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1 Introduction
Since Bohr established the theory of almost periodicity between 1924 and 1926 [1–3],
several mathematicians have contributed in investigating almost periodic (short for a.p.)
functions (see [4–12]) and a.p. sequences (see [7, 8, 11–13]). As the fact that a.p. sequences
admits a number of analog properties of a.p. functions, there is the question how to unify
the theory of a.p. sequences and a.p. functions. Based on the series work of the amended
definition of Bohr a.p. functions on periodic time scales which was derived in 2015 (see
[14–17]), the study on general properties of a.p. functions and a.p. sequences comes true
and simple.

It is interesting to consider the relationship of a.p. functions on time scales to a.p. func-
tions on R. In [7, 8], Corduneanu presented that the existence of a.p. sequence {xn} is
equivalent to the existence of an a.p. function f with f (n) = xn. In [18], Lizama, Mesquita
and Ponce showed a necessary and sufficient condition, which connect a.p. functions on
time scales to a.p. functions on real number set. Recently, Wang and Agarwal [14] investi-
gated the relationship between a.p. on a periodic time scale and local a.p. on a changing-
periodic time scale.

The aim of this paper is to connect Cm-a.p. functions on periodic time scales with Cm-
a.p. functions on real number set. To the best of the author’s knowledge, there is rarely
work studying the relationship between Cm-a.p. functions on time scales and onR. Indeed,
the connection between Cm(T,Rn) (T denotes a time scale) and Cm(R,Rn) is also rarely
considered. Motivated by [14, 15, 18, 19], we consider the connection between Cm-a.p. on
time scales and Cm-a.p. on R in this paper.

The paper is organized as follows: In Sect. 2, we review some properties of periodic time
scales and improved definition of Bohr a.p. functions on periodic time scales. In Sect. 3,
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we amend results of Cm-a.p. functions on periodic time scales. The definition of Cm-a.p.
functions are based on the revised concept of a.p. functions introduced in [15] in 2015. In
Sect. 4, we investigate the relationship of Cm-a.p. on time scales to Cm-a.p. on real number
set. In Sect. 5, we present an example to illustrate the connection theorem.

2 Preliminaries
Let T be a time scale. Notations σ and μ denote the forward jump operator and the grain-
iness function, respectively. For more details of time scales, we refer the reader to [14–18,
20–23].

Definition 2.1 ([15, 22, 23]) Let

� = {τ ∈R : τ ± t ∈ T for t ∈ T}. (2.1)

If � – {0} �= ∅. Then T is called a periodic time scale or a two-way translation invariant
time scale under translations. The set � is called an invariant translations set for T.

Lemma 2.2 ([14, 22]) Suppose that T is a periodic time scale and � is the invariant trans-
lations set for T. Then

(i) supT = +∞ and infT = –∞.
(ii) If τ1, τ2 ∈ �, then τ1 ± τ2 ∈ �.

(iii) � is a closed set.

Obviously, � is a time scale and an Abelian group according to [23, Theorem 3.7]. In
addition, a periodic time scale T implies that T = T

κ by [20, Definition 1.1].
Let A be a subset of R. The notation [a, b]A ([a, b)A, (a, b)A or (a, b]A) denotes the inter-

section of [a, b] ([a, b), (a, b) or (a, b]) and A. For t ∈R, set

t∗ = sup{s ∈ T : s ≤ t}.

Lemma 2.3 ([18]) Suppose that T is a periodic time scale with T �= R, and � is the invari-
ant translations set for T. For τ ∈ �, the following statements hold:

(i) If t ∈R \T, then t + τ ∈R \T.
(ii) If t ∈R, then (t + τ )∗ = t∗ + τ .

(iii) If t ∈ T, then σ (t ± τ ) = σ (t) ± τ .

In the following, we will present the definition of relatively density, which is the key point
in a.p. functions’ definition.

Definition 2.4 ([15]) Suppose that � is defined by (2.1). We call the subset E ⊂ � is rel-
atively dense in �, if there exists a positive l ∈ � such that for a ∈ � the intersection

[a, a + l]� ∩ E �= ∅.

l is called the inclusion length.
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Definition 2.5 ([15]) Suppose that T is a periodic time scale and � is the invariant trans-
lations set for T. A function f ∈ C(T,Rn) is called Bohr a.p. function on T if for any ε > 0
the set

E(ε, f ) =
{
τ ∈ � :

∣∣f (t + τ ) – f (t)
∣∣ < ε for t ∈ T

}

is relatively dense in �.

