
Maharajan et al. Advances in Difference Equations  (2018) 2018:113 
https://doi.org/10.1186/s13662-018-1553-7

R E S E A R C H Open Access

Global exponential stability of Markovian
jumping stochastic impulsive uncertain BAM
neural networks with leakage, mixed time
delays, and α-inverse Hölder activation
functions
C. Maharajan1, R. Raja2, Jinde Cao3* , G. Ravi4 and G. Rajchakit5

*Correspondence:
jdcao@seu.edu.cn
3School of Mathematics, Southeast
University, Nanjing, China
Full list of author information is
available at the end of the article

Abstract
This paper concerns the problem of enhanced results on robust finite time passivity
for uncertain discrete time Markovian jumping BAM delayed neural networks with
leakage delay. By implementing a proper Lyapunov–Krasovskii functional candidate,
reciprocally convex combination method, and linear matrix inequality technique, we
derive several sufficient conditions for varying the passivity of discrete time BAM
neural networks. Further, some sufficient conditions for finite time boundedness and
passivity for uncertainties are proposed by employing zero inequalities. Finally, the
enhancement of the feasible region of the proposed criteria is shown via numerical
examples with simulation to illustrate the applicability and usefulness of the
proposed method.
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1 Introduction and problem statement with preliminaries
There has been a growing research interest in the field of recurrent neural networks
(RNNs) largely studied by many researchers in recent years. The network architecture in-
cludes various types of neural networks such as bidirectional associative memory (BAM)
neural networks, Hopfield neural networks, cellular neural networks, Cohen–Grossberg
neural networks, neural and social networks which have received great attention due to
their wide applications in the field of classification, signal and image processing, parallel
computing, associate memories, optimization, cryptography, and so on. The bidirectional
associative memory (BAM) neural network models were initially coined by Kosko, see
[1, 2]. This network has an extraordinary class of RNNs which can have the ability to store
bipolar vector pairs. It is composed of neurons and is arranged in two layers, one is the X-
layer and the other is the Y-layer. The neurons in one layer are fully interconnected to the
neurons in the other layer. The BAM neural networks are designed in such a way that, for
a given external input, they can reveal only one global asymptotic or exponential stability
equilibrium point. Hence, considerable efforts have been made in the study of stability
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analysis of neural networks, and as a credit to this, a large number of sufficient conditions
have been proposed to guarantee the global asymptotic or exponential stability for the
addressed neural networks.

Furthermore, the existence of time delays in the network will result in bad performance,
instability or chaos. Accordingly, the time delays can be classified into two types: discrete
and distributed delays. Here, we have taken both the delays into account while modeling
our network system, because the length of the axon sizes is too large. So, it is noteworthy to
inspect the dynamical behaviors of neural systems with both time delays, see, for instance,
[3–11].

In [12], Shu et al. considered the BAM neural networks with discrete and distributed
time delays. Some sufficient conditions were obtained to ensure the global asymptotic
stability [12]. Also, time delays in the leakage term have great impact on the dynamic be-
havior of neural networks. However, so far, there have been a very few existing works on
neural networks with time delay in the leakage term, see, for instance, [13–17].

Further the stability performance of state variable with leakage time delays was dis-
cussed by Lakshmanan et al. in [18]. While modeling a real nervous system, stochastic
noises and parameter uncertainties are inevitable and should be taken into account. In
the real nervous system, the synaptic transmission has created a noisy process brought on
by apparent variation from the release of neurotransmitters and the connection weights of
the neuron completely depend on undisputed resistance and capacitance values. There-
fore, it is of practical significance to investigate the stochastic disruption in the stability of
time-delayed neural networks with parameter uncertainties, see references cited therein
[19–22]. Moreover, the hasty consequence (impulsive effect) is probable to exist in a wide
variety of evolutionary processes that in turn make changes in the states abruptly at certain
moments of time [23–28].

The conversion of the parameters jump will lead to a finite-state Markov process.
Recently, the researchers in [29, 30] investigated the existence of Markovian jumps in
BAMNNs and exploited the stochastic LKF approach, the new sufficient conditions were
derived for the global exponential stability in the mean square.

The BAM-type NNs with Markovian jumping parameters and leakage terms were de-
scribed by Wang et al. in [31]. In [32], a robust stability problem was studied and some
delay-dependent conditions were derived for the neutral-type NNs with time-varying de-
lays. The authors in [33–35] developed some conditions for the stability analysis of neu-
ral networks with integral inequality approach. The criteria to obtain the stability result
of neural networks with time-varying delays were checked in[36–38]. It should be noted
that, with all the consequences reported in the literature above, they are concerned only
with Markovian jumping SNNs with Lipschitz model neuron activation functions. Up to
now, very little attention has been paid to the problem of the global exponential stability of
Markovian jumping SBAMNNs with non-Lipschitz type activation functions, which fre-
quently appear in realistic neural networks. This situation motivates our present problem,
i.e., α-inverse holder activation functions.

Our main objective of this paper is to study the delay-dependent exponential stability
problem for a class of Markovian jumping uncertain BAM neural networks with mixed
time delays, leakage delays, and α-inverse Holder activation functions under stochastic
noise perturbation.
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To the best of authors knowledge, so far, no result on the global exponential stability
of Markovian jumping stochastic impulsive uncertain BAM neural networks with leak-
age, mixed time delays, and α-inverse Hölder activation functions has been available in
the existing literature, which motivates our research to derive the following BAM neural
networks:

dx(t) =
[

–Cx(t – ν1) + W0f
(
y(t)

)
+ W1g

(
y
(
t – τ1(t)

))
+ W2

∫ t
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(
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)
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(
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(
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(
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)
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dy(t) =
[
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(
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)
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(
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(
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))
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(
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)
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(
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(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈R
n and y(t) = (y1(t), y2(t), . . . , yn(t))T ∈R

n denote the
states at time t; f (·), g(·), h(·) and f̃ (·), g̃(·), h̃(·) denote the neuron activation functions,
C = diag{ci}, D = diag{dj} are positive diagonal matrices; ci > 0, dj > 0, i, j = 1, 2, . . . , n, are
the neural self inhibitions; W0 = (W0ji)n×n, V0 = (V0ij)n×n are the connection weight matri-
ces; W1 = (W1ji)n×n, V1 = (V1ij)n×n are the discretely delayed connection weight matrices;
and W2 = (W2ji)n×n, V2 = (V2ij)n×n are the distributively delayed connection weight ma-
trices; I = (I1, I2, . . . , In)T and J = (J1, J2, . . . , Jn)T are the external inputs; τ1(t) and τ2(t) are
the discrete time-varying delays which are bounded with 0 < τ1(t) < τ̄1, τ̇1(t) ≤ τ1 < 1, and
0 < τ2(t) < τ̄2, τ̇2(t) ≤ τ2 < 1, respectively; σ1 and σ2 are constant delays. The leakage de-
lays ν1 ≥ 0, ν2 ≥ 0 are constants; ρ1 : Rn × R

n × R
n × R

+ −→ R
n and ρ2 : Rn × R

n ×
R

n × R
+ −→ R

n denote the stochastic disturbances ω(t) = (ω1(t),ω2(t), . . . ,ωn(t))T and
ω̃(t) = (ω̃1(t), ω̃2(t), . . . , ω̃n(t))T are n-dimensional Brownian motions defined on a com-
plete probability space (A,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual condi-
tions (i.e., it is right-continuous and F0 contains all P-null sets) and E{dω(t)} = E{dω̃(t)} =
0, E{dω2(t)} = E{dω̃2(t)} = dt; Mk(·) : Rn × R

n → R
n, Nk(·) : Rn × R

n → R
n, k ∈ Z+ are

some continuous functions. The impulsive time tk satisfies 0 = t0 < t1 < · · · < tk → ∞, (i.e.,
limk→∞ tk = +∞) and infk∈Z+{tk – tk–1} > 0.

The main contributions of this research work are highlighted as follows:
∗ Uncertain parameters, Markovian jumping, stochastic noises, and leakage delays are

taken into account in the stability analysis of designing BAM neural networks with
mixed time delays.

