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Abstract
The derivation of this paper is devoted to describing the operational properties of the
finite Fourier transform method, with the purpose of acquiring a sufficient theory to
enable us to follow the solutions of boundary value problems of partial differential
equations, which has some applications on potential and steady-state temperature.
Numerical calculations show that the present method gives higher accuracy with less
computation time than other, traditional methods, like the finite difference method.
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1 Introduction
Many boundary value problems can be solved by means of integral transformations, such
as the Laplace transform function, which transform a differential equation into an alge-
braic equation in which the boundary conditions are automatically considered. After solv-
ing the algebraic equation, one finds the solution of the original equation by means of the
inverse transformation. Similarly, partial differential equations are changed into ordinary
differential equations by applying these transformations. Two transformations which are
particularly useful in solving boundary value problems are the finite Fourier sine and co-
sine transformations.

The particular transformation discussed in this paper is the finite Fourier transform,
which is applicable to equations in which only the even order derivatives (of the func-
tion) with respect to transformed variable will be treated. The finite Fourier transform
method is one of various analytical techniques in which exact solutions of boundary value
problems can be constructed. The transform exists for all bounded, piecewise continuous
functions over a finite interval. In recent years, the finite Fourier transform method has
been applied to a wide class of boundary value problems in many interesting mathematics,
physics, chemistry and engineering areas [1–3]. Many other transforms exist which may
be used to solve PDEs [4, 5].

A feature which makes the finite transform a very economical method, is that the inverse
transform may be solved only for regions of interest [6–8]. The most widely used meth-
ods for the solution of boundary value problems are based on finite differences. These

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1552-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1552-8&domain=pdf
mailto:kamel@just.edu.jo


Al-Khaled Advances in Difference Equations  (2018) 2018:98 Page 2 of 14

methods require certain assumptions about where the finite difference equals the deriva-
tive which by necessity have to be most loosely made on the boundaries. One must form
many grid points near the boundary in order for the numerical solution to be accurate.
Another feature of the finite Fourier transform method is that it gives the exact solution
at the boundary [9].

This paper is written in two parts. Sect. 2 will be devoted to a description of the op-
erational properties of these transformations with the purpose of acquainting the reader
with sufficient theory to enable us to follow the solutions of the problems given in Sect. 3,
which consists of a group of simple boundary value problems and their solutions.

2 Basic definitions
Definition 1 Let F(x) be a function that is sectionally continuous in the interval 0 < x < π ,
the finite Fourier sine and cosine transformations are defined as follows:

S
{

F(x)
}

=
∫ π

0
F(x) sin nx dx = fs(n), (2.1)

C
{

F(x)
}

=
∫ π

0
F(x) cos nx dx = fc(n). (2.2)

The transformations set up a correspondence between functions F(x) on the interval
0 < x < π and the sequences {fs(n), fc(n)} called the finite sine transform and finite cosine
transform, respectively, of F(x). From the definition of the transformations it is apparent
that they are linear.

2.1 Some operational properties
The usefulness of the finite Fourier sine and cosine transformations in solving differential
equations is primarily due to the fact that differentiation of F(x) corresponds to a sim-
ple algebraic operation on the transform fs(n) or fc(n). If F(x) is continuous and F ′(x) is
sectionally continuous

S
{

F ′(x)
}

=
∫ π

0
F ′(x) sin nx dx = F(x) sin nx|πn – n

∫ π

0
F(x) cos nx dx

and hence

S
{

F ′(x)
}

= –nfc(n). (2.3)

Similarly,

C
{

F ′(x)
}

= –nfs(n) + (–1)nF(π ) – F(0). (2.4)

If F ′(x) is continuous and F ′′(x) is sectionally continuous, we find upon replacing F(x) by
F ′(x) in Eq. (2.3) and making use of Eq. (2.4)

S
{

F ′′(x)
}

– = –n2fs(n) + n
[
F(0) – (–1)nF(π )

]
. (2.5)
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Similarly, by starting with Eq. (2.4) we have

C
{

F ′′(x)
}

= –n2fc(n) – F ′(0) + (–1)nF ′(π ). (2.6)

If F ′′′(x) is continuous and F ′′′′(x) is sectionally continuous, we may replace F(x) by F ′′(x)
in (2.5) to obtain