Remark 2.6 In Definition 2.5, Wang and Agarwal emphasized the fact E(ε, f ) is relatively
dense in the invariant translations set � rather than in the periodic time scale T, which is
different from the earlier definition of Bohr a.p. functions on T.

In fact, if the set E(ε, f )(⊂ �) is relatively dense in T, E(ε, f ) ∩ T = ∅ and consequently
� ∩ T �= ∅. Unfortunately, the case � ∩ T = ∅ maybe holds for some periodic time scales.
For example, consider a periodic time scale as follows:

T =
∞⋃

k=–∞
[3k + 1, 3k + 2],

and its invariant translations set � = 3Z. But T∩ � = ∅, which implies that there are no τ

in E(ε, f ) ∩ T (⊂ (T ∩ �)) such that |f (t + τ ) – f (t)| < ε for t ∈ T. However, it makes sense
for an almost periodic function defined on T with T ∩ � = ∅ (see Example 2.7). Because
of this, the concept of a.p. on time scales is revised in [15].

Example 2.7 Consider a periodic time scale T1 =
⋃∞

k=–∞[k + 1/2, k + 2/3], then its trans-
lations set � = Z and T1 ∩ � = ∅. Set

f (t) = cos t + cos
√

2t for t ∈ T1.

As f (t) is a.p. on R, for every sequence {s′
n} ⊂ Z ⊂ R there exists a subsequence {sn} ⊂

{s′
n} such that {f (t + sn)} converging uniformly for t ∈ R. Thus, {f (t + sn)} converges uni-

formly for t ∈ T ⊂ R. That is, f (t) is Bochner a.p. on T and consequently Bohr a.p. on T

(see Theorem 3.4 in Sect. 3).

Remark 2.8 Example 2.7 is a special case of Theorem 4.1. That is, for a.p. function f on R

there exists a.p. function g on periodic time scale T such that f ≡ g on T.

Remark 2.9 According to Remark 2.6, the intersection set T ∩ � may be an empty set.
However, there are periodic time scales T under � satisfying � ∩ T �= ∅. Some examples
will be given in the following:

(i) Let T = R. Then � = T.
(ii) Let T = hZ, where h > 0. Then � = hZ.

(iii) Let T =
⋃∞

k=–∞[ak, ak + b], where 0 < b < a. Then � = {ka : k ∈ Z}.

3 Cm-Almost periodicity
Employing the concept of a.p. functions introduced by Wang and Agarwal [15] in 2015,
we correct the definition of Cm-a.p. functions in the sense of Bohr on time scales in this
section.
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Let Cm(T,Rn) (m ∈ N ∪ {0}) denote the space of all functions from T to R
n which have

continuous mth �-derivatives on T (C0(T,Rn) = C(T,Rn)). The notation BCm(T,Rn) de-
notes the subset of Cm(T,Rn), which is composed of such functions satisfying

sup
T

m∑

j=0

∣∣f �j
(t)

∣∣ < ∞ for f ∈ BCm(
T,Rn),

where f �0 (t) = f (t). Set

‖f ‖m = sup
T

m∑

j=0

∣∣f �j
(t)

∣∣ for f ∈ BCm(
T,Rn). (3.1)

Then BCm(T,Rn) is a Banach space with the norm ‖ · ‖m.
We make the following assumptions:
(A1) T is a periodic time scale.
(A2) T �= R.
First, we present Cm-a.p. functions in the sense of Bochner, as given in [24].

Definition 3.1 ([24]) Let (A1) hold. A function f ∈ Cm(T,Rn) (m ∈ N∪ {0}) is called Cm-
a.p. in the sense of Bochner, if for any sequence {s′

n} ⊂ �, there exists a subsequence {sn} ⊂
{s′

n} such that f (t + sn) converges in norm ‖ · ‖m uniformly for t ∈ T.
Set

APm(
T,Rn) =

{
f ∈ Cm(

T,Rn) : f is Cm-a.p. functions in the sense of Bochner
}

,

where

AP0(
T,Rn) =

{
f ∈ C

(
T,Rn) : f is for Bochner a.p. functions

}
.