∗ By fabricating suitable LKF, the global exponential stability of addressed neural net-
works is checked via some less conserved stability conditions.

∗ For novelty, some uncertain parameters are initially handled in Lyapunov–Krasovskii
functional which ensures the sufficient conditions for global exponential stability of
designed neural networks.

∗ In our proposed BAM neural networks, by considering both the time delay terms, the
allowable upper bounds of discrete time-varying delay is large when compared with
some existing literature, see Table 1 of Example 4.1. This shows that the approach
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developed in this paper is brand-new and less conservative than some available re-
sults.

Suppose that the initial condition of the stochastic BAM neural networks (1) has the
form x(t) = φ(t) for t ∈ [–ω̄, 0] and y(t) = ψ(t) for t ∈ [– ¯̃ω, 0], where φ(t) and ψ(t) are
continuous functions, ω̄ = max(τ̄1,ν1,σ1) and ¯̃ω = max(τ̄2,ν2,σ2). Throughout this section,
we assume that the activation functions fi, f̃j, gi, g̃j, hi, h̃j; i, j = 1, 2, . . . , n, satisfy the following
assumptions:

Assumption 1
(1) fi, f̃j are monotonic increasing continuous functions.
(2) For any ρ1,ρ2, θ1, θ2 ∈ R, there exist the respective scalars qρ1 > 0, rρ1 > 0 and qρ2 > 0,

rρ2 > 0 which are correlated with ρ1, ρ2 and α > 0, β > 0 so that

∣∣fi(θ1) – fi(ρ1)
∣∣≥ qiρ1

|θ1 – ρ1|α , ∀|θ1 – ρ1| ≤ riρ1
, and∣∣f̃j(θ2) – f̃j(ρ2)

∣∣≥ q̃jρ2
|θ2 – ρ2|β , ∀|θ2 – ρ2| ≤ r̃jρ2

.

Assumption 2 gi, hi and g̃j, h̃j are continuous and satisfy

∣∣gi(s1) – gi(s2)
∣∣≤ ei

∣∣fi(s1) – fi(s2)
∣∣; ∣∣hi(s1) – hi(s2)

∣∣≤ ki
∣∣fi(s1) – fi(s2)

∣∣;∣∣g̃j(s̃1) – g̃j(s̃2)
∣∣≤ ẽj

∣∣f̃j(s̃1) – f̃j(s̃2)
∣∣; ∣∣h̃j(s̃1) – h̃j(s̃2)

∣∣≤ k̃j
∣∣f̃j(s̃1) – f̃j(s̃2)

∣∣,
∀s1, s2, s̃1, s̃2 ∈R, s1 �= s2 and s̃1 �= s̃2, i, j = 1, 2, 3, . . . , n. Denote E = diag{ei}, K = diag{ki} and
Ẽ = diag{ẽj}, K̃ = diag{k̃j} respectively.

Remark 1.1 In [39], the function fi used in Assumption 1 is said to be an α-inverse Holder
activation function which is a non-Lipschitz function. This activation function plays an
important role in the stability issues of neural networks, and there exists a great number
of results in the engineering mathematics, for example, f (θ ) = arc tan θ and f (θ ) = θ3 + θ

are 1-inverse Holder functions, f (θ ) = θ3 is 3-inverse Holder function.

Remark 1.2 From Assumption 2, we can get that ei, ẽj and ki, k̃j are positive scalars. So E,
Ẽ and K , K̃ are both positive definite diagonal matrices. The relations among the different
activation functions fi, f̃j (which are α-inverse Holder activation functions) gi, g̃j and hi, h̃j

are implicitly established in Theorem 3.2. Such relations, however, have not been provided
by any of the authors in the reported literature.

In order to guarantee the global exponential stability of system (1), we assume that the
system tends to its equilibrium point and the stochastic noise contribution vanishes, i.e.,

Assumption 3 ρ(x∗, y∗, y∗, t) = 0; i, j = 1, 2, . . . , n.

For such deterministic BAM neural networks, we have the following system of equa-
tions:

dx(t) =
[

–Cx(t – ν1) + W0f
(
y(t)

)
+ W1

(
g
(
y
(
t – τ1(t)

)))

+ W2

∫ t

t–σ1

h
(
y(s)

)
ds + I

]
dt, t > 0, t �= tk ,
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�x(tk) = Mk
(
x(tk– ), xtk–

)
; t = tk , k ∈ Z+,

dy(t) =
[

–Dy(t – ν2) + V0 f̃
(
x(t)

)
+ V1g̃

(
x
(
t – τ2(t)

))
(2)

+ V2

∫ t

t–σ2

h̃
(
x(s)

)
ds + J

]
dt, t > 0, t �= tk ,

�y(tk) = Nk
(
y(tk– ), ytk–

)
; t = tk , k ∈ Z+.

Thus system (1) admits one equilibrium point (x∗, y∗) = (x∗
1, x∗

2, . . . , x∗
n, y∗

1, y∗
2, . . . , y∗

n)T under
Assumption 3. In this regard, let u(t) = x(t) – x∗ and v(t) = y(t) – y∗, then system (1) can be
rewritten in the following form:

du(t) =
[

–Cu(t – ν1) + W0 f̄
(
v(t)

)
+ W1

(
ḡ
(
v
(
t – τ1(t)

)))
+ W2

∫ t

t–σ1

h̄
(
v(s)

)
ds
]

dt

+ ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t
)

dω̄(t), t > 0, t �= tk ,

�u(tk) = M̄k
(
u
(
t–
k
)
, ut–

k

)
, t = tk , k ∈ Z+,

dv(t) =
[

–Dv(t – ν2) + V0
¯̃f (u(t)

)
+ V1 ¯̃g(u(t – τ2(t)

))
+ V2

∫ t

t–σ2

¯̃h(u(s)
)

ds
]

dt

+ ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t
)

d ¯̃ω(t), t > 0, t �= tk ,

�v(tk) = N̄k
(
v
(
t–
k
)
, vt–

k

)
, t = tk , k ∈ Z+,

(3)

where

u(t) =
(
u1(t), u2(t), . . . , un(t)

)T ,

v(t) =
(
v1(t), v2(t), . . . , vn(t)

)T ,

u(t – ν1) =
(
u1(t – ν1), u2(t – ν1), . . . , un(t – ν1)

)T ,

v(t – ν2) =
(
v1(t – ν2), v2(t – ν2), . . . , vn(t – ν2)

)T ,

f̄
(
v(t)

)
=
(
f̄1
(
v(t)

)
, f̄2
(
v(t)

)
, . . . , f̄n

(
v(t)

))T ,

¯̃f (u(t)
)

=
( ¯̃f1
(
u(t)

)
, ¯̃f2
(
u(t)

)
, . . . , ¯̃fn

(
u(t)

))T ,

ḡ
(
v
(
t – τ1(t)

))
=
(
ḡ1
(
v
(
t – τ1(t)

))
, ḡ2
(
v
(
t – τ1(t)

))
, . . . , ḡn

(
v
(
t – τn(t)

)))T ,

¯̃g(u(t – τ2(t)
))

=
( ¯̃g1
(
u
(
t – τ2(t)

))
, ¯̃g2
(
u
(
t – τ2(t)

))
, . . . , ¯̃gn

(
u
(
t – τn(t)

)))T ,

h̄
(
v(t)

)
=
(
h̄1
(
v(t)

)
, h̄2
(
v(t)

)
, . . . , h̄n

(
v(t)

))T ,

¯̃h(u(t)
)

=
( ¯̃h1
(
u(t)

)
, ¯̃h2
(
u(t)

)
, . . . , ¯̃hn

(
u(t)

))T ,

f̄i
(
v(t)

)
= fi
(
v(t) + y∗) – fi

(
y∗),

¯̃fj
(
u(t)

)
= f̃j
(
u(t) + x∗) – f̃j

(
x∗),

ḡi
(
v
(
t – τ1(t)

))
= gi

(
v
(
t – τ1(t)

)
+ y∗) – gi

(
y∗),

¯̃gj
(
u
(
t – τ2(t)