S
{

F ′′′′(x)
}

= n4fs(n) – n3[F ′′(0) – (–)nF(π )
]

+
[
F ′′(0) – (–1)nF ′′(π )

]
. (2.7)

In like manner, we can find the sine transform of any even-ordered derivatives of F(x)
in terms of the sine transform of F(x) and the value of the even-ordered derivatives at the
endpoints of the interval. By repeated applications of (2.6) we are able to express the cosine
transform of any even-ordered derivative of F(x) in terms of fc(n) at the endpoints of the
interval. Another useful property of the Fourier transform will now be developed. Let F(x)
be defined in the interval 0 < x < π . Let G(x) be the even periodic extension of F(x), then

fc(n) cos nk =
1
4

∫ π

–π

G(x)
[
cos n(x + k) + cos n(x – k) cos nk

]
dx.

Breaking the integrand into two integrals, letting y = s + k in the first and y = x – k in the
second, this can be written as

1
4

∫ π+k

–π+k
G(y – k) cos ny dy +

1
4

∫ π–k

–π–k
G(y + k) cos ny dy

=
1
4

∫ π

–π

G(y – k) cos ny dy +
1
4

∫ π

–π

G(y + k) cos ny dy,

because of the fact that the integrand is periodic with period 2π . Hence fc(n) cos nk =
I1 + I2 + I3 + I4 where

I1 =
1
4

∫ 0

–π

G(y – k) cos ny dy, I2 =
1
4

∫ π

0
G(y – k) cos ny dy,

I3 =
1
4

∫ 0

–π

G(y + k) cos ny dy, I4 =
1
4

∫ π

0
G(y + k) cos ny dy.

Substituting y = –x in I1 and I3 we have

I1 =
1
4

∫ 0

π

G(–x – k) cos n(–x)(– dx) =
1
4

∫ π

0
G(x + k) cos nx dx = I4,

I3 =
1
4

∫ 0

π

G(–x + k) cos n(–x)(– dx) =
1
4

∫ π

0
G(x – k) cos nx dx = I2.

Therefore,

fc(n) cos nk = C
{

1
2
[
G(x + k) + G(x – k)

]}
. (2.8)
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Let k = π , we get (–1)nfc(n) = C{ 1
2 [G(x + π ) + G(x – π )]}, but G(x + π ) = G(x – π ) for all x,

and G(π – x) = F(π – x) for all 0 < x < π . Therefore

(–1)nfc(n) = C
{

F(π – x)
}

. (2.9)

In a similar manner it can be shown that if H(x) is the odd periodic extension of F(x) of
period 2π ; then

(–1)n+1fs(n) = S
{

F(π – x)
}

. (2.10)

2.2 Convolution
It is necessary to find the inverse function of the product of two transforms whose inverses
are known. To solve this problem, we define the convolution of a function. Let P(x) be
defined on the interval –2π < x < 2π and let Q(x) be defined on the interval –π < x < π .
Then the function

φ(x) =
∫ π

–π

P(x – ξ )Q(ξ ) dξ ≡ P(x) ∗ Q(x) (2.11)

is called “the convolution” of P and Q on the interval –π < x < π . It can easily be shown
that φ(x) is an even function if P and Q are both odd or both even, and is odd if one of
these functions is even and the other odd. The importance of convolution is brought out
in the following theorem.

Theorem 2.1 Let F(x) and G(x) be two functions sectionally continuous on the interval
0 ≤ x ≤ π . Let F1(x) and F2(x) denote the odd and even periodic extensions of F , respec-
tively, and G1(x) and G2(x) the odd and even extensions of G. Then the products of the
transformations of F and G can be written as follows:

fs(n)gc(n) = S
{

1
2

F1 ∗ G2

}
, (2.12)

fs(n)gs(n) = C
{

1
2

F1 ∗ G1

}
, (2.13)

fc(n)gc(n) = C
{

1
2

F2 ∗ G2

}
, (2.14)

fc(n)gs(n) = S
{

1
2

F2 ∗ G1

}
. (2.15)

Furthermore, if

I1 =
∫ π

0
F(x – ξ )G(ξ ) dξ , I2 =

∫ π

x
F(ξ – x)G(ξ ) dξ ,

I3 =
∫ π–x

0
F(x + ξ )G(ξ ) dξ , I4 =

∫ π

π–x
F(2π – x – ξ )G(ξ ) dξ ,

then

F1 ∗ G2 = I1 – I2 + I3 – I4, (2.16)
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Figure 1 Region of integration for Theorem 2.1

