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Abstract
In this paper, we derive a new generalized Volterra–Fredholm integral inequality and
use it to study the dependence of solutions on the initial data for a class of fractional
differential equations with Fredholm integral operators.
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1 Introduction
Integral inequalities provide a pivotal tool in studying boundedness, well-posedness of the
solutions to differential equations and other properties, for example, see [1–5]. In view of
extensive applications of integral inequalities, many researchers [6–8] have contributed
to the development of this important area of research. In 1919, Gronwall [6] proved a
remarkable inequality which has been widely used and attracted considerable attention.
We state it as follows.

Theorem A If

u(t) ≤ h(t) +
∫ t

0
k(ζ )u(ζ ) dζ , t ∈ [0, T),

where k and h are continuous functions on [0, T), T ≤ +∞, and k(t) is a nonnegative func-
tion on [0, T), then u(t) satisfies

u(t) ≤ h(t) +
∫ t

0
h(s)k(s) exp

(∫ t

s
k(ζ ) dζ

)
ds, t ∈ [0, T).

If, in addition, h(t) is a nondecreasing function on [0, T), then u(t) ≤ h(t) exp(
∫ t

0 k(ζ ) dζ ),
t ∈ [0, T).

In 2007, Ye et al. [7] considered a generalized Volterra integral inequality with weakly
singular kernel, which is described as follows.
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Theorem B Let a(t) be a locally integrable nonnegative function on [0, T) (T ≤ +∞), and
g(t) be a nonnegative and nondecreasing continuous function on [0, T) with g(t) ≤ M (M is
a constant), and let u(t) be a locally integrable nonnegative function on [0, T) such that

u(t) ≤ a(t) + g(t)
∫ t

0
(t – s)β–1u(s) ds, β > 0.

Then u(t) satisfies

u(t) ≤ a(t) +
∫ t

0

[ ∞∑
n=1

(g(t)�(β))n

�(nβ)
(t – s)nβ–1a(s)

]
ds, t ∈ [0, T).

For details and recent development of fractional integro-differential equations with
Fredholm integral operators, for instance, see [9–13]. However, the bounds provided by
the available inequalities in analyzing the dependence of solutions on the initial data for
fractional differential equations involving Fredholm integral operators are not adequate.
So it is natural to seek new inequalities to obtain the accurate bounds. In this paper, we
establish a generalized Volterra–Fredholm integral inequality with weakly singular kernel
and show its usefulness by applying it to the study of dependence of solutions on the initial
data for a class of fractional differential equations involving Fredholm integral operators.

2 Preliminaries
In this section, we recall some basic definitions and useful results [14].

Throughout this paper, let [0, T] denote a finite interval and Cm([0, T],R) be the Banach
space of m-times continuously differentiable functions from [0, T] into R. In particular,
C0([0, T],R), written as C([0, T],R), is the Banach space of continuous functions from
[0, T] into R equipped with the maximum norm ‖x‖ = max0≤t≤T |x(t)|.

Definition 2.1 Let [a, b] be a finite interval. The left Riemann–Liouville integral (Iα
a+ x)(t)

of order α > 0 is defined by

(
Iα

a+ x
)
(t) =

1
�(α)

∫ t

a
(t – ζ )α–1x(ζ ) dζ , t > a, (2.1)

where �(·) is the gamma function.

Definition 2.2 Let [a, b] be a finite interval, m < α ≤ m + 1, m ∈ N, and x ∈ Cm+1([a, b]).
The Caputo fractional derivative of order α is defined by

(cDα
a+ x

)
(t) =

1
�(m + 1 – α)

∫ t

a
(t – ζ )m–α dm+1x(ζ )

dζ m+1 dζ , t > a. (2.2)

Definition 2.3 The two-parameter Mittag–Leffler function is defined by

Eβ ,γ (z) =
∞∑

k=0

zk

�(βk + γ )
, β ,γ > 0, z ∈R.
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In particular, when γ = 1, it becomes the one-parameter Mittag–Leffler function, i.e.,
Eβ ,1(z) = Eβ (z).

