
∫ 1

0

(1 – s)q–1

	(q)
[
m(s) + d1

∣
∣x(s)

∣
∣ρ1 + d2

∣
∣cDβx(s)

∣
∣ρ2]ds

]
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≤ ‖m‖
	(q)

(
1 – γ

q – γ

)1–γ

+
d1rρ1 + d2rρ2

	(q + 1)

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

‖m‖
	(q – 1)

[m–2∑

i=1

|δi|
(

1 – γ

q – γ – 1

)1–γ

+
p–2∑

j=1

|γj|
(

1 – γ

q – γ – 1

)1–γ
ηq–γ – ξ q–γ

q – γ
+ |d|

(
1 – γ

q – γ – 1

)1–γ
]

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|σ q–1
i +

p–2∑

j=1

|γj|
q

∣∣ηq
j – ξ

q
j
∣∣ + |d|

]
d1rρ1 + d2rρ2

	(q)

+
1

|
2|
‖m‖
	(q)

[m–2∑

i=1

|αi|
(

1 – γ

q – γ

)1–γ

+
p–2∑

j=1

|rj|
(

1 – γ

q – γ

)1–γ
ηq–γ +1 – ξ q–γ +1

q – γ + 1

+ |b|
(

1 – γ

q – γ

)1–γ
]

+
1

|
2|

[m–2∑

i=1

|αi|σ q
i +

p–2∑

j=1

|rj|
q + 1

∣∣ηq+1
j – ξ

q+1
j

∣∣ + |b|
]

d1rρ1 + d2rρ2

	(q + 1)

and

∣∣(cDβFx
)
(t)

∣∣

≤
∫ t

0

(t – s)q–β–1

	(q – β)
[
m(s) + d1

∣∣x(s)
∣∣ρ1 + d2

∣∣cDβx(s)
∣∣ρ2]ds

+
1

|
1|
t1–β

	(2 – β)

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
[
m(s) + d1

∣∣x(s)
∣∣ρ1 + d2

∣∣cDβx(s)
∣∣ρ2]ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
[
m(u) + d1

∣
∣x(u)

∣
∣ρ1 + d2

∣
∣cDβx(u)

∣
∣ρ2]du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
[
m(s) + d1

∣
∣x(s)

∣
∣ρ1 + d2

∣
∣cDβx(s)

∣
∣ρ2]ds

]

≤ ‖m‖
	(q – β)

(
1 – γ

q – β – γ

)1–γ

+
d1rρ1 + d2rρ2

	(q – β + 1)

+
‖m‖
|
1|

1
	(2 – β)

(
1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi| +
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]

+
1

|
1|
1

	(2 – β)

[m–2∑

i=1

|δi| +
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]
d1rρ1 + d2rρ2

	(q – β + 1)
.

From the above inequalities, we obtain

‖Fx‖X ≤ L + M
[
d1rρ1 + d2rρ2

]
,
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where

L =
‖m‖
	(q)

(
1 – γ

q – γ

)1–γ

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

‖m‖
	(q – 1)

[m–2∑

i=1

|δi|
(

1 – γ

q – γ – 1

)1–γ

+
p–2∑

j=1

|γj|
(

1 – γ

q – γ – 1

)1–γ
ηq–γ – ξ q–γ

q – γ
+ |d|

(
1 – γ

q – γ – 1

)1–γ
]

+
1

|
2|
‖m‖
	(q)

[m–2∑

i=1

|αi|
(

1 – γ

q – γ

)1–γ

+
p–2∑

j=1

|rj|
(

1 – γ

q – γ

)1–γ
ηq–γ +1 – ξ q–γ +1

q – γ + 1

+ |b|
(

1 – γ

q – γ

)1–γ
]

+
‖m‖

	(q – β)

(
1 – γ

q – β – γ

)1–γ

+
‖m‖
|
1|

1
	(2 – β)

(
1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi| +
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]

and

M =
1

	(q + 1)
+ max

t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|σ q–1
i +

p–2∑

j=1

|γj|
q

∣∣ηq
j – ξ

q
j
∣∣ + |d|

]
1

	(q)

+
1

|
2|

[m–2∑

i=1

|αi|σ q
i +

p–2∑

j=1

|rj|
q + 1

∣
∣ηq+1

j – ξ
q+1
j

∣
∣ + |b|

]
1

	(q + 1)
+

1
	(q – β + 1)

+
1

|
1|
1

	(2 – β)

[m–2∑

i=1

|δi| +
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]
1

	(q – β + 1)
.