F1 ∗ G1 = I1 – I2 – I3 + I4, (2.17)

F2 ∗ G2 = I1 + I2 + I3 + I4, (2.18)

F2 ∗ G1 = I1 + I2 – I3 + I4. (2.19)

Proof The proof of the theorem will only be illustrated by proving Eqs. (2.15) and (2.19).
We have

fc(n)gs(n) =
∫ π

0
F2(α) cos nα dα

∫ π

0
G1(β) sin nβ dβ

=
1
4

∫ π

–π

F2(α) cos nα dα

∫ π

–π

G1(β) sin nβ dβ

=
1
4

∫ π

–π

∫ π

–π

F2(α)G1(β) cos nα sin nβ dα dβ .

If we let S represent the square bounded by the lines α = ∓π ,β = ∓π (see Fig. 1), we have

fc(n)gs(n) =
1
8

∫ ∫

S
F2(α)G1(β) sin n(α + β) dα dβ

–
1
8

∫ ∫

S
F2(α)G1(β) sin n(α – β) dα dβ .

In the first integrand let α + β = x and β = y, in the second integrand let α – β = x and
β = –y. The Jacobian of the first transformation is 1; that of the second is –1. So we have

fc(n)gs(n) =
1
8

∫ ∫

P
F2(x – y)G1(y) sin nx dx dy

+
1
8

∫ ∫

P
F2(x – y)G1(–y) sin nx dx dy.

For any fixed y(–π ≤ y ≤ π ), the integrands are periodic functions of x with period 2π ,
hence the integral over T1 can be replaced by the integral over T2 and the integral over T3

can be replaced by the integral over T4. The resulting integral can be written as

1
8

∫ π

–π

sin nx
∫ π

–π

F2(x – y)G1(y) dy dx –
1
8

∫ π

–π

sin nx
∫ –π

π

F2(x – y)G1(y) dy dx

=
1
4

∫ π

–π

sin nx
∫ π

–π

F2(x – y)G1(y) dy dx
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=
1
2

∫ π

0
sin nx

∫ π

–π

F2(x – y)G1(y) dy dx

=
1
2

S{F2 ∗ G1} = S
{

1
2

F2 ∗ G1

}
,

where we have used the fact that F2 ∗ G1 is an odd function. We have

F2 ∗ G1 =
∫ x

0
F2(x – ξ )G1(ξ ) dξ +

∫ π

x
F2(x – ξ )G1(ξ ) dξ

+
∫ 0

–π+x
F2(x – ξ )G1(ξ ) dξ +

∫ –π+x

–π

F2(x – ξ )G1(ξ ) dξ .

In the third and fourth integrals replace ξ by –ξ ,

F2 ∗ G1 =
∫ x

0
F2(x – ξ )G1(ξ ) dξ +

∫ π

x
F2(ξ – x)G1(ξ ) dξ

+
∫ π–x

0
F2(x + ξ )G1(–ξ ) dξ +

∫ π

π–x
F2(x + ξ )G1(–ξ ) dξ ,

whence by making use of the definitions of the extended functions F2 and G1, Eq. (2.19)
follows immediately. �

3 Solutions of partial differential equations
Since we will be concerned with functions of two independent variables, it is necessary to
comment briefly on the characteristic of the finite Fourier transform of such a function.
The finite Fourier sine transformation of F(x, t), (0 < x < π ) is

S
{

F(x, t)
} ≡

∫ π

0
F(x, t) sin nx dx ≡ f (n, t) (n = 1, 2, 3, . . .).

If ∂n

∂tn F(x, t) exists and is continuous then

S
{

∂nF(x, t)
∂tn

}
=

∫ π

0

∂n

∂tn F(x, t) sin nx dx =
dn

dtn

{∫ π

0
F(x, t) sin nx dx

}
≡ dn

dtn f (n, t).

All the formulas listed in the tables made for single functions [10] can be extended very
easily to the case where F is a function of two independent variables. For example

S
{

∂2F(x, t)
∂x2

}
= –n2f (n, t) + n

[
F(0, t) – (–1)nF(π , t)

]
.