According to [24], APm(T,Rn) is a Banach space with the norm ‖ · ‖m.

Definition 3.2 Let (A1) hold. A function f ∈ Cm(T,Rn) is called Cm-a.p. in the sense of
Bohr, if

Em(ε, f ) =
{
τ ∈ � :

∥∥f (t + τ ) – f (t)
∥∥

m < ε
}

(3.2)

is a relatively dense set in � for all ε > 0.

Remark 3.3 Definition 11 in [24] is corrected by Definition 3.2. Here we emphasize the
set Em(ε, f ) is relatively dense in �, which is different from that in [24]. We explained the
reason in Remark 2.6.

Similar to the proof in [7, 8, 12], the equivalent theorem states:

Theorem 3.4 Assume that (A1) holds. A function f ∈ Cm(T,Rn) is Cm-a.p. in the sense of
Bochner if and only if f is Cm-a.p. in the sense of Bohr.

Thus, in the rest Cm-a.p. will be used to unify Cm-a.p. in the sense of Bohr and Bochner.
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4 The connection
Theorem 4.1 Let (A1) and (A2) hold. Then g ∈ Cm(T,Rn) is Cm-a.p. if and only if there
exists a Cm-a.p. function f ∈ Cm(R,Rn) such that f (p)(t) = g�p (t) for t ∈ T and p = 0, . . . , m.
Moreover,

f (t) =

⎧
⎨

⎩

∑m
k=0 g�k (t∗)l0,k(t) +

∑m
k=0 g�k (σ (t∗))l1,k(t), t ∈R \T,

g(t), t ∈ T,
(4.1)

where

l0,k(t) =
m–k∑

j=0

aj,k(t)ξ j+k(t)
(
1 – ξ (t)

)m+1 for t ∈R \T, (4.2)

l1,k(t) =
m–k∑

j=0

(–1)kaj,k(t)ξm+1(t)
(
1 – ξ (t)

)k+j for t ∈ R \T, (4.3)

with

ξ (t) =
t – t∗
μ(t∗)

for t ∈R \T, (4.4)

aj,k(t) =
μ(t∗)kCj

m+j

k!
for t ∈ R \T, k = 0, . . . , m and j = 0, . . . , m – k. (4.5)

To prove Theorem 4.1, we will show some properties of Eqs. (4.2)–(4.4) in the following.

Lemma 4.2 Let (A1) and (A2) hold. Let ξ : R \T →R be defined by (4.4). Then
(i) ξ is bounded, and 0 < ξ (t) < 1 for t ∈R \T;

(ii) ξ (t + τ ) = ξ (t) for every t ∈ R \T and τ ∈ �;
(iii) ξ ′(t) = 1/μ(t∗) and ξ ′′(t) = 0 for t ∈R \T.

Proof By Lemma 2.3 and the definition (4.4), it is easy to see items (i) and (ii). Thus we
omit details here.

(iii) For t ∈ R \ T, there exists a δ0 > 0 such that 0 < δ < δ0 implies that the interval (t –
δ, t + δ) ⊂ R \ T. Otherwise, for n ∈ N, there exists sn ∈ (t – δ/n, t + δ/n) but sn ∈ T. Then
the sequence {sn} converges to t uniformly and t ∈ T by the closedness of T, which is a
contradiction. Thus, for t̄ ∈ (t – δ, t + δ), we have (t)∗ = (t̄)∗, and

ξ ′(t) = lim
t̄→t

ξ (t̄) – ξ (t)
t̄ – t

= lim
t̄→t

t̄ – t
μ(t∗)(t̄ – t)

=
1

μ(t∗)
,

ξ ′′(t) = lim
t̄→t

ξ ′(t̄) – ξ ′(t)
t̄ – t

= 0. �

Lemma 4.3 Let (A1) and (A2) hold. Suppose that functions l0,k , l1,k : R\T → R are defined
as forms of (4.2) and (4.3) for k = 0, . . . , m, respectively. Then l0,k , l1,k ∈ Cm(R \ T,R) for
k = 0, . . . , m.