Let r be a positive number such that

r ≥ max
{

3L, (3Md1)
1

1–ρ1 , (3Md2)
1

1–ρ2
}

.

Then, for any x ∈ Br , it follows that

‖Fx‖X ≤ L + M
[
d1rρ1 + d2rρ2

] ≤ r
3

+
r
3

+
r
3

= r.

In view of the continuity of f , it is easy to verify that F is continuous.
Next, for every bounded subset B̄ of X, we show that the families F(B̄) and cDβF(B̄) are

equicontinuous, where B̄ is any bounded subset of X. Since f is continuous, we can assume
that |f (t, x(t), cDβx(t))| ≤ N for any x ∈ B̄ and t ∈ [0, 1].

Now, for 0 ≤ t1 < t2 ≤ 1, we have

∣∣(Fx)(t2) – (Fx)(t1)
∣∣

≤
∣∣∣
∣

1
	(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s, x(s), cDβx(s)

)
ds

+
1

	(α)

∫ t2

t1

(t2 – s)α–1f
(
s, x(s), cDβx(t)

)
ds

∣
∣∣∣
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+
|t2 – t1|
|
1|

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
f
(
u, x(u), cDβx(u)

)
du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

]

≤ N
	(α + 1)

∣
∣2(t2 – t1)α + tα

1 – tα
2
∣
∣

+
N |t2 – t1|

|
1|

[m–2∑

i=1

|δi|σ
q–1
i

	(q)
+

p–2∑

j=1

|γj|
	(q + 1)

∣∣ηq
j – ξ

q
j
∣∣ +

|d|
	(q)

]

and

∣∣(cDβFx
)
(t2) –

(cDβFx
)
(t1)

∣∣

≤ N
	(q – β + 1)

∣∣2(t2 – t1)q–β + tq–β

1 – tq–β

2
∣∣

+
N

|
1|
|t1–β

2 – t1–β
1 |

	(2 – β)

[m–2∑

i=1

|δi|σ
q–1
i

	(q)
+

p–2∑

j=1

|γj|
	(q + 1)

∣∣ηq
j – ξ

q
j
∣∣ +

|d|
	(q)

]

.

In consequence, we obtain

sup
x∈B̄

∣
∣(Fx)(t2) – (Fx)(t1)

∣
∣ + sup

x∈B̄

∣
∣(cDβFx

)
(t2) –

(cDβFx
)
(t1)

∣
∣ → 0 as t2 → t1,

independent of x ∈ B̄. Therefore the operator F : Br → Br is equicontinuous and uniformly
bounded. Hence, by the Arzelá–Ascoli theorem, it follows that F(Br) is relatively compact
in X. Therefore, the conclusion of Theorem 3.1 applies, and consequently problem (1.1)–
(1.2) has at least one solution on [0, 1]. The proof is completed. �

Corollary 3.3 Let f : [0, 1] × R × R → R be a continuous function such that |f (t, x, y)| ≤
ν(t),∀(t, x, y) ∈ [0, 1] × R × R, where ν ∈ C([0, 1],R+). Then the boundary value problem
(1.1)–(1.2) has at least one solution on [0, 1].

For ρ1 = ρ2 = 1, Theorem 3.2 takes the following form.

Corollary 3.4 Assume that f : [0, 1] ×R×R → R is a continuous function satisfying the
assumption: |f (t, x, y)| ≤ ν(t)+d1|x|+d2|y|,∀(t, x, y) ∈ [0, 1]×R×R, and ν ∈ L

1
γ ([0, 1],R+),

γ ∈ (0, q – 1), di ≥ 0, i = 1, 2. Then problem (1.1)–(1.2) has at least one solution on [0, 1].

In our next result, we make use of Leray–Schauder’s nonlinear alternative to prove the
existence of solutions for problem (1.1)–(1.2).

Theorem 3.5 (Nonlinear alternative for single-valued maps [25]). Let E1 be a closed, con-
vex subset of the Banach space E and U be an open subset of E1 with 0 ∈ U . Suppose that
F : U → E1 is a continuous, compact map, that is, F (E1) is a relatively compact subset of
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E1. Then either F has a fixed point in E1 or there are u ∈ ∂U (the boundary of U in E1) and
λ ∈ (0, 1) such that u = λF (u).