Similar changes must be made in the other formulas in the applications which follow. In
all these applications the sine transform, rather than the cosine transform, is used since
the boundary conditions include the value of the function at the endpoints of the interval.

3.1 Vibrations of a horizontal string with fixed ends
A constant transverse force acts at each point of a string with ends x = 0 and x = π fixed;
thus we need to solve the problem

Ytt = a2Yxx + F(x) (3.1)
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subject to the conditions Y (0, t) = Y (π , t) = 0, and Y (x, 0) = Yt(x, 0) = 0.
Applying the sine transformation to Eq. (3.1) and using the boundary conditions yields

the differential equation

d2

dt2 y(n, t) = –n2a2y(n, t) + f (n),

which has the solution

y(n, t) = C1 sin nat + C2 cos nat +
f (n)
a2n2 .

In order to satisfy the initial conditions, we choose C1 = 0 and C2 = –f (n)
a2n2 . Define G(x)

such that G′′(x) = F(x), (0 < x < π ) and G(0) = G(π ) = 0, we obtain f (n)
n2 = S{G′′(x)}

n2 = –g(n).
Therefore

y(n, t) =
g(n)
a2 cos nat –

g(n)
a2 .

Hence

Y (x, t) =
–1
2a2

[
G(x – at) + G(x + at)

]
–

G(x)
a2

where G(–x) = –G(x) and G(x + 2π ) = G(x).

3.2 Transverse vibrations of a beam
If a constant transverse force acts at each point of a beam, the transverse displacements
Y (x, t) satisfy the equation

∂2Y
∂t2 = –a2 ∂2Y

∂x2 + F(x). (3.2)

If the ends, x = 0 and x = π , are hinged so that Y and Yxx vanish there, and if the initial dis-
placement and velocity are zero, we may find Y (x, t) by applying the sine transformations
to Eq. (3.2) and considering the boundary conditions

Y (0, t) = Y (π , t) = 0, Yxx(0, t) = Yxx(π , t) = 0.

Therefore, we obtain

dn

dt2 y(n, t) = –a2n2y(n, t) + f (n).

Hence y(n, t) = an2C1 cos an2t –an2C2 sin an2t. To satisfy the conditions Y (x, 0) = Yt(x, 0) =
0, we choose C1 = 0; C2 = – f (n)

a2n2 . Therefore

y(n, t) =
f (n)
a2n2

(
1 – cos an2t

)
.
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If we define G(x) such that G′′′′(x) = F(x), 0 < x < π ; G(x) = G′′(x) = 0 at x = 0 and x = π .
Then f (n)

n2 = g(n), and so y(n, t) = g(n)
a2 – f (n)

a2n2 cos an2t. Therefore our solution is given as

Y (x, t) =
G(x)
a2 –

2
πa2

∞∑

n=1

f (n)
n4 cos an2t sin nx.

3.3 Applications to problems in heat conduction
Application 1 As an application, we would like to find the temperature distribution
U(x, t) of a bar 30 centimeters in length after the ends are placed in contact with ice if
the sides are insulated and the initial temperature distribution is defined as follows:

U(x, 0) =

⎧
⎨

⎩
0◦, 0 < x < 10; 20 < x < 30,

100◦, 10 < x < 20.

The differential equation which U(x, t) must satisfy is

Ut(x, t) = a2Uxx(x, t). (3.3)

If we choose a new unit of length such that 1 = 30/πcm, the rod becomes π units long and
the boundary conditions become

U(0, t) = U(π , t) = 0, t > 0, (3.4)

U(x, 0) =

⎧
⎨

⎩
0◦, 0 < x < π

3 , 2π
3 < x < π ,

100◦, π
3 < x < 2π

3 .
(3.5)

Applying the sine transformation to Eqs. (3.3) and (3.4) we obtain d
dt u(n, t) = –a2n2u(n, t),

which has the solution u(n, t) = C exp(–a2n2t). To determine the constant C, we make use
of the condition in (3.5), as

C = u(n, 0) =
∫ π

0
U(x, 0) sin nx dx =

∫ 2π/3

π/3
100 sin nx dx =

100
n

(
2 sin

nπ

2
sin

nπ

6

)
.

For n = 2k, we have sin 2kπ
2 = 0, therefore C2k = 0. While, for n = 2k + 1, sin (2k+1)π

2 = (–1)k ,

which implies that C2k+1 = 200(–1)k sin (2k+1)π
2

2k+1 . We arrive at

u(2k + 1, t) =
200(–1)k sin (2k+1)π

2
2k + 1

exp
[
–a2(2k + 1)2t

]
.