))
= g̃j

(
u
(
t – τ2(t)

)
+ x∗) – g̃j

(
x∗),

h̄i
(
v(t)

)
= hi

(
v(t) + y∗) – hi

(
y∗),
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¯̃hj
(
u(t)

)
= h̃i

(
u(t) + x∗) – h̃i

(
x∗),

ρ̄1
(
u(t – ν1), v(t), v(t – τ1), t

)
= ρ1

(
u(t – ν1) + x∗, v(t) + y∗, v

(
t – τ1(t)

)
+ y∗, t

)
– ρ1

(
x∗, y∗, y∗, t

)
,

ρ̄2
(
v(t – ν2), u(t), u(t – τ2), t

)
= ρ2

(
v(t – ν2) + y∗, u(t) + x∗, u

(
t – τ2(t)

)
+ x∗, t

)
– ρ2

(
y∗, x∗, x∗, t

)
,

ρ̄1
(
u(t – ν1), v(t), v(t – τ1), t

)
=
(
ρ̄11
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t
)
, . . . , ρ̄1n

(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t
))T ,

ρ̄2
(
v(t – ν2), u(t), u(t – τ2), t

)
=
(
ρ̄21
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t
)
, . . . , ρ̄2n

(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t
))T .

Apparently, f̄i(s), ¯̃fj(s) is also an α-inverse Holder function, and f̄i(0) = ḡi(0) = h̄i(0) =
¯̃fj(0) = ¯̃gj(0) = ¯̃hj(0) = 0, i, j = 1, 2, . . . , n.

Let {r(t), t ≥ 0} be a right-continuous Markov chain in a complete probability space
(,F , {Ft}t≥0,P) and take values in a finite state space M = {1, 2, . . . , N} with generator
� = (γij)N×N given by

P
{

r(t + �t) = j|r(t) = i
}

=

⎧⎨
⎩

γij�t + O(�t), if i �= j,

1 + γii�t + O(�t), if i = j,

where �t > 0 and lim�t→0( O(�t)
�t ) = 0. Here γij ≥ 0 is the transition probability rate from i

to j if i �= j, while γii = –
∑N

j=1 γij.
In this paper, we consider the following BAM neural networks with stochastic noise dis-

turbance, leakage, mixed time delays, and Markovian jump parameters, which is actually
a modification of system (3):

du(t) =
[

–C
(
r(t)

)
u(t – ν1) + W0

(
r(t)

)
f̄
(
v(t)

)

+ W1
(
r(t)

)(
ḡ
(
v
(
t – τ1(t)

)))
+ W2

(
r(t)

)∫ t

t–σ1

h̄
(
v(s)

)
ds
]

dt

+ ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, r(t)

)
dω̄(t), t > 0, t �= tk ,

�u(tk) = M̄k
(
r(t)

)(
u
(
t–
k
)
, ut–

k

)
, t = tk , k ∈ Z+,

dv(t) =
[

–D
(
r̃(t)

)
v(t – ν2) + V0

(
r̃(t)

) ¯̃f (u(t)
)

+ V1
(
r̃(t)

) ¯̃g(u(t – τ2(t)
))

+ V2
(
r̃(t)

)∫ t

t–σ2

¯̃h(u(s)
)

ds
]

dt

+ ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, r̃(t)

)
d ¯̃ω(t), t > 0, t �= tk ,

�v(tk) = N̄k
(
r̃(t)

)(
v(tk– ), vtk–

)
, t = tk , k ∈ Z+,

(4)

where u(t – ν1), τ1(t), τ2(t), v(t), u(t), v(t – ν2), f̄ (v(t)), ¯̃f (u(t)), ḡ(v(t – τ1(t))), ¯̃g(u(t – τ2(t))),
h̄(v(t)), ¯̃h(u(t)) have the same meanings as those in (3), ρ̄1(u(t – ν1), v(t), v(t – τ1(t)), t, r(t))
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and ρ̄2(v(t – ν2), u(t), u(t – τ2(t)), t, r̃(t)) are noise intensity function vectors, and for a
fixed system mode, C(r(t)), D(r(t)), W0(r(t)), V0(r̃(t)), W1(r(t)), V1(r̃(t)), W2(r(t)), V2(r̃(t)),
M̄k(r(t)), and ¯̃Nk(r̃(t)) are known constant matrices with appropriate dimensions.

For our convenience, each possible value of r(t) and r̃(t) is denoted by i and j respectively;
i, j ∈M in the sequel. Then we have Ci = C(r(t)), Dj = D(r̃(t)), W0i = W0(r(t)), V0j = V0(r̃(t)),
W1i = W1(r(t)), V1j = V1(r̃(t)), W2i = W2(r(t)), V2j = V2(r̃(t)), M̄ki = M̄k(r(t)), ¯̃Nkj = ¯̃Nk(r̃(t)),
where Ci, Dj, W0i, V0j, W1i, V1j, W2i, V2j, M̄ki, ¯̃Nkj for any i, j ∈M.

Assume that ρ̄1 : Rn ×R
n ×R

n ×R
+ ×M →R

n and ρ̄2 : Rn ×R
n ×R

n ×R
+ ×M →R

n

are locally Lipschitz continuous and satisfy the following assumption.

Assumption 4

trace
[
ρ̄1

T (u1, v1, v2, t, i)ρ̄1(u1, v1, v2, t, i)
]≤ uT

1 R1iu1 + vT
1 R2iv1 + vT

2 R3iv2;

trace
[
ρ̄2

T (v1, u1, u2, t, j)ρ̄2(v1, u1, u2, t, j)
]≤ vT

1 R̃1jv1 + uT
1 R̃2ju1 + uT

2 R̃3ju2;

for all u1, u2, v1, v2 ∈ R
n and r(t) = i, r̃(t) = j, i, j ∈M,where R1i, R̃1j, R2i, R̃2j, R3i, and R̃3j are

known positive definite matrices with appropriate dimensions.

Consider a general stochastic system dx(t) = f (x(t), t, r(t)) dt + g(x(t), t, r(t)) dω(t), t ≥ 0
with the initial value x(0) = x0 ∈ R

n, where f : Rn ×R
+ ×M → R

n and r(t) is the Markov
chain. Let C2,1(Rn ×R

+ ×M;R+) denote a family of all nonnegative functions V on R
n ×

R
+ ×M which are twice continuously differentiable in x and once differentiable in t. For

any V ∈ C2,1(Rn ×R
+ ×M;R+), define LV : Rn ×R

+ ×M →R by

LV
(
x(t), t, i

)
= Vt

(
x(t), t, i

)
+ Vx

(
x(t), t, i

)
f
(
x(t), t, i

)

+
1
2

trace
(
gT(x(t), t, i

)
Vxx

(
x(t), t, i

)
g
(
x(t), t, i

))

+
N∑

j=1

γijV
(
x(t), t, j

)
,

where

Vt
(
x(t), t, i

)
=

∂V (x(t), t, i)
∂t

,

Vx
(
x(t), t, i

)
=
(

∂V (x(t), t, i)
∂x1

,
∂V (x(t), t, i)

∂x2
, . . . ,

∂V (x(t), t, i)
∂xn

)
,

Vxx
(
x(t), t, i

)
=

∂2V (x(t), t, i)
∂xj ∂xk

.

By generalized Ito’s formula, one can see that

EV
(
x(t), y(t), t, r(t)

)
= EV

(
x(0), y(0), 0, r(0)

)
+ E

∫ t

0
LV

(
x(s), y(s), s, r(s)

)
ds.

Let u(t; ξ ) and v(t; ξ̃ ) denote the state trajectory from the initial data u(θ ) = ξ (θ ) on –ω̄ ≤
θ ≤ 0 in L2

F0
([–ω̄, 0];Rn) and v(θ ) = ξ̃ (θ ) on – ¯̃ω ≤ θ ≤ 0 in L2

F0
([– ¯̃ω, 0];Rn). Clearly, system
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(4) admits a trivial solution u(t, 0) ≡ 0 and v(t, 0) ≡ 0 corresponding to the initial data ξ = 0
and ξ̃ = 0, respectively. For simplicity, we write u(t; ξ ) = u(t) and v(t, ξ̃ ) = v(t).