Proof As the proof in Lemma 4.2, for t ∈ R \T, there exists a δ0 > 0 such that for 0 < δ < δ0

the interval (t – δ, t + δ) ⊂ R \ T. Thus, for s ∈ (t – δ, t + δ) ⊂ R \ T, we have μ(t∗) = μ(s∗),
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which implies that functions aj,k defined in (4.5) satisfy aj,k(s) = aj,k(t) for s ∈ (t – δ, t + δ) ⊂
R \T, k = 0, . . . , m and j = 0, . . . , m – k. Therefore, for fixed p ∈ {0, . . . , m} and t ∈R \T, we
have

l(p)
0,k(t) =

m–k∑

j=0

(
aj,k(t)ξ j+k(t)

(
1 – ξ (t)

)m+1)(p)

=
m–k∑

j=0

aj,k(t)
m+1∑

τ=0

(–1)τ Cτ
m+1

(
ξ j+k+τ (t)

)(p)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑m–k
j=0

∑m+1
τ=0 (–1)τ aj,k(t)μ(t∗)–pCτ

m+1Ap
j+k+τ ξ

j+k+τ–p(t) for k ≥ p,
∑m+1

τ=0 (–1)τ Cτ
m+1(

∑p–k
j=0 aj,k(t)ξ j+k+τ (t)

+
∑m–k

j=p–k+1 aj,k(t)ξ j+k+τ (t))(p) for k < p

=

⎧
⎪⎪⎨

⎪⎪⎩

∑m–k
j=0

∑j+k+m+1
τ=j+k bj,k,τ (t)ξ (t)τ–p for k ≥ p,

∑p–k
j=0

∑m+j+k+1
τ=p bj,k,τ (t)ξ (t)τ–p

+
∑m–k

j=p–k+1
∑m+j+k+1

τ=j+k bj,k,τ (t)ξ (t)τ–p for k < p,

(4.6)

where

bj,k,τ (t) = (–1)τ–j–kaj,k(t)μ(t∗)–pCτ–j–k
m+1 Ap

τ ξ
τ–p(t)

=
(–1)τ–j–kCj

m+jC
τ–j–k
m+1 Ap

τμ(t∗)k–p

k!
, (4.7)

for t ∈R \T, k = 0, . . . , m, j = 0, . . . , m – k, τ = min{j + k, p}, . . . , m + j + k + 1.
Similarly, we have

l(p)
1,k(t)

(–1)k+p =

⎧
⎪⎪⎨

⎪⎪⎩

∑m–k
j=0

∑j+k+m+1
τ=j+k bj,k,τ (t)(1 – ξ (t))τ–p for k ≥ p,

∑p–k
j=0

∑m+j+k+1
τ=p bj,k,τ (t)(1 – ξ (t))τ–p

+
∑m–k

j=p–k+1
∑m+j+k+1

τ=j+k bj,k,τ (t)(1 – ξ (t))τ–p for k < p.

(4.8)

Thus l0,k , l1,k ∈ Cm–1(R \ T,R) and l(m)
0,k , l(m)

1,k exist for k = 0, . . . , m. Next, we will show that
l(m)
0,k , l(m)

1,k are continuous for k = 0, . . . , m.
For t ∈R \T, there exists a sequence {sn} ⊂R \T converging to t uniformly. Moreover,

bj,k,τ (t) = bj,k,τ (sn), it following that t∗ = (sn)∗ for k = 0, . . . , m, j = 0, . . . , m – k, τ = min{j +
k, p}, . . . , m + j + k + 1. Therefore, for k = 0, 1, . . . , m we have

l(m)
0,k (sn) → l(m)

0,k (t) and l(m)
1,k (sn) → l(m)

1,k (t) as n → ∞,

that is, l(m)
0,k , l(m)

1,k are continuous for k = 0, . . . , m. Furthermore, l0,k , l1,k ∈ Cm(R \T,R). �

As for the proof in Lemma 4.2, a right-scattered point t ∈ T implies that there is a se-
quence {sn} ⊂R \T converging to t+ uniformly.

Lemma 4.4 Let (A2) hold. Suppose that functions l0,k , l1,k are defined as forms of Eqs. (4.2)
and (4.3) for k = 0, . . . , m, respectively. If t ∈ T is right-scattered. Then, for every sequence
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{sn} ⊂R \T with sn → t+ as n → ∞, and fixed p ∈ {0, . . . , m}, we have the following state-
ments:

(i) limn→∞ l(p)
0,k(sn) =

{
0 for k = 0, . . . , p – 1, p + 1, . . . , m,
1 for k = p.