The temperature distribution U(x, t) of the rod is given by

U(x, t) =
400
π

∞∑

k=0

(–1)k sin (2k+1)π
6

2k + 1
exp

[
–a2(2k + 1)2t

]
sin(2k + 1)x.

The solution of this problem for a bar for which a2 = 0.185 and a2 = 0.1 (c.g.s. system)
is displayed in Fig. 2. Since the solution is symmetrical about the line x = π/2(15cm) the
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Figure 2 Right graph represent the temperature when t = 20, 5, 2, 1, 0.5 minutes for a2 = 0.185, while the left
one is for a2 = 0.10 for the same values of t

graph extends over only one-half the bar. The constant a2 must be based upon the same
unit of measurement as x. If its value is known in the c.g.s. system, it must be multiplied
by π2/900 before being used in this formula.

Application 2 We seek the temperature U(x, t) which satisfies the conditions

Ut(x, t) = Uxx(x, t) – h(t)U(x, t) + A, 0 < x < π , t > 0,

subject to the boundary conditions

U(0, t) = U(π , t) = 0

and the initial condition

U(x, 0) = 0.

By means of the sine transformation, the above problem becomes

d
dt

u(n, t) = –n2u(n, t) – h(t)u(n, t) + AS{1}, u(n, 0) = 0.

Hence,

d
dt

u(n, t) +
{

n2 + h(t)
}

u(n, t) = A
1 – (–1)n

n
.

This is an ordinary linear differential equation whose solution is

u(n, t) = A
1 – (–1)n

n
exp

[
–

∫ {
n2 + h(t)

}
dt

]∫
exp

[∫ {
n2 + h(t)

}
dt

]
dt.

Since t ≥ 0, and we wish u(n, 0) to be zero, we may write the answer in the following form:

u(n, t) = A exp

[
–

∫ t

0
h(τ ) dτ

]∫ t

0
exp

[∫ τ

0
h(τ ) dτ

]
1 – (–1)n

n
exp

[
–n2(t – τ )

]
dτ .
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If we let H(t) =
∫ t

0 h(τ ) dτ , and 	(x, t) = 2
π

∑∞
n=1

1–(–1)n

n exp[–n2t] sin nx, then

U(x, t) = A exp
[
–H(t)

] ∫ t

0
exp

[
H(τ )

]
	(x, t – τ ) dτ .

Application 3 Let θ (x, t) be the temperature function that satisfies

θt(x, t) = θxx(x, t), 0 < x < π , t > 0, (3.6)

subject to the boundary and initial conditions

θ (0, t) = θ (π , t) = 0, θ (x, 0) =
π – x

π
. (3.7)

Application of the sine transformation yields d
dt θ (n, t) = –n2θ (n, t), θ (n, 0) = 1

n . The solu-
tion of the above differential equation is θ (n, t) = 1

n exp[–n2t]. Hence θ (x, t) = 2
π

∑∞
n=1

1
n ×

exp[–n2t] sin nx.
Let U(x, t) be a solution of the problem

Ut(x, t) = Uxx(x, t), 0 < x < π , t > 0, (3.8)

subject to the boundary and initial conditions

U(0, t) = U(π , t) = 0, U(x, 0) = F(x). (3.9)

We wish to obtain the function U(x, t) in terms of θ (x, t). The value of the sine transform
of U(x, t) is found by replacing 1

n by f (n) in the expression for θ (x, t), to obtain

u(n, t) = f (n) exp
[
–n2t

]
= nf (n)θ (n, t).

If F(x) is continuous and F(0) = F(π ) = 0, then nf (n) = C{F ′(x)} =
∫ π

0 F ′(λ) cos nλdλ.
Hence, u(n, t) =

∫ π

0 F ′(λ)θ (n, t) cos nλdλ. Since θ (x, t) is an odd extension function with
period 2π , we may rewrite u(n, t) as

u(n, t) =
1
2

∫ π

0
F ′(λ)

∫ π

0

{
θ (x + λ, t) + θ (x – λ, t)

}
sin nx dx dλ

=
1
2

∫ π

0

{∫ π

0
F ′(λ)

[
θ (x + λ, t) + θ (x – λ, t)

]
dλ

}
sin nx dx.