Definition 1.3 The equilibrium point of neural networks (4) is said to be globally expo-
nentially stable in the mean square if, for any ξ ∈ L2

F0
([–ω̄, 0];Rn), ξ̃ ∈ L2

F0
([– ¯̃ω, 0];Rn),

there exist positive constants η, T , �ξ , and �ξ̃ correlated with ξ and ξ̃ such that, when
t > T , the following inequality holds:

E
{∥∥u(t; ξ )

∥∥2} + E
{∥∥v(t; ξ̃ )

∥∥2}≤ (�ξ + �ξ̃ )e–ηt .

Definition 1.4 We introduce the stochastic Lyapunov–Krasovskii functional V ∈
C2,1(R+ × R

n × R
n × M;R+) of system (4), the weak infinitesimal generator of random

process LV from R
+ ×R

n ×R
n ×M to R

+ defined by

LV
(
t, u(t), v(t), i

)
= lim

�t→0+

1
�t
[
E
{

V
(
(t + �t), u(t + �t), v(t + �t), r(t + �t)

)|
u(t), v(t), r(t) = i

}
– V

(
t, u(t), v(t), r(t) = i

)]
.

Lemma 1.5 ([39]) If fi is an α-inverse Holder function, then for any ρ0 ∈R, one has

∫ +∞

ρ0

[
fi(θ ) – fi(ρ0)

]
dθ =

∫ –∞

ρ0

[
fi(θ ) – fi(ρ0)

]
dθ = +∞.

Lemma 1.6 ([39]) If fi is an α-inverse Holder function and fi(0) = 0, then there exist con-
stants qi0 > 0 and ri0 ≥ 0 such that |fi(θ )| ≥ qi0 |θ |α , ∀|θ | ≤ ri0 . Moreover, |fi(θ )| ≥ qi0 rα

i0 ,
∀|θ | ≥ ri0 .

Lemma 1.7 ([21]) For any real matrix M > 0, scalars a and b with 0 ≤ a < b, vector func-
tion x(α) such that the following integrals are well defined, we have

∫ –b

–a

∫ t

t+β

x(α)T Mx(α) dα dβ ≤ (b – a)
∫ t

t–b
x(α)T Mx(α) dα.

Lemma 1.8 ([39]) Let x, y ∈R
n, and G is a positive definite matrix, then

2xT y ≤ xT Gx + yT G–1y.

Lemma 1.9 ([21]) Given constant symmetric matrices ϒ1, ϒ2, and ϒ3 with appropriate
dimensions, where ϒT

1 = ϒ1 and ϒT
2 = ϒ2 > 0, ϒ1 + ϒT

3 ϒ–1
2 ϒ3 < 0 if and only if

[
ϒ1 ϒT

3

ϒ3 –ϒ2

]
< 0 [or]

[
ϒ1 ϒ3

ϒT
3 –ϒ2

]
< 0.

Lemma 1.10 ([21]) For any constant matrix  ∈ R
n×n,  = T > 0, scalar γ > 0, vector

function ω : [0,γ ] →R
n, such that the integrations concerned are well defined, then

1
γ

(∫ γ

0
ω(s) ds

)T



(∫ γ

0
ω(s) ds

)
≤
∫ γ

0
ωT (s)ω(s) ds.
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Lemma 1.11 ([33]) For given matrices D, E, and F with FT F ≤ I and scalar ε > 0, the
following inequality holds:

DFE + ET FT DT ≤ εDDT + ε–1EET .

Remark 1.12 Lakshmanan et al. in [18] analyzed the impact of time-delayed BAM neural
networks for ensuring the stability performance when the leakage delay occurred. In [12],
the authors discussed the stability behavior in the sense of asymptotic for BAM neural
networks with mixed time delays and uncertain parameters. Moreover, the comparisons
for maximum allowable upper bounds of discrete time-varying delays have been listed.
Lou and Cui in [29] conversed the exponential stability conditions for time-delayed BAM
NNs while Markovian jump parameters arose. Further, the stochastic effects on neural
networks and stability criteria were conversed via exponential sense by Huang and Li in
[40] by the aid of Lyapunov–Krasovskii functionals. In all the above mentioned references,
the stability problem for BAM neural networks was considered only with leakage delays
or mixed time delays, or stochastic effects, or Markovian jump parameters, or parameter
uncertainties, but all the above factors have not been taken into one account and no one
investigated exponential stability via delays at a time. Considering the above facts is very
challenging and advanced in this research work.

2 Global exponential stability for deterministic systems
Theorem 2.1 Under Assumptions 1 and 2, the neural network system (4) is globally ex-
ponentially stable in the mean square if, for given ηi, η̃j > 0 (i, j ∈ M), there exist positive
definite matrices S, T , S̃, T̃ , R2, R̃2, N1, N2, N3, N4, N5, N6 and Hi, H̃j (i, j ∈ M), positive
definite diagonal matrices P, Q, and positive scalars λi and μj (i, j ∈ M) such that the fol-
lowing LMIs are satisfied:

Hi < λiI, (5)

H̃j < μjI, (6)

M̄T
k HiM̄k – Hj ≤ 0, (7)

N̄T
k H̃iN̄k – H̃j ≤ 0

[
here r(tk) = i and r̃(tk) = j

]
, (8)

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 0 0 0 0 0 �19 0 0 0 0 0
∗ �22 0 0 �25 �26 �27 0 �29 0 0 0 0 0
∗ ∗ �33 0 �35 �36 �37 0 0 0 0 0 0 0
∗ ∗ ∗ �44 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0 �59 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ �66 0 0 �69 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 0 �79 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �88 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �99 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1010 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1111 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1212 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1313 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1414

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (9)
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j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 12 13 0 0 0 0 0 19 0 0 0 0 0
∗ 22 0 0 25 26 27 0 29 0 0 0 0 0
∗ ∗ 33 0 35 36 37 0 0 0 0 0 0 0
∗ ∗ ∗ 44 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 55 0 0 0 59 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 66 0 0 69 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 77 0 79 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 88 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 99 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1010 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1111 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1212 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1313 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1414

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10)

where

�11 = λiR1i, 11 = μjR̃1j, �22 = –CiHi +
N∑

l=1

γilHl +
λi

1 – τ1
e–ηi τ̄1 R2 + ηiHi,

22 = –DjH̃j +
N∑

l=1

γ̃jlH̃l +
μj

1 – τ2
e–̃ηj τ̄2 R̃2 + η̃jH̃j, �33 =

1
1 – τ1

E2S + σ1K2T ,

33 =
1

1 – τ2
Ẽ2̃S + σ2K̃2T̃ , �44 = –eηi τ̄1 S, 26 = H̃jV1j, 1212 = –μjR̃2,

44 = –e–η̃j τ̄2 S̃, 55 = N2, �66 = –(1 – τ1)e–ηi τ̄1 N3,

66 = –(1 – τ2)e–η̃j τ̄2 N4, �88 = –
1
σ1

T , 88 = –
1
σ2

T̃ ,

�99 =
N∑

l=1

γilCT
i HlCi + ηiCT

i HiCi, �13 = ηiP – PCi, 69 = –DT
j H̃jV1j,

99 =
N∑

l=1

γ̃jlDT
j H̃lDj + η̃jDT

j H̃jDj, 1010 = μjR̃3j, 37 = QV2j,

13 = η̃jQ – QDj, �19 = 0, 19 = 0, �25 = HiW0i, 25 = H̃jV0j,

�26 = HiW1i, �27 = HiW2i, 27 = H̃jV2j,

�29 = CT
i HiCi –

N∑
l=1

γilCiHl – ηiCT
i Hi, �1212 = –λiR2,

�35 = PW0i, 35 = QV0j, �36 = PW1i, 36 = QV1j, �37 = PW2i,

�1010 = λiR3i, �59 = –CT
i HiW0i, 59 = –DT

j H̃jV0j, �69 = –CT
i HiW1i,

�55 = N1, 1111 = μjR̃2j, �79 = –CT
i HiW2i, 79 = –DT

j H̃jV2j,

29 = DT
j H̃jDj –

N∑
l=1

γ̃jlDjH̃l – η̃jDT
j H̃j, 12 = 0, �1111 = λiR2i,

�1313 = N3, 1313 = N4, �12 = 0, �1414 = σ1N5,

�77 = –
1
σ1

N5, 1414 = σ2N6, 77 = –
1
σ2

N6.
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Proof Let us construct the following Lyapunov–Krasovskii functional candidate:

V
(
t, u(t), v(t), i, j

)
=

8∑
l=1

Vl
(
t, u(t), v(t), i, j

)
,

where

V1
(
t, u(t), v(t), i, j

)
= eηit

{[
u(t) – Ci

∫ t

t–ν1

u(s) ds
]T

Hi

[
u(t) – Ci

∫ t

t–ν1

u(s) ds
]}

+ eη̃jt
{[

v(t) – Dj

∫ t

t–ν2

v(s) ds
]T

H̃j

[
v(t) – Dj

∫ t

t–ν2

v(s) ds
]}

,

V2
(
t, u(t), v(t), i, j

)
=

λi

1 – τ1

∫ t

t–τ1(t)
eηi(s+τ1(s))uT (s)R2u(s) ds

+
μj

1 – τ2

∫ t

t–τ2(t)
eη̃j(s+τ2(s))vT (s)̃R2v(s) ds,

V3
(
t, u(t), v(t), i, j

)
=

1
1 – τ1

∫ t

t–τ1(t)
eηi(s)ḡT(u(s)

)
Sḡ
(
u(s)

)
ds

+
1

1 – τ2

∫ t

t–τ2(t)
eη̃js ¯̃gT(v(s)

)̃
S ¯̃g(u(s)

)
ds,

V4
(
t, u(t), v(t), i, j

)
=
∫ 0

–σ1

∫ t

t+s
eηiθ h̄T(u(θ )

)
Th̄
(
u(θ )

)
dθ ds

+
∫ 0

–σ2

∫ t

t+s
eη̃jθ ¯̃hT(v(θ )

)
T̃ ¯̃h(v(θ )

)
dθ ds,

V5
(
t, u(t), v(t), i, j

)
= 2eηit

n∑
l=1

pl

∫ ul(t)

0
f̄l(θ ) dθ + 2eη̃jt

n∑
l=1

ql

∫ vl(t)

0

¯̃fl(θ ) dθ ,

V6
(
t, u(t), v(t), i, j

)
=
∫ t

0
eηisf̄ T(v(s)

)
N1 f̄

(
v(s)

)
ds

+
∫ t

0
eη̃js ¯̃f T(u(s)

)
N2

¯̃f (u(s)
)

ds,

V7
(
t, u(t), v(t), i, j

)
=
∫ t

t–τ1(t)
eηisḡT(v(s)

)
N3ḡ

(
v(s)

)
ds

+
∫ t

t–τ2(t)
eη̃js ¯̃gT(u(s)

)
N4 ¯̃g(u(s)

)
ds,

V8
(
t, u(t), v(t), i, j

)
=
∫ 0

–σ1

∫ t

t+s
eηiθ h̄T(v(θ )

)
N5h̄

(
v(θ )

)
dθ ds

+
∫ 0

–σ2

∫ t

t+s
eη̃jθ ¯̃hT(u(θ )

)
N6

¯̃h(u(θ )
)

dθ ds.

By Assumption 4, (5) and (6), we obtain

trace
[
ρ̄T

1 (u1, v1, v2, t, i)Hiρ̄1(u1, v1, v2, t, i)
]≤ λi

[
uT

1 R1iu1 + vT
1 R2iv1 + vT

2 R3iv2
]
,

trace
[
ρ̄T

2 (v1, u1, u2, t, j)H̃jρ̄2(v1, u1, u2, t, j)
]≤ μj

[
vT

1 R̃1jv1 + uT
1 R̃2ju1 + uT

2 R̃3ju2
]
.
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It is easy to prove that system (4) is equivalent to the following form:

d
[

u(t) – Ci

∫ t

t–ν1

u(s) ds
]

=
[

–Ciu(t) + W0if̄
(
v(t)

)
+ W1iḡ

(
v
(
t – τ1(t)

))

+ W2i

∫ t

t–σ1

h̄
(
v(s)

)
ds
]

dt

+ ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, i

)
dω̄(t),

d
[

v(t) – Dj

∫ t

t–ν2

v(s) ds
]

=
[

–Djv(t) + V0j
¯̃f (u(t)

)
+ V1j ¯̃g

(
u
(
t – τ2(t)

))

+ V2j

∫ t

t–σ2

¯̃h(u(s)
)

ds
]

dt

+ ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, j
)

d ¯̃ω(t).

By utilizing Lemmas 1.6 and 1.10, from (4) and Definition 1.4, one has

LV1 ≤ eηit

{
uT (t)(–2CiHi + ηiHi)u(t) + 2uT (t)HiW0if̄

(
v(t)

)
+ 2uT (t)HiW1i

× ḡ
(
v
(
t – τ1(t)

))
+ 2uT (t)HiW2i

(∫ t

t–σ1

h̄
(
v(s)

)
ds
)

+ 2
(∫ t

t–ν1

u(s) ds
)T

CT
i Hi

× Ciu(t – ν1) – 2
(∫ t

t–ν1

u(s) ds
)T

CT
i HiW1iḡ

(
v
(
t – τ1(t)

))
– 2
(∫ t

t–ν1

u(s) ds
)T

× CT
i HiW2i

(∫ t

t–σ1

h̄
(
v(s)

)
ds
)

+ uT (t)
N∑

l=1

γilHiu(t) – 2uT (t)

( N∑
l=1

γilCiHi

+ ηiCT
i Hi

)(∫ t

t–ν1

u(s) ds
)

+
(∫ t

t–ν1

u(s) ds
)T
( N∑

l=1

γilCT
i HiCi + ηiCT

i HiCi

)

×
(∫ t

t–ν1

u(s) ds
)

+ uT (t – ν1)λiR1iu(t – ν1) + vT (t)λiR2iv(t) + vT(t – τ1(t)
)

× λiR3iv
(
t – τ1(t)

)}
+ eη̃jt

{
vT (t)(–2DjH̃j + η̃jH̃j)v(t) + 2vT (t)H̃jV0j

¯̃f (u(t)
)

+ 2vT (t)H̃jV1j ¯̃g
(
u
(
t – τ2(t)

))
+ 2vT (t)H̃jV2j

(∫ t

t–σ2

¯̃h(u(s)
)

ds
)

+ 2
(∫ t

t–ν2

v(s) ds
)T

DT
j H̃jDjv(t – ν2) – 2

(∫ t

t–ν2

v(s) ds
)T

× DT
j H̃jV1j ¯̃g

(
u
(
t – τ2(t)

))

– 2
(∫ t

t–ν2

v(s) ds
)T

DT
j H̃jV2j

(∫ t

t–σ2

¯̃h(u(s)
)

ds
)

+ vT (t)
N∑

l=1

γ̃jlH̃lv(t) – 2vT (t)

×
( N∑

l=1

γ̃jlDjH̃j + η̃jDT
j H̃j

)(∫ t

t–ν2

v(s) ds
)

+
(∫ t

t–ν2

v(s) ds
)T
( N∑

l=1

γ̃jlDT
j H̃jDj
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+ η̃jDT
j H̃jDj

)(∫ t

t–ν2

v(s) ds
)

+ vT (t – ν2)μjR̃1jv(t – ν2) + uT (t)μjR̃2j

× u(t) + uT(t – τ2(t)
)
μjR̃3ju

(
t – τ2(t)

)}
, (11)

LV2 ≤ λi

1 – τ1
eηi(t–τ̄1)uT (t)R2u(t) – λieηituT(t – τ1(t)

)
R2u

(
t – τ1(t)

)

+
μj

1 – τ2
eη̃j(t–τ̄2)vT (t)̃R2v(t) – μjeη̃jtvT(t – τ2(t)

)̃
R2v(t – τ2(t), (12)