(ii) limn→∞ l(p)
1,k(sn) = 0 for k = 0, . . . , m.

(iii) If p �= m, we have limn→∞
l(p)
0,k (sn)
sn–t =

{
0 for k = 0, . . . , p – 1, p + 2, . . . , m,
1 for k = p + 1.

(iv) If p �= m, we have limn→∞
l(p)
0,p(sn)–1

sn–t = 0.

(v) If p �= m, we have limn→∞
l(p)
1,k (sn)
sn–t = 0.

Proof Since (sn)∗ = t, the function ξ (sn) = sn–t
μ(t) = O(sn – t) as n → ∞.

Noting that statements (i) and (ii) hold followed by (iii)–(v), we will only prove conclu-
sions (iii)–(v).

(iii) If k = 0, . . . , p – 1, then

l(p)
0,k(sn)
sn – t

=
∑p–k

j=0
∑m+j+k+1

τ=p bj,k,τ (sn)ξ τ–p(sn) +
∑m–k

j=p–k+1
∑m+j+k+1

τ=j+k bj,k,τ ξ
τ–p(sn)

sn – t

=
∑p–k

j=0 bj,k,p(sn)
sn – t

+
∑p–k

j=0 bj,k,p+1(sn)ξ (sn) + bp–k+1,k,p+1ξ (sn)
sn – t

+
o((sn – t))

sn – t
→ 0 as n → ∞,

where

p–k∑

j=0

bj,k,p(sn) =
p!μ(t)k–p

k!

p–k∑

j=0

(–1)p–j–kCj
m+jC

p–j–k
m+1

=
p!μ(t)k–p

k!

p–k+m∑

j=m

(–1)p–j–k+mCm
j Cp–j–k+m

m+1 ≡ 0

and

p–k∑

j=0

bj,k,p+1(sn)ξ (sn) + bp–k+1,k,p+1ξ (sn) =
p–k+1∑

j=0

bj,k,p+1(sn)ξ (sn) ≡ 0

followed by the combinatorial identity

r∑

k=q

(–1)kCq
k Cr–k

n = 0 for r ≥ n, q ≤ n – 1.

If k = p + 2, . . . , m, then

l(p)
0,k(sn)
sn – t

=
∑m–k

j=0
∑j+k+m+1

τ=j+k bj,k,τ (sn)ξ (sn)τ–p

sn – t

=
b0,k,k(sn)ξ (sn)k–p

sn – t
+

o((sn – t)k–p)
sn – t

→ 0 as n → ∞.
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If k = p + 1, then

l(p)
0,k(sn)
sn – t

=
∑m–k

j=0
∑m+j+k+1

τ=j+k bj,k,τ (sn)ξ τ–p(t)
sn – t

=
b0,p+1,p+1(sn)ξ (sn)

sn – t
+

o((sn – t))
sn – t

→ 1 as n → ∞.

(iv) If k = p �= m, then

l(p)
0,k(sn) – 1

sn – t
=

∑m–k
j=0

∑j+k+m+1
τ=j+k bj,k,τ (sn)ξ τ–p(sn) – 1

sn – t

=
b0,p,p(sn) – 1

sn – t
+

(b0,p,p+1(sn) + b1,p,p+1(sn))ξ (sn)
sn – t

+
o((sn – t))

sn – t
→ 0 as n → ∞.

(v) If p �= m, then

l(p)
1,k(sn)
sn – t

=
(
∑m–k

j=0
∑j+k

τ=0(–1)k+τ aj,k(sn)Cτ
k+jξ

m+τ+1(sn))(p)

sn – t

=
∑m–k

j=0
∑j+k

τ=0(–1)k+τ aj,k(t)Cτ
k+jA

p
m+1+τ ξ

m+τ+1–p(t)(μ(t))–p

sn – t

=
O((sn – t))m+1–p)

sn – t
→ 0 as n → ∞. �

If t ∈ T is left-scattered, then there exists a sequence {sn} ⊂ R \ T such that sn → t– as
n → ∞. Then 1 – ξ (sn) = 1 – sn–ρ(t)

μ(ρ(t)) = t–sn
μ(ρ(t)) = O(sn – t) as n → ∞. Similar to Lemma 4.4,

we have the following lemma.