Now we state a known result, which plays a key role in proving the main result. We do
not provide its proof as it is a special case of Lemma 2.3 in [15].

Lemma 2.1 Let v, w ∈ C([0, T],Rn), f ∈ C([0, T] × R
n,Rn) be such that f (t, x) is nonde-

creasing with respect to the second argument for each t on [0, T] and that

(i) v(t) ≤ v(0) +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
ζ , v(ζ )

)
dζ ,

(ii) w(t) ≥ w(0) +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
ζ , w(ζ )

)
dζ .

If v(0) ≤ w(0), then v(t) ≤ w(t) on t ∈ [0, T].

3 A generalized Volterra–Fredholm integral inequality
In this section, we present a generalized Volterra–Fredholm integral inequality with
weakly singular kernel.

Theorem 3.1 Let α,λ,μ > 0, and g(t) be a continuously differentiable nonnegative function
on [a, b] with a ≤ b ≤ +∞. In addition, assume that u(t) is integrable and nonnegative on
[a, b) such that

u(t) ≤ λ

�(α)

∫ t

a
(t – ζ )α–1u(ζ ) dζ + μ

∫ b

a
u(ζ ) dζ + g(t) (3.1)

for each t ∈ [a, b). If 0 ≤ μ(b – a)Eα,2(λ(b – a)α) < 1, then

u(t) ≤ Eα

(
λ(t – a)α

)
u0 + g(t) – Eα

(
λ(t – a)α

)
g(a)

+ λ

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
g(ζ ) dζ , (3.2)

where

u0 ≤
(

μ

∫ b

a
g(ζ ) dζ – μ(b – a)Eα,2

(
λ(b – a)α

)
g(a)

+ μλ

∫ b

a
(b – ζ )αEα,α+1

(
λ(b – ζ )α

)
g(ζ ) dζ + g(a)

)

/(
1 – μ(b – a)Eα,2

(
λ(b – a)α

))
.

Proof Let

v(t) =
λ

�(α)

∫ t

a
(t – ζ )α–1u(ζ ) dζ + μ

∫ b

a
u(ζ ) dζ + g(t), t ∈ [a, b]. (3.3)

Taking the Caputo derivative of order α on the two sides of equation (3.3), we can obtain

(cDα
a+ v

)
(t) = λu(t) +

(cDα
a+ g

)
(t). (3.4)
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Combining (3.1) and (3.3), we get

(cDα
a+ v

)
(t) ≤ λv(t) +

(cDα
a+ g

)
(t). (3.5)

According to Lemma 2.1, we have

v(t) ≤ Eα

(
λ(t – a)α

)
v(a) +

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)(cDα
a+ g

)
(ζ ) dζ . (3.6)

Note that the second term on the right-hand of inequality (3.6) can be simplified as follows:

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)(cDα
a+ g

)
(ζ ) dζ

=
1

�(1 – α)

∫ t

a
g ′(s) ds

∫ t

s
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
(ζ – s)–α dζ

=
∞∑

k=0

λk

�(kα + 1)

∫ t

a
(t – s)kαg ′(s) ds

=
∫ t

a
g ′(s) ds +

∞∑
k=1

λk

�(kα + 1)

∫ t

a
(t – s)kαg ′(s) ds

= g(t) – g(a) –
∞∑

k=1

λk(t – a)kα

�(kα + 1)
g(a) +

∞∑
k=1

λk

�(kα)

∫ t

a
(t – s)kα–1g(s) ds

= g(t) – Eα

(
λ(t – a)α

)
g(a) + λ

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
g(ζ ) dζ .

Then inequality (3.6) takes the form

v(t) ≤ Eα

(
λ(t –a)α

)
v(a)+g(t)–Eα

(
λ(t –a)α

)
g(a)+λ

∫ t

a
(t –ζ )α–1Eα,α

(
λ(t –ζ )α

)
g(ζ ) dζ .