LV3 ≤ 1
1 – τ1

eηit f̄ T(u(t)
)
E2Sf̄ (u(t) – eηi(t–τ̄1)ḡT(u(t – τ1(t)

))
S

× ḡ
(
u
(
t – τ1(t)

))
+

1
1 – τ2

eη̃jt ¯̃f T(v(t)
)̃
E2̃S ¯̃f (v(t)

)
– eη̃j(t–τ̄2)

× ¯̃gT(v(t – τ2(t)
))̃

S ¯̃g(v(t – τ2(t)
))

, (13)

LV4 ≤ σ1eηit f̄ T(u(t)
)
K2Tf̄

(
u(t)

)
–

1
σ1

eηit
(∫ t

t–σ1

h̄
(
u(s)

)
ds
)T

T

×
(∫ t

t–σ1

h̄
(
u(s)

)
ds
)

+ σ2eη̃jt ¯̃f T(v(t)
)
K̃2T̃ ¯̃f (v(t)

)
–

1
σ2

× eη̃jt
(∫ t

t–σ2

¯̃h(v(s)
)

ds
)T

T̃
(∫ t

t–σ2

¯̃h(v(s)
)

ds
)

, (14)

LV5 ≤ 2eηit f̄ T(u(t)
)
(ηiP – PCi)u(t – ν1) + 2eηit f̄ T(u(t)

)
PW0i f̄

(
v(t)

)

+ 2eηit f̄ T(u(t)
)
PW1iḡ

(
v
(
t – τ1(t)

))
+ 2eηit f̄ T(u(t)

)
PW2i

∫ t

t–σ1

h̄
(
v(s)

)
ds

+ 2eη̃jt ¯̃f T(v(t)
)
(̃ηjQ – QDj)v(t – ν2) + 2eη̃jt ¯̃f T(v(t)

)
QV0j

¯̃f (u(t)
)

+ 2eη̃jt ¯̃f T(v(t)
)
QV1j ¯̃g

(
u
(
t – τ2(t)

))
+ 2eη̃jt ¯̃f T(v(t)

)
QV2j

∫ t

t–σ2

¯̃h(u(s)
)

ds, (15)

LV6 = eηit f̄ T(v(t)
)
N1 f̄

(
v(t)

)
+ eη̃jt ¯̃f T(u(t)

)
N2

¯̃f (u(t)
)
, (16)

LV7 ≤ eηit ḡT(v(t)
)
N3ḡ

(
v(t)

)
– eηi(t–τ̄1)ḡT(v(t – τ1(t)

))
N3ḡ

(
v
(
t – τ1(t)

))
(1 – τ1)

+ eη̃jt ¯̃gT(u(t)
)
N4 ¯̃g(u(t)

)
– eη̃j(t–τ̄2) ¯̃gT(u(t – τ2(t)

))
N4 ¯̃g(u(t – τ2(t)

))
(1 – τ2), (17)

LV8 ≤ σ1eηit h̄T(v(t)
)
N5h̄

(
v(t)

)
–

1
σ1

eηit
(∫ t

t–σ1

h̄
(
v(s)

)
ds
)T

N5

(∫ t

t–σ1

h̄
(
v(s)

)
ds
)

+ σ2eη̃jt ¯̃hT(u(t)
)
N6

¯̃h(u(t)
)

–
1
σ2

eη̃jt
(∫ t

t–σ2

¯̃h(u(s)
)

ds
)T

N6

(∫ t

t–σ2

¯̃h(u(s)
)

ds
)

. (18)

By combining Eqs. (11)–(18), we can obtain that

LV
(
t, u(t), v(t), i, j

)≤ eηit�T (t)�i�(t) + eη̃jt�T (t)j�(t), (19)
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where

�(t) =
[

uT (t – ν1), uT (t), f T(u(t)
)
, ḡT(u(t – τ1(t)

))
, f̄ T(v(t)

)
, ḡT(v(t – τ1(t)

))
,

(∫ t

t–σ1

h̄
(
v(s)

)
ds
)T

,
(∫ t

t–σ1

h̄
(
u(s)

)
ds
)T

,
(∫ t

t–ν1

u(s) ds
)T

, vT(t – τ1(t)
)
,

vT (t), uT(t – τ1(t)
)
, ḡ
(
v(t)

)
, h̄
(
v(t)

)]

and

�(t) =
[

vT (t – ν2), vT (t), ¯̃f T(v(t)
)
, ¯̃gT(v(t – τ2(t)

))
, ¯̃f T(u(t)

)
, ¯̃gT(u(t – τ2(t)

))
,

(∫ t

t–σ2

¯̃h(u(s)
)

ds
)T

,
(∫ t

t–σ2

¯̃h(v(s)
)

ds
)T

,
(∫ t

t–ν2

v(s) ds
)T

, uT(t – τ2(t)
)
,

uT (t), vT(t – τ2(t)
)
, ¯̃gT(u(t)

)
, ¯̃hT(u(t)

)]
.

Let α = mini∈S λmin(–�i) and β = minj∈S μmin(–j). From conditions (9) and (10), it is easy
to see that α > 0 and β > 0. This fact together with (19) gives

LV
(
t, u(t), v(t), i, j

)≤ –
(
αeηit

(∥∥u(t)
∥∥2 +

∥∥v(t)
∥∥2) + βeη̃jt

(∥∥u(t)
∥∥2 +

∥∥v(t)
∥∥2)). (20)

Then, for t = tk , by some simple calculations, one gets

V1
(
tk , u(tk), v(tk), i, j

)
– V1

(
tk– , u(tk– ), v(tk– ), i, j

)
< 0.

Therefore V1(tk , u(tk), v(tk), i, j) ≤ V1(tk– , u(tk– ), v(tk– ), i, j), k ∈ Z+, which implies that
V (tk , u(tk), v(tk), i, j) ≤ V (tk– , u(tk– ), v(tk– ), i, j), k ∈ Z+. Using mathematical induction, we
have that, for all i, j ∈M and k ≥ 1,

EV
(
tk , u(tk), v(tk), i, j

) ≤ EV
(
tk– , u(tk– ), v(tk– ), i, j

)
≤ EV

(
tk–1, u(tk–1), v(tk–1), r(tk–1), r̃(tk–1)

)
≤ EV

(
t–
k–1, u

(
t–
k–1
)
, v
(
t–
k–1
)
, r
(
t–
k–1
)
, r̃
(
t–
k–1
))

≤ EV
(
t0, u(t0), v(t0), r(t0), r̃(t0)

)
.

Since t > t′, it follows from Dynkin’s formula that we have

EV
(
t, u(t), v(t), i, j

)≤ EV
(
t′, u

(
t′), v

(
t′), r

(
t′), r̃

(
t′)),

EV
(
t, u(t), v(t), i, j

)≤ EV
(
0, u(0), v(0), r(0), r̃(0)

)
.
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Hence it follows from the definition of V (t, u(t), v(t), i, j), the generalized Ito’s formula, and
(20) that

λmin(Hi)E
(∥∥u(t)

∥∥2 +
∥∥v(t)

∥∥2) + μmin(H̃j)E
(∥∥u(t)

∥∥2 +
∥∥v(t)

∥∥2)

≤ e–ηitEV
(
0, u(0), v(0), r(0), r̃(0)

)
+ e–ηitE

[∫ t

0
–αeηit

(∥∥u(s)
∥∥2 +

∥∥v(s)
∥∥2)ds

]

+ e–η̃jtEV
(
0, u(0), v(0), r(0), r̃(0)

)
+ e–η̃jtE

[∫ t

0
–βeη̃jt

(∥∥u(s)
∥∥2 +

∥∥v(s)
∥∥2)ds

]

≤ e–ηitEV
(
0, u(0), v(0), r(0), r̃(0)

)
+ e–η̃jtEV

(
0, u(0), v(0), r(0), r̃(0)

)
. (21)

By (21), we can get that limt→+∞ E(‖u(t)‖2 + ‖v(t)‖2) = 0 and limt→+∞ E(‖u(t)‖2 +
‖v(t)‖2) = 0. Furthermore,

lim
t→+∞E

(∣∣ul(t)
∣∣2 +

∣∣vl(t)
∣∣2) = 0 and

lim
t→+∞E

(∣∣um(t)
∣∣2 +

∣∣vm(t)
∣∣2) = 0, l, m = 1, 2, . . . , n.