Theorem 3.6 Let f : [0, 1] ×R×R →R be a continuous function. Assume that:
(A2) There exist a function m ∈ L

1
γ ([0, 1],R+), γ ∈ (0, q – 1), and ψi : R+ →R

+, i = 1, 2, is
nondecreasing such that |f (t, x, y)| ≤ m(t)(ψ1(|x|) +ψ2(|y|)),∀(t, x, y) ∈ [0, 1]×R×R;

(A3) There exists a constant M > 0 such that

M
[ψ1(M) + ψ2(M)]‖m‖(Z1 + Z2)

> 1,

where ‖m‖ = (
∫ 1

0 |m(s)| 1
γ ds)γ and Z1, Z2 are defined by (2.14) and (2.15), respectively. Then

problem (1.1)–(1.2) has at least one solution on [0, 1].

Proof Firstly, we show that the operator F : X → X defined by (2.9) maps bounded sets
into bounded sets in the space X. Let Br = {x ∈ X : ‖x‖X ≤ r}, r > 0. For any x ∈ Br , we have

∣∣(Fx)(t)
∣∣

≤
∫ t

0

(t – s)q–1

	(q)
m(s)

[
ψ1

(∣∣x(s)
∣
∣) + ψ2

(∣∣cDβx(s)
∣
∣)]ds

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
m(s)

[
ψ1

(∣∣x(s)
∣∣) + ψ2

(∣∣cDβx(s)
∣∣)]ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
m(u)

[
ψ1

(∣∣x(u)
∣
∣) + ψ2

(∣∣cDβx(u)
∣
∣)]du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
m(s)

[
ψ1

(∣∣x(s)
∣
∣) + ψ2

(∣∣cDβx(s)
∣
∣)]ds

]

+
1

|
2|

[m–2∑

i=1

|αi|
∫ σi

0

(σi – s)q–1

	(q)
m(s)

[
ψ1

(∣∣x(s)
∣
∣) + ψ2

(∣∣cDβx(s)
∣
∣)]ds

+
p–2∑

j=1

|rj|
∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
m(u)

[
ψ1

(∣∣x(u)
∣∣) + ψ2

(∣∣cDβx(u)
∣∣)]

)
ds

+ |b|
∫ 1

0

(1 – s)q–1

	(q)
m(s)

[
ψ1

(∣∣x(s)
∣∣) + ψ2

(∣∣cDβx(s)
∣∣)]ds

]

≤
{

‖m‖
	(q)

(
1 – γ

q – γ

)1–γ

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

‖m‖
	(q – 1)

[m–2∑

i=1

|δi|
(

1 – γ

q – γ – 1

)1–γ

+
p–2∑

j=1

|γj|
(

1 – γ

q – γ – 1

)1–γ
ηq–γ – ξ q–γ

q – γ
+ |d|

(
1 – γ

q – γ – 1

)1–γ
]

+
1

|
2|
‖m‖
	(q)

[m–2∑

i=1

|αi|
(

1 – γ

q – γ

)1–γ

+
p–2∑

j=1

|rj|
(

1 – γ

q – γ

)1–γ
ηq–γ +1 – ξ q–γ +1

q – γ + 1

+ |b|
(

1 – γ

q – γ

)1–γ
]}

[
ψ1(r) + ψ2(r)

]
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and

∣∣(cDβFx
)
(t)

∣∣

≤
∫ t

0

(t – s)q–β–1

	(q – β)
m(s)

[
ψ1

(∣∣x(s)
∣∣) + ψ2

(∣∣cDβx(s)
∣∣)]ds

+
1

|
1|
t1–β

	(2 – β)

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
m(s)

[
ψ1

(∣∣x(s)
∣∣) + ψ2

(∣∣cDβx(s)
∣∣)]ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
m(u)

[
ψ1

(∣∣x(u)
∣∣) + ψ2

(∣∣cDβx(u)
∣∣)]du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
m(s)

[
ψ1

(∣∣x(s)
∣∣) + ψ2

(∣∣cDβx(s)
∣∣)]ds

]

≤
{

‖m‖
	(q – β)

(
1 – γ

q – β – γ

)1–γ

+
‖m‖
|
1|

1
	(2 – β)

×
(

1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi| +
p–2∑

j=1

|γj|η
q–γ – ξ q–γ

q – γ
+ |d|

]}
[
ψ1(r) + ψ2(r)

]
.