Then, from (3.1), we have

u(t) ≤ Eα

(
λ(t – a)α

)
v(a) + g(t) – Eα

(
λ(t – a)α

)
g(a)

+ λ

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
g(ζ ) dζ . (3.7)

From (3.3), notice that

v(a) = μ

∫ b

a
u(ζ ) dζ + g(a). (3.8)

Thus, from (3.7), we have the following estimate:

v(a) = μ

∫ b

a
u(ζ ) dζ + g(a)

≤ μ

∫ b

a

(
Eα

(
λ(ζ – a)α

)
v(a) + g(ζ ) – Eα

(
λ(ζ – a)α

)
g(a)
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+ λ

∫ ζ

a
(ζ – s)α–1Eα,α

(
λ(ζ – s)α

)
g(s) ds

)
dζ + g(a)

= μ(b – a)Eα,2
(
λ(b – a)α

)
v(a) + μ

∫ b

a
g(ζ ) dζ – μ(b – a)Eα,2

(
λ(b – a)α

)
g(a)

+ μλ

∫ b

a
(b – ζ )αEα,α+1

(
λ(b – ζ )α

)
g(ζ ) dζ + g(a).

Obviously, for 0 ≤ μ(b – a)Eα,2(λ(b – a)α) < 1, we obtain

v(a) ≤
(

μ

∫ b

a
g(ζ ) dζ – μ(b – a)Eα,2

(
λ(b – a)α

)
g(a)

+ μλ

∫ b

a
(b – ζ )αEα,α+1

(
λ(b – ζ )α

)
g(ζ ) dζ + g(a)

)

/(
1 – μ(b – a)Eα,2

(
λ(b – a)α

))
.

The proof is completed. �

Remark 3.1 Now we consider a special case of Theorem 3.1 with μ = 0, that is, u(t) satisfies
the following relation:

u(t) ≤ λ

�(α)

∫ t

a
(t – ζ )α–1u(ζ ) dζ + g(t) for each t ∈ [a, b).

Then, according to Theorem 3.1, u0 ≤ g(a) and

u(t) ≤ Eα

(
λ(t – a)α

)
g(a) + g(t) – Eα

(
λ(t – a)α

)
g(a)

+ λ

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
g(ζ ) dζ

= g(t) + λ

∫ t

a
(t – ζ )α–1Eα,α

(
λ(t – ζ )α

)
g(ζ ) dζ .

Here, we emphasize that the inequality obtained in Theorem 3.1 coincides with the in-
equality in [7].

4 Applications
In this section, we show the utility of our main result in investigating the dependence of so-
lutions on the initial condition of fractional differential equations with Fredholm integral
operators. Precisely we consider the following initial value problem of Caputo fractional
differential equations:

cDα
0+ x(t) = f

(
t, x(t),

∫ T

0
g
(
t, s, x(·))ds

)
, x(0) = x0 ∈R

n, (4.1)

where 0 < α < 1, t ∈ J = [0, T], f ∈ C([0, T] × R
n × R

n,Rn), g ∈ C([0, T] × [0, T] ×
C([0, T],Rn),Rn), and cDα

0+ denotes the Caputo fractional derivative.
It is easy to show that problem (4.1) is equivalent to the following integral equation:

x(t) = x0 +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
ζ , x(ζ ),

∫ T

0
g
(
ζ , s, x(·))ds

)
dζ . (4.2)
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In order to show that problem (4.1) is well posed, we assume the following condition.

Condition 4.1 There exist nonnegative constants L1, L2, L3 such that

∥∥f (t, u1, v1) – f (t, u2, v2)
∥∥ ≤ L1‖u1 – u2‖ + L2‖v1 – v2‖,

∥∥g(t, s, w1) – g(t, s, w2)
∥∥ ≤ L3‖w1 – w2‖t

for t, s ∈ J , ui, vi ∈ R
n, wi ∈ C([0, T],Rn) (i = 1, 2). In the sequel, ‖x‖t stands for

max0≤s≤t ‖x(s)‖, where ‖ · ‖ is 2-norm in R
n.

Now, we prove the existence and uniqueness of solutions for the initial value prob-
lem (4.1).