Lemma 4.5 Assume that (A2) holds. Suppose that functions l0,k , l1,k are defined as forms
of (4.2) and (4.3) for k = 0, . . . , m, respectively. If t ∈ T is left-scattered. Then, for every se-
quence {sn} ⊂R\T with sn → t– as n → ∞, and fixed p ∈ {0, . . . , m}, we have the following
statements:

(i) limn→∞ l(p)
1,k(sn) =

{
0 for k = 0, . . . , p – 1, p + 1, . . . , m,
1 for k = p.

(ii) limn→∞ l(p)
0,k(sn) = 0 for k = 0, . . . , m.

(iii) If p �= m, we have limn→∞
l(p)
1,k (sn)
sn–t =

{
0 for k = 0, p – 1, p + 2, . . . , m,
1 for k = p + 1.

(iv) If p �= m, we have limn→∞
l(p)
1,p(sn)–1

sn–t = 0.

(v) If p �= m, we have limn→∞
l(p)
0,k (sn)
sn–t = 0.

Lemma 4.6 Assume that (A2) holds and T
κ = T. If g ∈ Cm(T,Rn), then there exists a func-

tion f ∈ Cm(R,Rn) defined as the form of (4.1) such that f (p)|T = g�p for p = 0, . . . , m.
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Proof By Lemma 4.3, f is Cm-differentiable continuous at t ∈R \T. Moreover,

f (p)(t) =
m∑

k=0

g�k
(t∗)l(p)

0,k(t) +
m∑

k=0

g�k (
σ (t∗)

)
l(p)
1,k(t) for p = 0, . . . , m. (4.9)

Next, we will show that f is Cm-differentiable continuous at t ∈ T and f (p)(t) = g�p (t) for
t ∈ T and p = 0, . . . , m by the principle of mathematical induction.

(1) f is differentiable at t ∈ T.
If t ∈ T is right-scattered, then there exists a sequence {sn} ⊂ R \ T converging to t

uniformly with sn > t and (sn)∗ = t. By Lemma 4.4, we have

f (sn) – f (t)
sn – t

=
∑m

k=0 g�k ((sn)∗)l0,k(sn) +
∑m

k=0 g�k (σ ((sn)∗))l1,k(sn) – g(t)
sn – t

=
g(t)(l0,0(sn) – 1)

sn – t
+

∑m
k=1 g�k (t)l0,k(sn)

sn – t
+

∑m
k=0 g�k (σ (t))l1,k(sn)

sn – t

→ g�(t) as n → ∞,

that is, f ′(t+) = g�(t) at right-scattered point t ∈ T.
If t ∈ T is left-scattered, then there exists a sequence {sn} ⊂ R \ T converging to t uni-

formly with sn < t and (sn)∗ = ρ(t). By Lemma 4.5, we have

f (sn) – f (t)
sn – t

=
∑m

k=0 g�k ((sn)∗)l0,k(sn) +
∑m

k=0 g�k (σ ((sn)∗))l1,k(sn) – g(t)
sn – t

=
g(t)(l1,0(sn) – 1)

sn – t
+

∑m
k=1 g�k (t)l1,k(sn)

sn – t
+

∑m
k=0 g�k (ρ(t))l0,k(sn)

sn – t

→ g�(t) as n → ∞,

that is f ′(t–) = g�(t) at right-scattered point t ∈ T.
If t is right-dense (or left-dense), it is easy to see that f ′(t+) = g�(t) (or f ′(t–) = g�(t)).

Thus, for t ∈ T, no matter whether t is dense (right/left-dense) or scattered (left/right-
scattered), we have f ′(t+) = f ′(t–) = g�(t), that is, f is differentiable at t ∈ T. Obviously, f
is continuous on T.