From the above inequalities, we find that

‖Fx‖X ≤ [
ψ1(r) + ψ2(r)

]‖m‖(Z1 + Z2).

As established in the proof of Theorem 3.2, one can show that F is equicontinuous on
bounded sets of X. Finally, for λ ∈ (0, 1), let x = λFx. Then it is easy to obtain that

‖x‖X

[ψ1(‖x‖X) + ψ2(‖x‖X)]‖m‖(Z1 + Z2)
≤ 1.

In view of (A3), there exists M such that ‖x‖ �= M. Let us set

V =
{

x ∈ C
(
[0, 1],R

)
: ‖x‖X < M

}
.

Note that the operator F : V → C([0, 1],R) is continuous and completely continuous.
From the choice of V , there is no x ∈ ∂V such that x = λFx for some λ ∈ (0, 1). Conse-
quently, by the nonlinear alternative of Leray–Schauder type (Theorem 3.5), we deduce
that F has a fixed point x ∈ V , which is a solution of problem (1.1)–1.2). This completes
the proof. �

Our last existence result is based on Krasnoselskii’s fixed point theorem.

Lemma 3.7 (Krasnoselskii’s fixed point theorem [26]) Let Y be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ay1 +By2 ∈
Y whenever y1, y2 ∈ Y ; (ii) A is compact and continuous; (iii) B is a contraction mapping.
Then there exists y3 ∈ Y such that y3 = Ay3 + By3.

Theorem 3.8 Let f : [0, 1] ×R×R → R be a continuous function satisfying the following
conditions:
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(A4) |f (t, x1, y1) – f (t, x2, y2)| ≤ m(t)(|x1 – x2| + |y1 – y2|) for t ∈ [0, 1], xi, yi ∈ R, i = 1, 2
and γ ∈ (0, q – 1) and the function m : [0, 1] → R

+ is Lebesgue integrable with power
1
γ

, that is,

m ∈ L
1
γ
(
[0, 1],R+)

with ‖m‖ =
(∫ 1

0

∣
∣m(s)

∣
∣

1
γ ds

)γ

.

(A5) |f (t, x, y)| ≤ m(t),∀(t, x, y) ∈ [0, 1] ×R×R, and m ∈ L
1
γ ([0, 1],R+), γ ∈ (0, q – 1).

Then problem (1.1)–(1.2) has at least one solution on [0, 1] provided that

‖m‖
(

Z1 –
1

	(q)

(
1 – γ

q – γ

)1–γ

+ Z2 –
1

	(q – β)

(
1 – γ

q – β – γ

)1–γ )
< 1, (3.1)

where Z1, Z2 are defined by (2.14) and (2.15), respectively.

Proof Selecting ρ > L, we define Bρ = {x ∈ C : ‖x‖X ≤ ρ} and introduce the operators A
and B on Bρ as follows:

A(x)(t) =
∫ t

0

(t – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

and

B(x)(t) =
(
2t – 
3)


1
2

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
f
(
s, x(s), cDβx(s)

)
ds

]

+
1


2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
f
(
u, x(u), cDβx(u)

)
du

)
ds

– b
∫ 1

0

(1 – s)q–1

	(q)
f
(
s, x(s), cDβx(s)

)
ds

]

.

For any x, y ∈ Bρ , as in the proof of Theorem 3.2, it can be shown that ‖Ax + Bx‖X ≤ L < ρ .
This shows that Ax + By ∈ Bρ . The operator A is completely continuous as in Theorem
(3.2). Using assumption (A5), as in the proof of Theorem 4.5, it can be shown that the
operator B is a contraction with the aid of (3.1). Thus all the assumptions of Lemma 3.7
are satisfied. Hence the conclusion of Lemma 3.7 implies that problem (1.1)–(1.2) has at
least one solution on [0, 1]. �
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4 Uniqueness results
In this section we discuss the uniqueness of solutions for problem (1.1)–(1.2) by using a
variety of fixed point theorems.

Our first result relies on Boyd and Wong’s fixed point theorem. For a quick reference,
we recall it here.

Definition 4.1 Let E be a real Banach space. A nonempty closed set P ⊂ E is said to be a
cone provided that (i) au + bv ∈ P for all u, v ∈ P and all a, b ≥ 0, and (ii) u, –u ∈ P implies
that u = 0.