Therefore U(x, t) = 1
2
∫ π

0 F ′(λ)[θ (x + λ, t) + θ (x – λ, t)] dλ.

Application 4 The preceding application was generalized by Brown [11]. Consider a
cylindrical bar of length π which has a diameter so small that the variation of the tem-
perature F(x, t) over every cross section can be neglected. The thermal conductivity of the
bar is a function of the time, there is a continuous source of heat along the bar, and the ini-
tial temperature at each point of the bar is given by a prescribed function. The rate of loss
of heat through the surface at each point is proportional to the temperature at that point.
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The temperature at the ends, x = 0 and x = π are determined by prescribed functions of t.
The boundary value problem for the temperature function F(x, t) can be written as

�(F) ≡ ∂F
∂t

– C1(t)
∂2F
∂x2 + C2(t)F = P(x, t), 0 < x < π , t > 0,

Subject to

F(0, t) = C3(t), F(π , t) = C4(t), t > 0, F(x, 0) = G(x), 0 < x < π .

The solution of the above boundary value problem can be written as

F(x, t) = F1(x, t) + F2(x, t) + F3(x, t) + F4(x, t)

where F1, F2, F3 and F4 are solutions of the problems:

�(F1) = P(x, t), F1(0, t) = F1(π , t) = F1(x, 0) = 0, (3.10)

�(F2) = 0, F2(π , t) = 0, F2(0, t) = C3(t), F2(x, 0) = 0, (3.11)

�(F3) = 0, F3(π , t) = C4(t), F3(0, t) = 0, F3(x, 0) = 0, (3.12)

�(F4) = 0, F4(π , t) = 0, F4(0, t) = 0, F2(x, 0) = G(x). (3.13)

Problem (3.12) need not be considered as a separate problem, since its solution can be
obtained by replacing x by π – x and C3(t) by C4(t) in the solution of problem (3.11). The
finite sine transformation applied to the equations of problems (3.10), (3.11) and (3.13)
yields the differential equations

d
dt

f1(n, t) +
[
n2C1(t) + C2(t)

]
f1(n, t) = p(n, t), f1(n, 0) = 0, (3.14)

d
dt

f2(n, t) +
[
n2C1(t) + C2(t)

]
f2(n, t) – nC1(t)C3(t) = 0, f2(n, 0) = 0, (3.15)

and

d
dt

f4(n, t) +
[
n2C1(t) + C2(t)

]
f4(n, t) = 0, f4(n, 0) = g(n). (3.16)

Since problem (3.14) and (3.15) are ordinary linear differential equations, their solutions
can be found formally. The solution of problem (3.14) is

f1(n, t) = exp

[
–

∫ {
n2C1(t) + C2(t)

}
dt

](∫
exp

[∫ {
n2C1(t) + C2(t)

}
dt

])
p(n, t) dt.

Since t ≥ 0 and we wish f1(n, 0) = 0, this may be written for 0 ≤ τ ≤ t as follows:

f1(n, t) = exp

[
–n2

∫ t

0
C1 dλ

]
exp

[
–

∫ t

0
C2(λ) dλ

]

×
∫ t

0
exp

[
n2

∫ τ

0
C1(λ) dλ

]
exp

[∫ τ

0
c2(λ) dλ

]
p(n, τ ) dτ ,
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or

f1(n, t) =
∫ t

0
exp

[
–n2

∫ t

τ

C1(λ) dλ

]
exp

[
–

∫ t

τ

C2(λ) dλ

]
p(n, τ ) dτ .

Let Hi(τ , t) =
∫ t
τ

Ci(λ) dλ, then

f1(n, t) =
∫ t

0
p(n, τ ) exp

[
–n2H1(τ , t)

]
exp

[
–H2(τ , t)

]
dτ . (3.17)

By analogy we see that the solution of problem (3.15) is

f2(n, t) =
∫ t

0
nC1(τ )C3(τ ) exp

[
–n2H1(τ , t)

]
exp

[
–H2(τ , t)

]
dτ . (3.18)

The solution of the separable differential equation in (3.16) is given by

f4(n, t) = A exp

[
–n2

∫ t

0
C1(λ) dλ

]
exp

[
–

∫ t

0
C2(λ) dλ

]
.