(2) Suppose that the statement f (p)(t) = g�p (t) holds for t ∈ T and 0 < p < m.
If t ∈ T is right-scattered, then there exists a sequence {sn} ⊂ R \ T converging to t

uniformly with sn > t and (sn)∗ = t. By Lemma 4.4, we have

f (p)(sn) – f (p)(t)
sn – t

=
∑m

k=0 g�k (t∗)l(p)
0,k(sn) +

∑m
k=0 g�k (σ ((sn)∗))l(p)

1,k(sn) – g�p (t)
sn – t

=
g�p (t)(l(p)

0,p(sn) – 1)
sn – t

+
g�p+1 (t)l(p)

0,p+1(sn)
sn – t

+
∑m

k=p+2 g�k (t)l(p)
0,k(sn) +

∑m
k=p g�k (σ (t))l(p)

1,k(sn)
sn – t

→ g�p+1
(t) as n → ∞,

i.e. f (p+1)(t+) = g�p+1 (t) at right-scattered point t ∈ T.
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Similar to the proof above, if t ∈ T is left-scattered, then we have f (p+1)(t–) = g�p+1 (t) by
Lemma 4.5. If t is right-dense then f (p+1)(t+) = g�p+1 (t). If t is left-dense then f (p+1)(t–) =
g�p+1 (t). Thus, for t ∈ T, no matter whether t is dense (right/left-dense) or scattered
(left/right-scattered), we have f (p+1)(t+) = f (p+1)(t–) = g�p+1 (t).

Therefore f is Cm–1-continuous differentiable on T and f (m)(t) = g�m (t) holds for t ∈ T.
Noting that

f (m)(sn) – f (m)(t) = g�m(
(sn)∗

)
l(m)
0,m(sn) + g�m(

σ
(
(sn)∗

))
l(m)
1,m(sn) – g�m

(t)

→ 0 as n → ∞.

That is, f is Cm continuous differentiable on T. �

Since ξ (t + h) = ξ (t), bj,k,τ (t) = bj,k,τ (t + h) and the boundedness of bj,k,τ for t ∈ R \ T,
h ∈ �, k = 0, . . . , m, j = 0, . . . , m – k, τ = min{j + k, p}, . . . , m + j + k + 1, it is not difficult to
obtain the Lemma 4.7 and Lemma 4.8.

Lemma 4.7 Suppose that (A1) and (A2) hold, and functions l0,k , l1,k : R\T →R be defined
as forms of (4.2) and (4.3) for k = 0, . . . , m, respectively. Then, for t ∈ R \ T, h ∈ �, i = 0, 1
and k, p = 0, . . . , m,

l(p)
i,k (t + h) = l(p)

i,k (t) (4.10)

holds.

Lemma 4.8 Suppose (A1) and (A2) hold. Assume that the functions l0,k , l1,k : R \ T → R

are defined as forms of (4.2) and (4.3) for k = 0, . . . , m, respectively. Then there exists N > 0,
such that

∣∣∣∣∣

m∑

k=0

l(p)
i,k (t)

∣∣∣∣∣
< N for t ∈R \T, i = 0, 1, and p = 0, . . . , m uniformly. (4.11)

In the following, we will prove Theorem 4.1.

Proof Suppose that g is Cm-a.p. on T. Then, for ε > 0, there exists a positive l(ε) ∈ � ⊂ R

such that for any a ∈ � the interval [a, a + l]� contains a τ ∈ � satisfying that

∥∥g(t + τ ) – g(t)
∥∥

m <
ε

2Nm
,

where N satisfies Eq. (4.11).
If t ∈R \T, then t + τ ∈R \T for every τ ∈ � by Lemma 2.3. For p = 0, . . . , m, we have

∣∣f (p)(t + τ ) – f (p)(t)
∣∣

=

∣∣∣∣∣

m∑

k=0

g�k (
(t + τ )∗

)
l(p)
0,k(t + τ ) +

m∑

k=0

g�k (
σ
(
(t + τ )∗

))
l(p)
1,k(t + τ )

–
m∑

k=0

g�k
(t∗)l(p)

0,k(t) –
m∑

k=0

g�k (
σ (t∗)

)
l(p)
1,k(t)

∣∣∣∣∣
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≤
m∑

k=0

∣∣g�k
(t∗ + τ ) – g�k

(t∗)
∣∣∣∣l(p)

0,k(t)
∣∣ +

m∑

k=0

∣∣g�k (
σ (t∗) + τ

)
– g�k (

σ (t∗)
)∣∣∣∣l(p)

1,k(t)
∣∣

≤ N
(∥∥g(t∗ + τ ) – g(t∗)

∥∥
m +

∥∥g
(
σ (t∗) + τ

)
– g

(
σ (t∗)

)∥∥
m

)
< ε/m.