Definition 4.2 A mapping F acting in a Banach space E is said to be a nonlinear con-
traction if there exists a continuous nondecreasing function � : R+ → R

+ (R+ denotes
the set of nonnegative real numbers) such that �(0) = 0, �(ξ ) < ξ for all ξ > 0 and that
‖Fx – Fy‖ ≤ �(‖x – y‖),∀x, y ∈ E.

Lemma 4.3 (Boyd and Wong) [27]. Let E be a Banach space, and let F : E → E be a non-
linear contraction. Then F has a unique fixed point in E.

Theorem 4.4 Assume that f : [0, 1] × R × R → R is a continuous function satisfying the
condition

∣
∣f (t, x1, y1) – f (t, x2, y2)

∣
∣ ≤ h1(t)

|x1 – x2|
H∗ + |x1 – x2|

+ h2(t)
|y1 – y2|

H∗ + |y1 – y2| , t ∈ (0, 1),

xi, yi ∈R, i = 1, 2, where h1, h2 : (0, 1) →R
+ are continuous functions with

H∗ =
1

� + �1

(‖h1‖ + ‖h2‖
)
,

and �,�1 are respectively defined by (2.12) and (2.13). Then the boundary value problem
(1.1)–(1.2) has a unique solution.

Proof Consider the operator F : X → X defined by (2.9). Let the continuous nondecreas-
ing function � : R+ →R

+ be defined by

�(ξ ) =
H∗ξ

H∗ + ξ
, ∀ξ ≥ 0.

Observe that �(0) = 0 and �(ξ ) < ξ for all ξ > 0.
For x, y ∈ X, we can find that

∣∣f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)∣∣

≤ h1(s)
|x(s) – y(s)|

H∗ + |x(s) – y(s)| + h2(s)
|cDβx(s) – cDβy(s)|

H∗ + |cDβx(s) – cDβy(s)|

≤ ‖h1‖ + ‖h2‖
H∗ �

(‖x – y‖X
)
.
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Then

∣∣(Fx)(t) – (Fy)(t)
∣∣

≤
∣
∣∣
∣∣

∫ t

0

(t – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
(
2t – 
3)


1
2

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
[
f
(
u, x(u), cDβx(u)

)
– f

(
u, y(u), cDβy(u)

)]
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

]

+
1


2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
[
f
(
u, x(u), cDβx(u)

)
– f

(
u, y(u), cDβy(u)

)]
du

)
ds

– b
∫ 1

0

(1 – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

]∣
∣∣
∣∣

≤ �
(‖h1‖ + ‖h2‖

) ‖x – y‖X

H∗ + ‖x – y‖X

and

∣∣(cDβFx
)
(t) –

(cDβFy
)
(t)

∣∣

=

∣
∣∣∣
∣

∫ t

0

(t – s)q–β–1

	(q – β)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
1


1

t1–β

	(2 – β)

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
[
f
(
u, x(u), cDβx(u)

)
– f

(
u, y(u), cDβy(u)

)]
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

]∣∣
∣∣
∣

≤ �1
(‖h1‖ + ‖h2‖

) ‖x – y‖X

H∗ + ‖x – y‖X
.

Then ‖Fx – Fy‖X ≤ �(‖x – y‖X) and F is a nonlinear contraction and it has a unique fixed
point in X by Lemma 4.3. This completes the proof. �

In the following result, we establish the uniqueness of solutions for problem (1.1)–(1.2)
by applying Banach’s fixed point theorem together with Hölder’s inequality.
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Theorem 4.5 Let f : [0, 1] × R × R → R be a continuous function satisfying assumption
(A4). Then there exists a unique solution for problem (1.1)–(1.2) on [0, 1] if

‖m‖(Z1 + Z2) < 1,

where Z1, Z2 are defined by (2.14) and (2.15), respectively.