(22)

For f̄l(θ ) and ¯̃fm(θ ), by Lemma 1.6 there exist constants ql0 > 0, q̃m0 > 0, and rl0 > 0, r̃m0 > 0
such that |f̄l(θ )| ≥ ql0|θ |α , ∀|θ | ≤ rl0, l = 1, 2, . . . , n, and |¯̃fm(θ )| ≥ q̃m0|θ |α , ∀|θ | ≤ r̃m0, m =
1, 2, . . . , n.

By (22), there exists a scalar T > 0, when t ≥ T , E{ul(t)} ∈ [–r̄0, r̄0], l = 1, 2, . . . , n, where
r̄0 = min1≤l≤n rl0 and E{vm(t)} ∈ [–¯̃r0, ¯̃r0], m = 1, 2, . . . , n, where ¯̃r0 = min1≤l≤n r̃m0. Hence
when t ≥ T , one gets

e–ηitEV
(
0, u(0), v(0), r(0)

)
+ e–η̃jtEV

(
0, u(0), v(0), r̃(0)

)

≥ 2pq0

α + 1

{
max
1≤l≤n

E
{∥∥ul(t)

∥∥2}} α+1
2 +

2p̃q̃0

α + 1

{
max

1≤m≤n
E
{∥∥vm(t)

∥∥2}} α+1
2 , (23)

where p = min1≤l≤n pl , p̃ = min1≤m≤n p̃m and q0 = min1≤l≤n ql0, q̃0 = min1≤m≤n q̃m0. By (23),
we get

{
max
1≤l≤n

E
{∥∥ul(t)

∥∥2}} α+1
2 +

{
max

1≤m≤n
E
{∥∥vm(t)

∥∥2}} α+1
2

≤
(

α + 1
2pq0

)∗{(
EV

(
0, u(0), v(0), r(0), r̃(0)

))
e–ηt}

(
Put

(
α + 1
2pq0

)∗
= max

{
α + 1
2pq0

,
α + 1
2p̃q̃0

}
and η = min

i,j∈M

{
min
i∈M

ηi, min
j∈M

η̃j

})
,

where

EV
(
0, u(0), v(0), r(0), r̃(0)

) ≤ λmax(Hi)E‖ξ‖2 + μmax(H̃j)E‖ξ̃‖2 + λmax(R2)
λi

1 – τ1

× eηi τ̄1 – 1
ηi(1 + τ1)

E‖ξ‖2 + μmax(̃R2)
μj

1 – τ2

eη̃j τ̄2 – 1
η̃j(1 + τ2)

×E‖ξ̃‖2 + λmax(S)
1

1 – τ1

1 – eηi τ̄1

ηi
E
∥∥ḡ(ξ )

∥∥2 + μmax (̃S)
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× 1
1 – τ2

1 – e–η̃j τ̄2

η̃j
E
∥∥ ¯̃g(ξ̃ )

∥∥2 + λmax(T)σ1
1 – e–ηit

ηi

×E
∥∥h̄(ξ )

∥∥2 + μmax(T̃)σ2
1 – e–η̃jt

η̃j
E
∥∥ ¯̃h(ξ̃ )

∥∥2

+ 2PE
∣∣ξ f̄ (ξ )

∣∣ + 2QE
∣∣ξ̃ ¯̃f (ξ̃ )

∣∣. (24)

Let

πξi+ξ̃j
= (πξi + πξ̃j

)
2

α+1 , (25)

where

πξi = n
{(

α + 1
2pq0

)∗(
λmax(Hi)E‖ξ‖2 + λmax(R2)

λi

1 – τ1

eηi τ̄1 – 1
ηi(1 + τ1)

E‖ξ‖2

+ λmax(S)
1

1 – τ1

1 – eηi τ̄1

ηi
E
∥∥ḡ(ξ )

∥∥2

+ λmax(T)σ1
1 – e–ηi τ̄1

ηi
E
∥∥h̄(ξ )

∥∥2 + 2PE
∣∣ξ f̄ (ξ )

∣∣)},

πξ̃j
= n
{(

α + 1
2pq0

)∗(
μmax(H̃j)E‖ξ̃‖2 + μmax (̃R2)

μj

1 – τ2

e–η̃j τ̄2 – 1
η̃j(1 + τ2)

E‖ξ̃‖2

+ μmax (̃S)
1

1 – τ2

1 – e–η̃j τ̄2

η̃j
E
∥∥ ¯̃g(ξ̃ )

∥∥2

+ μmax(T̃)σ2
1 – e–η̃j τ̄2

η̃j
E
∥∥ ¯̃h(ξ̃ )

∥∥2 + 2QE
∣∣ξ̃ ¯̃f (ξ̃ )

∣∣)}.

Let χ = maxi,j∈M{πξi+ξ̃j
}. It follows from (23), (24), and (25) that

E
{∥∥u(t)

∥∥2} + E
{∥∥v(t)

∥∥2}≤ χe– 2η
α+1 t .

Therefore

E
{∥∥u(t)

∥∥2} + E
{∥∥v(t)

∥∥2}≤ χe– 2η
α+1 t for all t > 0. (26)

By Definition 1.3 and (26), we see that the equilibrium point of neural networks (4) is
globally exponentially stable in the mean square sense. �

Remark 2.2 To the best of our knowledge, the global exponential stability criteria for im-
pulsive effects of SBAMNNs with Markovian jump parameters and mixed time, leakage
term delays, α-inverse Holder activation functions have not been discussed in the existing
literature. Hence this paper reports a new idea and some sufficient conditions for global
exponential stability conditions of neural networks, which generalize and improve the out-
comes in [9, 11, 21, 37, 38].

Remark 2.3 The criteria given in Theorem 2.1 are dependent on the time delay. It is well
known that the delay-dependent criteria are less conservative than the delay-independent
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criteria, particularly when the delay is small. Based on Theorem 2.1, the following result
can be obtained easily.

Remark 2.4 If there are no stochastic disturbances in system (4), then the neural networks
are simplified to

du(t) =
[

–C
(
r(t)

)
u(t – ν1) + W0

(
r(t)

)
f̄
(
v(t)

)

+ W1
(
r(t)

)(
ḡ
(
v
(
t – τ1(t)

)))

+ W2
(
r(t)

)∫ t

t–σ1

h̄
(
v(s)

)
ds
]

dt, t > 0, t �= tk ,

�u(tk) = M̄k
(
u
(
t–
k
)
, ut–

k

)
, t = tk , k ∈ Z+,

dv(t) =
[

–D
(
r̃(t)

)
v(t – ν2) + V0

(
r̃(t)

) ¯̃f (u(t)
)

+ V1
(
r̃(t)

) ¯̃g(u(t – τ2(t)
))

+ V2
(
r̃(t)

)∫ t

t–σ2

¯̃h(u(s)
)

ds
]

dt, t > 0, t �= tk ,

�v(tk) = N̄k
(
v
(
t–
k
)
, vt–

k

)
, t = tk , k ∈ Z+.

(27)

3 Global exponential stability of uncertain system
Now consider the following BAM neural networks with stochastic noise disturbance,
Markovian jump parameters, leakage and mixed time delays, which are in the uncertainty
case system:

du(t) =
[

–
(
C + �C(t)

)(
r(t)

)
u(t – ν1)

+
(
W0 + �W0(t)

)(
r(t)

)
f̄
(
v(t)

)
+
(
W1 + W1(t)

)(
r(t)

)(
ḡ
(
v
(
t – τ1(t)

)))

+
(
W2 + �W2(t)

)(
r(t)

)∫ t

t–σ1

h̄
(
v(s)

)
ds
]

dt

+ ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, r(t)

)
dω̄(t), t > 0, t �= tk ,

�u(tk) =
(
M̄k + �M̄k(t)

)(
r(t)

)(
u
(
t–
k
)
, ut–

k

)
, t = tk , k ∈ Z+,

dv(t) =
[

–
(
D + �D(t)

)(
r̃(t)

)
v(t – ν2)

+
(
V0 + �V0(t)

)(
r̃(t)

) ¯̃f (u(t)
)

+
(
V1 + �V1(t)

)(
r̃(t)

) ¯̃g(u(t – τ2(t)
))

+
(
V2 + �V2(t)

)(
r̃(t)

)∫ t

t–σ2

¯̃h(u(s)
)

ds
]

dt

+ ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, r̃(t)

)
d ¯̃ω(t), t > 0, t �= tk ,

�v(tk) =
(
N̄k + �N̄k(t)

)(
r̃(t)

)(
v(tk– ), vtk–

)
, t = tk , k ∈ Z+.