Since f (n, 0) = g(n), A = g(n). Hence the solution is

f4(n, t) = g(n) exp
[
–n2H1(0, t)

]
exp

[
–H2(0, t)

]
. (3.19)

By applying the inversion formula to Eqs. (3.17), (3.18) and (3.19), each of the component
solutions of F(x, t) is obtained. However, it will be now be shown that the solution of each
of the problems (3.10), (3.11) and (3.13) can be expressed in terms of F0(x, t), which is the
solution of the simple boundary value problem

∂F0

∂t
=

∂2F0

∂x2 , 0 < x < π , t > 0,

F0(0, t) = F0(π , t) = 0, t > 0, F0(x, 0) =
π – x

π
,

whose solution as seen from Application 3 is f0(n, t) = 1
n exp[–n2t]. From this equation we

obtain the identities

exp
[
–n2Hi(τ , t)

]
= nf0

[
n, Hi(τ , t)

]
, exp

[
–n2Hi(0, t)

]
= nf0

[
n, Hi(0, t)

]
.

Differentiating the first equation with respect to τ we obtain

–n2 exp
[
–n2Hi(τ , t)

][
–Ci(τ )

]
= n

∂

∂τ
f0

[
n, Hi(τ , t)

]

or

nCi(τ ) exp
[
–n2Hi(τ , t)

]
=

∂

∂τ
f0

[
n, Hi(τ , t)

]
. (3.20)

Therefore, we can express f1(n, t), f2(n, t) and f4(n, t) as functions of f0(n, t) as follows:

f1(n, t) =
∫ t

0
exp

[
–H2(τ , t)

]
nf0

[
n, H1(τ , t)

]
p(n, τ ) dτ ,
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f2(n, t) =
∫ t

0
C3(τ ) exp

[
–H2(τ , t)

] ∂

∂τ
f0

[
n, H1(τ , t)

]
dτ ,

f4(n, t) = exp
[
–H2(0, t)

]
g(n)nf0

[
n, H1(0, t)

]
.

We observe that nf0[n, H1(τ , t)] is the cosine transform of ∂
∂ξ

F0[ξ , H1(τ , t)] since F0(0, t) =
F0(π , t) = 0. If, for values of x outside the interval (0,π ), we define ∂F0

∂ξ
as the even periodic

extension and P(x, t) and G(x) as the odd periodic extensions of the original period 2π

functions

F1(x, t) =
1
2

∫ t

0
exp

[
–H2(τ , t)

]∫ π

–π

P(x – ξ , τ )
∂

∂ξ
F0

[
ξ , H1(τ , t)

]
dξ dτ ,

F4(x, t) =
1
2

exp
[
–H2(0, t)

] ∫ π

–π

G(x – ξ , τ )
∂

∂ξ
F0

[
ξ , H1(0, t)

]
dξ ,

F2(x, t) =
∫ t

0
C3(τ ) exp

[
–H2(τ , t)

] ∂

∂τ
F0

[
x, H1(τ , t)

]
dτ .

The solution F3 of problem (3.12) can be written

F3(x, t) =
∫ t

0
C4(τ ) exp

[
–H2(τ , t)

] ∂

∂τ
F0

[
π – x, H1(τ , t)

]
dτ .

Hence the solution of the general temperature problem (Application 4) can be resolved
into the solution of the simple temperature problem (Application 3) by the formula

F(x, t) = F1(x, t) + F2(x, t) + F3(x, t) + F4(x, t)

where F1, F2, F3 and F4 are defined above. For verification of the resolution see [11].

4 Concluding remarks
Boundary value problems of partial differential equations concerned with temperature
as the unknown may be solved by a finite Fourier transform method. The temperature at
points other than the boundary, if they should be needed, can be obtained by summing the
Fourier coefficients. For potential problems, the temperature at the boundary should be as
accurate as possible. The finite Fourier transform method which gives the exact boundary
temperature within the computer accuracy is shown to be an extremely powerful mathe-
matical tool for the analysis of boundary value problems of partial differential equations
with applications in physics. Also the finite Fourier transform method differs from the
usual Fourier transformation method in that the solutions are obtained without perform-
ing the inverse Fourier transforms. In principle, the finite Fourier transform method may
be extended to analog simulations of heat equations in three space variables, and it may
also be a very efficient technique for the solution of multidimensional heat equations.
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