Proof For x, y ∈ X and for each t ∈ [0, 1], by Hölder’s inequality, we have

∣∣(Fx)(t) – (Fy)(t)
∣∣

≤
∣
∣∣
∣∣

∫ t

0

(t – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
(
2t – 
3)


1
2

[m–2∑

i=1

δi

∫ σi

0

(σi – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
p–2∑

j=1

γj

∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
[
f
(
u, x(u), cDβx(u)

)
– f

(
u, y(u), cDβy(u)

)]
du

)
ds

– d
∫ 1

0

(1 – s)q–2

	(q – 1)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

]

+
1


2

[m–2∑

i=1

αi

∫ σi

0

(σi – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
[
f
(
u, x(u), cDβx(u)

)
– f

(
u, y(u), cDβy(u)

)]
du

)
ds

– b
∫ 1

0

(1 – s)q–1

	(q)
[
f
(
s, x(s), cDβx(s)

)
– f

(
s, y(s), cDβy(s)

)]
ds

]∣
∣∣
∣∣

≤
∫ t

0

(t – s)q–1

	(q)
m(s)

(∣∣x(s) – y(s)
∣
∣ +

∣
∣cDβx(s) – cDβy(s)

∣
∣)ds

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
m(s)

(∣∣x(s) – y(s)
∣∣

+
∣∣cDβx(s) – cDβy(s)

∣∣)ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
m(u)

(∣∣x(u) – y(u)
∣∣ +

∣∣cDβx(u) – cDβy(u)
∣∣)du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
m(s)

(∣∣x(s) – y(s)
∣∣ +

∣∣cDβx(s) – cDβy(s)
∣∣)ds

]

+
1

|
2|

[m–2∑

i=1

|αi|
∫ σi

0

(σi – s)q–1

	(q)
m(s)

(∣∣x(s) – y(s)
∣
∣ +

∣
∣cDβx(s) – cDβy(s)

∣
∣)ds

+
p–2∑

j=1

rj

∫ ηj

ξj

(∫ s

0

(s – u)q–1

	(q)
m(u)

(∣∣x(u) – y(u)
∣
∣ +

∣
∣cDβx(u) – cDβy(u)

∣
∣)du

)
ds
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+ |b|
∫ 1

0

(1 – s)q–1

	(q)
m(s)

(∣∣x(s) – y(s)
∣∣ +

∣∣cDβx(s) – cDβy(s)
∣∣)ds

]

≤ ‖x – y‖X

	(q)

(∫ t

0

(
(t – s)q–1) 1

1–γ ds
)1–γ (∫ 1

0

(
m(s)

)1/γ ds
)γ

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

‖x – y‖X

	(q – 1)

[m–2∑

i=1

|δi|
(∫ σi

0

(
(σi – s)q–2) 1

1–γ ds
)1–γ

×
(∫ 1

0

(
m(s)

)1/γ ds
)γ

+
p–2∑

j=1

|γj|
∫ ηj

ξj

[(∫ s

0

(
(s – u)q–2) 1

1–γ du
)1–γ (∫ 1

0

(
m(u)

)1/γ du
)γ ]

ds

+ |d|
(∫ 1

0

(
(1 – s)q–2) 1

1–γ ds
)1–γ (∫ 1

0

(
m(s)

)1/γ ds
)γ

]

+
1

|
2|
‖x – y‖X

	(q)

[m–2∑

i=1

|αi|
(∫ σi

0

(
(σi – s)q–1) 1

1–γ ds
)1–γ (∫ 1

0

(
m(s)

)1/γ ds
)γ

+
p–2∑

j=1

|rj|
∫ ηj

ξj

[(∫ s

0

(
(s – u)q–1) 1

1–γ du
)1–γ (∫ 1

0

(
m(u)

)1/γ du
)γ ]

ds

+ |b|
(∫ 1

0

(
(1 – s)q–1) 1

1–γ ds
)1–γ (∫ 1

0

(
m(s)

)1/γ ds
)γ

]

≤ ‖m‖‖x – y‖X

	(q)

(
1 – γ

q – γ

)1–γ

+ max
t∈[0,1]

|
2t – 
3|
|
1
2|

‖m‖‖x – y‖X

	(q – 1)

[m–2∑

i=1

|δi|
(

1 – γ

q – γ – 1

)1–γ

+
p–2∑

j=1

|γj|
(

1 – γ

q – γ – 1

)1–γ
ηq–γ – ξ q–γ

q – γ
+ |d|

(
1 – γ

q – γ – 1

)1–γ
]

+
1

|
2|
‖m‖‖x – y‖X

	(q)

[m–2∑

i=1

|αi|
(

1 – γ

q – γ

)1–γ

+
p–2∑

j=1

|rj|
(

1 – γ

q – γ

)1–γ
ηq–γ +1 – ξ q–γ +1

q – γ + 1

+ |b|
(

1 – γ

q – γ

)1–γ
]

= Z1‖m‖‖x – y‖X .