Theorem 4.1 Assume that Condition 4.1 holds and that there exists λ > 0 such that
[

L1

λα
+

L2L3Tα

λ�(α + 1)
(
eλT – 1

)]
< 1. (4.3)

Then the iteration sequence {x(k)} defined by

x(k+1)(t) = x0 +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
t, x(k)(t),

∫ T

0
g
(
t, s, x(k)(·))ds

)
(4.4)

converges to a unique solution of problem (4.1).

Proof To investigate the convergence of the iteration sequence, let us introduce the
weighted norm ‖x‖λ,T = maxt∈[0,T] e–λt‖x(t)‖, where λ > 0.

Denote the right-hand side of equation (4.2) by (�x)(t). Then, using Condition 4.1 for
x, x ∈ C1(0, T), we obtain

e–λt∥∥(�x)(t) – (�x)(t)
∥∥ ≤ L1e–λt

�(α)

∫ t

0
(t – ζ )α–1eλζ e–λζ

∥∥x(ζ ) – x(ζ )
∥∥dζ

+
L2L3e–λt

�(α)

∫ t

0
(t – ζ )α–1

∫ T

0
eλse–λs∥∥x(s) – x(s)

∥∥ds dζ

≤ L1e–λt

�(α)
‖x – x‖λ,t

∫ t

0
(t – ζ )α–1eλζ dζ

+
L2L3e–λt

�(α)
‖x – x‖λ,T

∫ t

0
(t – ζ )α–1

∫ T

0
eλs ds dζ . (4.5)

By the definition of gamma function, we have the estimate

∫ t

0
(t – ζ )α–1eλζ dζ ≤ λ–αeλt�(α). (4.6)

Using (4.6) in (4.5), we get

‖�x – �x‖λ,T ≤
(

L1

λα
+

L2L3Tα

λ�(α + 1)
(
eλT – 1

))‖x – x‖λ,T .

This completes the proof. �
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Remark 4.1 In case g is a constant function on [0, T], the iteration sequence {x(k)} pro-
duced by (4.4) converges to a unique solution of (4.1) provided that the parameter λ is
large enough. Alternatively, we can say that the weighted norm technique does not work
well for Fredholm type equation as in the Volterra case.

Theorem 4.2 Assume that Condition 4.1 is satisfied. In addition, suppose that x and y are
two solutions of the initial value problems (4.1) with x(0) = x0, y(0) = y0, x0, y0 ∈R

n.
If

0 <
L2L3Tα+1Eα,2(L1Tα)

�(α + 1)
< 1, (4.7)

then the following inequality holds for t ∈ [0, T]:

∥∥x(t) – y(t)
∥∥ ≤ (

Eα

(
L1tα

)
Q + 1 + L1tαEα,α+1

(
L1tα

))‖x0 – y0‖, (4.8)

where

Q ≤ L2L3Tα+1 + L1L2L3T2α+1Eα,α+2(L1Tα)
�(α + 1) – L2L3Tα+1Eα,2(L1Tα)

. (4.9)

Proof Since x and y are solutions to the initial value problem (4.1) with initial data x(0) =
x0, y(0) = y0, therefore

x(t) = x0 +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
ζ , x(ζ ),

∫ T

0
g
(
ζ , s, x(·))ds

)
dζ , (4.10)

y(t) = y0 +
1

�(α)

∫ t

0
(t – ζ )α–1f

(
ζ , y(ζ ),

∫ T

0
g
(
ζ , s, y(·))ds

)
dζ . (4.11)

Subtracting (4.10) from (4.11) and using Condition 4.1, we obtain

u(t) ≤ ‖x0 – y0‖ +
L1

�(α)

∫ t

0
(t – ζ )α–1u(ζ ) dζ +

L2L3Tα

�(α + 1)

∫ T

0
u(s) ds, (4.12)

where u(t) = ‖x(t) – y(t)‖. A direct application of Theorem 3.1 to (4.12) yields the desired
conclusion. This completes the proof. �
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