If t ∈ T, then t + τ ∈ T for every τ ∈ � by Lemma 2.3. For p = 0, . . . , m, we have

∣∣f (p)(t + τ ) – f (p)(t)
∣∣ =

∣∣g�p(t + τ ) – g�p(t)
∣∣ ≤ ∥∥g(t + τ ) – g(t)

∥∥
m <

ε

2Nm
.

Then

∥∥f (t + τ ) – f (t)
∥∥

m = sup
t∈R

m∑

p=0

∣∣f (p)(t + τ ) – f (p)(t)
∣∣ < ε.

That is, f is Cm-a.p. on R.
Suppose that f is Cm-a.p. on R. Then for each sequence {s′

n} ⊂ � there exists a subse-
quence {sn} ⊂ {s′

n} such that {f (t + sn)} converges in norm ‖ · ‖m uniformly for t ∈ R and
consequently for t ∈ T. Thus g|T = f |T is Cm-a.p. on T. �

5 Applications
Let T be a periodic time scale without finite accumulation points of scattered points. Con-
sider the following dynamic equation:

x� = Ax + f (t), (5.1)

where A is an n × n matrix and f : T →R
n is a Cm-a.p. function. Suppose that A satisfying

following conditions:
(H1) There is a δ > 0 such that

|aii| –
∑

j �=i

|aij| – M/2

( n∑

j=1

|aij|
)2

≥ 2δ + δ2M for i = 1, . . . , n, (5.2)

where M = supt∈T μ(t).
(H2) Set |A| = (

∑n
i=1

∑n
j=1 a2

ij)1/2, then

M|A| < 1.

According to [25, Theorem 5.2], the linear dynamic equation

x� = Ax, (5.3)

admits an exponential dichotomy on T under the assumption (H1), that is,

∣∣X(t)PX–1(s)
∣∣ ≤ Ke�α(t, s), s, t ∈ T, t ≥ s,

∣∣X(t)(I – P)X–1(s)
∣∣ ≤ Ke�α(s, t), s, t ∈ T, t ≤ s,



Wang Advances in Difference Equations  (2018) 2018:92 Page 12 of 13

where X is the fundamental solution matrix of (5.3), K ,α are positive constants, P is pro-
jection. Then the solution of (5.1) as the form of

x(t) =
∫ t

–∞
X(t)PX–1(σ (s)

)
f (s)�s –

∫ ∞

t
X(t)(I – P)X–1(σ (s)

)
f (s)�s (5.4)

is a.p. by [14, Corollary 3.7]. Obviously, x�, . . . , x�m are a.p. following from x�k = Ax�k–1 +
f �k–1 and f ∈ APm(T,Rn) for k = 1, . . . , m. Thus, the solution of (5.1) is Cm-a.p. on T by
[24, Theorem 20].

Note that, if A satisfies the hypothesis (H1), then

|aii| –
∑

j �=i

|aij| ≥ 2δ for i = 1, . . . , n.

Therefore, according to [26, Proposition 3, p. 55], the linear differential equation

y′ = Ay (5.5)

admits an exponential dichotomy on R, i.e.

∣∣Y (t)PY –1(s)
∣∣ ≤ K exp

{
–δ(t – s)

}
, t ≥ s,

∣∣Y (t)(I – P)Y –1(s)
∣∣ ≤ K exp

{
δ(t – s)

}
, t ≤ s,

where Y is the fundamental solution matrix of (5.5). Therefore the differential equation

y′(t) = Ay + F(t) (5.6)

admits a unique Cm-a.p. solution as form of

y(t) =
∫ t

–∞
eAtPe–AsF(s) ds –

∫ ∞

t
eAt(I – P)e–AsF(s) ds, (5.7)

if F : T →R
n is defined as the form of

F(t) =

⎧
⎨

⎩

∑m
k=0 f �k (t∗)l0,k(t) +

∑m
k=0 f �k (σ (t∗))l1,k(t), t ∈R \T,

f (t), t ∈ T,

where l0,k , l1,k are as (4.2) and (4.3) for k = 0, . . . , m, respectively.
By [19, Theorem 5], if (H2) holds, then the solution of (5.6) embeds in the solution of

(5.1), that is, x(t) = y(t) for t ∈ T. Moreover, x�(t) = y′(t), . . . , x�m (t) = y(m)(t) for t ∈ T.
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