Similarly, we have

∣
∣(cDβFx

)
(t) –

(cDβFy
)
(t)

∣
∣

≤
∫ t

0

(t – s)q–β–1

	(q – β)
m(s)

(∣∣x(s) – y(s)
∣
∣ +

∣
∣cDβx(s) – cDβy(s)

∣
∣)ds

+
1

|
1|
t1–β

	(2 – β)

[m–2∑

i=1

|δi|
∫ σi

0

(σi – s)q–2

	(q – 1)
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× m(s)
(∣∣x(s) – y(s)

∣∣ +
∣∣cDβx(s) – cDβy(s)

∣∣)ds

+
p–2∑

j=1

|γj|
∫ ηj

ξj

(∫ s

0

(s – u)q–2

	(q – 1)
m(u)

(∣∣x(u) – y(u)
∣
∣ +

∣
∣cDβx(u) – cDβy(u)

∣
∣)du

)
ds

+ |d|
∫ 1

0

(1 – s)q–2

	(q – 1)
m(s)

(∣∣x(s) – y(s)
∣
∣ +

∣
∣cDβx(s) – cDβy(s)

∣
∣)ds

]

≤
{

1
	(q – β)

(
1 – γ

q – β – γ

)1–γ

+
1

|
1|
1

	(2 – β)

(
1 – γ

q – γ – 1

)1–γ
[m–2∑

i=1

|δi|

+
p–2∑

j=1

|γj|
η

q–γ

j – ξ
q–γ

j

q – γ
+ |d|

]}

‖m‖‖x – y‖X

= Z2‖m‖‖x – y‖X .

From the above inequalities, we obtain

‖Fx – Fy‖X ≤ (Z1 + Z2)‖m‖‖x – y‖X .

In view of the given condition ‖m‖(Z1 + Z2) < 1, it follows that the mapping F is a con-
traction. Hence, by the Banach fixed point theorem, F has a unique fixed point which is a
unique solution of problem (1.1)–(1.2). This completes the proof. �

Corollary 4.6 Suppose that the continuous function f : [0, 1] × R × R → R satisfies the
following assumption:

(A4)′ |f (t, x1, y1) – f (t, x2, y2)| ≤ L(|x1 – x2| + |y1 – y2|) for t ∈ [0, 1], xi, yi ∈R, i = 1, 2, and
L > 0 is a constant.

If � + �1 < 1, where �,�1 are defined by (2.12) and (2.13), respectively, then the boundary
value problem (1.1)–(1.2) has a unique solution on [0, 1].

5 Examples
Let us consider problem (1.1)–(1.2) with specific data:

q = 3/2, β = 1/2, γ = 1/3 ∈ (0, 1/2), m = 6, p = 5,

a = b = c = d = 1, r1 = 1/24, r2 = 1/12,

r3 = 1/6, α1 = 1/25, α2 = 1/20, α3 = 1/15, α4 = 1/10,

δ1 = 1/20, δ2 = 1/15, δ3 = 1/10,

δ4 = 1/5, γ1 = 1/18, γ2 = 1/9, γ3 = 1/3,

σ1 = 1/16, σ1 = 1/8, σ3 = 3/16, σ4 = 1/4,

ξ1 = 1/2, ξ2 = 19/30, ξ3 = 23/30, η1 = 17/30

η1 = 7/10, η3 = 5/6.

(5.1)
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Using the given values of the parameters in (2.3)–(2.5) and (2.12)–(2.15), we find that

μ1 = 23/60, μ2 = 427/1800, μ3 = 139/4320,


1 = 97/60,
2 = 3173/1800, 
3 = 4181/4320,

� � 1.573224, �1 � 1.951384,

Z1 � 1.911201, Z2 � 3.547288.

(5.2)

In order to illustrate Theorem 3.6, we take

f
(
t, x(t),c Dβx(t)

)
=

(t + 1)2

71/3

(
1
4

+
1

28
sin x(t) +

1
40

cDβx(t)
)

. (5.3)

Clearly, |f (t, x(t),c Dβx(t))| ≤ m(t)(ψ1(|x(t)|) + ψ2(|cDβx(t)|)) with m(t) = (t+1)2

71/3 ,‖m‖ =
( 127

49 )1/3,ψ1(|x(t)|) = 1
4 + |x(t)|

28 ,ψ2(|cDβx(t)|) = |cDβ x(t)|
40 . Thus condition (A2) is satisfied. Then,

from (A3) together with the values of Z1 and Z2 given by (5.2), we find that M > 3.440883.
Consequently, the conclusion of Theorem 3.6 applies and problem (1.1)–(1.2) with (5.1)
and (5.3) has at least one solution on [0, 1].

For the illustration of Theorem 4.5, let us take

f
(
t, x(t),c D1/2x(t)

)
=

1
4(t + 1)2/3

(
1
2

+
|x|

1 + |x| + tan–1(cD1/2x(t)
)
)

(5.4)

in (1.1) and note that

∣∣f
(
t, x1, cD1/2x1

)
– f

(
t, x2, cD1/2x2

)∣∣ ≤ 1
4(t + 1)2/3

(|x1 – x2| +
∣∣cD1/2x1 –c D1/2x2

∣∣).

Here m(t) = 1
4(t+1)2/3 with ‖m‖ = 1

(384)1/3 . Using the values of Z1 and Z2 given by (5.2), we
find that ‖m‖(Z1 + Z2) = 0.750981 < 1. As all the conditions of Theorem 4.5 are satisfied,
therefore there exists a unique solution of problem (1.1)–(1.2) with the data (5.1) and (5.4)
on [0, 1].

Next we demonstrate the application of Corollary 4.6 by choosing a function

f
(
t, x(t),c D1/2x(t)

)
= L

(
1
8

+ |x| +
|cD1/2x(t)|

1 + |cD1/2x(t)|
)

, (5.5)

which is clearly a Lipschitz function with Lipschitz constant L. Observe that the condition
L(� + �1) < 1 is satisfied for 0 < L < 0.283719 (� and �1 are given by (5.2)). Thus, by
Corollary 4.6, problem (1.1)–(1.2) with data (5.1) and (5.5) has a unique solution on [0, 1].

6 Conclusions
We have studied a nonlinear fractional differential equation with nonlinearity depending
on the unknown function together with its lower-order fractional derivative, equipped
with a general type of non-separated boundary conditions involving finite many nonlocal
points and sub-segments of the interval [0, 1]. Several existence and uniqueness results
have been derived by applying different tools of the fixed point theory. Our results are quite
general and give rise to many new cases by assigning different values to the parameters
involved in the problem. For explanation, we enlist some special cases.
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• By fixing rj = 0 = γj, j = 1, . . . , p, in (1.2), our results correspond to the ones for
non-separated multi-point boundary conditions. On the other hand, we obtain the
results for non-separated multi-strip boundary conditions by taking
αj = 0 = δj, j = 1, . . . , p, in (1.2).

• In case we choose rj = γj = αj = δj = 0, j = 1, . . . , p, in (1.2), our results correspond to
periodic/anti-periodic type boundary conditions x(0) = –(b/a)x(1), x′(0) = –(d/c)x′(1).
In particular, we have the results for anti-periodic type boundary conditions when
(b/a) = 1 = (d/c). For more details on anti-periodic fractional order boundary value
problems, see [28].

• Letting a = c = 1, b = d = 0, conditions (1.2) read as

x(0) =
m–2∑

i=1

αix(σi) +
p–2∑

j=1

rj

∫ ηi

ξj

x(s) ds, x′(0) =
m–2∑

i=1

δix′(σi) +
p–2∑

j=1

γj

∫ ηj

ξj

x′(s) ds,

which are initial nonlocal multi-point and multi-strip type conditions. Similarly (1.2)
take the form of terminal nonlocal multi-point and multi-strip type conditions for
a = c = 0, b = d = 1.

• If we take a = c = b = d = 0 in (1.2), then our results correspond to nonlocal
multi-point and multi-strip conditions.

In the nutshell, the boundary value problem studied in this paper is of fairly general nature
and covers a variety of special cases.
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21. Čiegis, R., Bugajev, A.: Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal.,
Model. Control 17, 253–270 (2012)

22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
24. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett.

22, 64–69 (2009)
25. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
26. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
27. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)
28. Agarwal, R.P., Ahmad, B., Alsaedi, A.: Fractional-order differential equations with anti-periodic boundary conditions:

a survey. Bound. Value Probl. 2017, 173 (2017)


	Existence theory for fractional differential equations with non-separated type nonlocal multi-point and multi-strip boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence results
	Uniqueness results
	Examples
	Conclusions
	Acknowledgements
	Funding
	List of abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