(28)
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Assumption 5 The perturbed uncertain matrices �C(t), �D(t), �W0i(t), �W1i(t),
�W2i(t), �V0j(t), �V1j(t), and �V2j(t) are time-varying functions satisfying: �W0i(t) =
MFl(t)NW0i , �W1i(t) = MFl(t)NW1i , �W2i(t) = MFl(t)NW2i , �V0j(t) = MFl(t)NV0j ,
�V1j(t) = MFl(t)NV1j , �V2j(t) = MFl(t)NV2j , �C(t) = MFl(t)NCi and �D(t) = MFl(t)NDj ,
where M, NW0i , NW1i , NW2i , NV0j , NV1j , NV2j , NCi , and NDj are given constant matrices, re-
spectively. Flz (t) (l = 0, 1, 2, 3) (where z = either i or j) are unknown real time-varying ma-
trices which have the following structure: Flz (t) = blockdiag{δl1 (t)Izl1

, . . . , δlk (t)Izlk
, Fl1 (t),

. . . , Fls (t)}, δlz ∈R, |δlz | ≤ 1, 1 ≤ z ≤ k̃ and FT
lp Flp ≤ I , 1 ≤ p ≤ s. We define the set �l as �l =

{FT
lz (t)Flz (t) ≤ I, Flz Nlz = Nlz Flz ,∀Nlz ∈ �lz}, where �lz = {Nlz = blockdiag[Nl1 , . . . , Nlk , nl1 Ifl1

,
. . . , nls Ifls ]}, Nlz invertible for 1 ≤ z ≤ k̃ and nlp ∈ R, nlp �= 0, for 1 ≤ p ≤ s and p, k̃, s ∈M.

Also �Hi, �H̃j, �R1i, �R2i, �R3i, �R̃1j, �R̃2j, �R̃3j, �R2, �R̃2, �S, �T , �S̃, �T̃ , �N1,
�N2, �N3, �N4, �N5, and �N6 are positive definite diagonal matrices that are defined as
follows: �Hi = Ě�FHi , �H̃j = Ě�FH̃j and �R1i = Ě�FR1i , where Ě, FHi , FH̃j , FR1i , FR2i , FR3i ,
FR̃1j , FR̃2j , FR̃3j , FR2 , FR̃2 , FS , FS̃ , FT , FT̃ , FN1 , FN2 , FN3 , FN4 , FN5 , and FN6 are positive diago-
nal matrices (i.e., FHi FT

Hi
= diag(h∗

1, h∗
2, . . . , h∗

n), FH̃j F
T
H̃j

= diag(h̃∗
1, h̃∗

2, . . . , h̃∗
n), where h∗

i , h̃∗
j > 0

(i, j = 1, 2, . . . , n)) and the remaining terms are defined in a similar way, which characterizes
how the deterministic uncertain parameter in � enters the nominal matrices Hi, H̃j, Rbi

(b = 1, 2, 3), R̃cj (c = 1, 2, 3), S, S̃, T , T̃ , N1, N2, N3, N4, N5, and N6. The matrix � with real
entries, which may be time-varying, is unknown and satisfies �T� ≤ I .

Remark 3.1 Overall, the stability of time-delayed neural networks fully depends on the
Lyapunov–Krasovskii functional and LMI concepts. In particular, based on the neural
networks, different types of LKF are chosen or handled to lead to the system stability. Up
to now, no one has considered uncertain parameters in Lyapunov–Krasovskii functional
terms. Without loss of generality, the gap is initially filled in this work, and also this kind
of approach gives more advanced and less conserved stability results.

Theorem 3.2 Under Assumptions 1, 2, and 5, the neural network system (28) is global
robust exponentially stable in the mean square if, for given ηi, η̃j > 0 (i, j ∈ M), there exist
positive definite matrices S, T , S̃, T̃ , R2, R̃2, N1, N2, N3, N4, N5, N6 and Hi, H̃j (i, j ∈ M),
positive definite diagonal matrices �S, �T , �R2, �S̃, �T̃ , �R̃2, �Hi, �H̃j, �N1, �N2,
�N3, �N4, �N5, �N6, P, Q and positive scalars λi and μj (i, j ∈M) such that the following
LMIs are satisfied:

(Hi + �Hi) < λiI, (29)

(H̃j + �H̃j) < μjJ , (30)

(M̄k + �M̄k)T (Hi + �Hi)(M̄k + �M̄k) – (Hj + �Hj) ≤ 0, (31)

(N̄k + �N̄k)T (H̃i + �H̃i)(N̄k + �N̄k) – (H̃j + �H̃j)

≤ 0
[
here r(tk) = i and r̃(tk) = j

]
, (32)

∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�∗
1 �∗

2 �∗
3 �∗

4 �∗
5 �∗

10

∗ �∗
6 0 0 0 0

∗ ∗ �∗
7 0 0 0

∗ ∗ ∗ �∗
8 0 0

∗ ∗ ∗ ∗ �∗
9 0

∗ ∗ ∗ ∗ ∗ �∗
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (33)
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� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�∗
1 �∗

2 �∗
3 �∗

4 �∗
5 �∗

10

∗ �∗
6 0 0 0 0

∗ ∗ �∗
7 0 0 0

∗ ∗ ∗ �∗
8 0 0

∗ ∗ ∗ ∗ �∗
9 0

∗ ∗ ∗ ∗ ∗ �∗
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (34)

where

�∗
6 = diag{�i}, �∗

7 = diag{�l1}, �∗
6 = diag{�j}, �∗

7 = diag{�l2},
i, j = 1, 2, 3, . . . , 12 and l1, l2 = 13, 14, 15, . . . , 24;

�∗
8 = diag{�̃s}, �∗

9 = diag{�̃l3}, �∗
8 = diag{�̃s∗}, �∗

9 = diag{�̃l4},
s, s∗ = 1, 2, 3, . . . , 12 and l3, l4 = 13, 14, 15, 16;

�∗
11 = diag

{
�∗

l5

}
, �∗

11 = diag
{
�∗

l6

}
, l5, l6 = 1, 2, 3, . . . , 10;

�∗
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 0 0 0 0 0 �19 0 0 0 0 0
∗ �22 0 0 �25 �26 �27 0 �∗

29 0 0 0 0 0
∗ ∗ �33 0 �35 �36 �37 0 0 0 0 0 0 0
∗ ∗ ∗ �44 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0 �59 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ �66 0 0 �∗

69 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 0 �∗

79 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �88 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �∗

99 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1010 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1111 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1212 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1313 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �1414

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 12 13 0 0 0 0 0 19 0 0 0 0 0
∗ 22 0 0 25 26 27 0 ∗

29 0 0 0 0 0
∗ ∗ 33 0 35 36 37 0 0 0 0 0 0 0
∗ ∗ ∗ 44 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 55 0 0 0 59 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 66 0 0 ∗

69 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 77 0 ∗

79 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 88 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

99 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1010 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1111 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1212 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1313 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1414

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
NT

Ci
�1 ϑT

2 ε2Ě �2 ε3MĚ 0 0 0 0 ϑ̂T
1 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

NT
W0i

0 �3 0 �4 0 0 0 0 0 0 0
NT

W1i
0 �5 0 �6 0 �7 0 ϑ̂T

5 0 ϑ̂T
2 0

NT
W2i

0 �8 0 �9 0 �10 0 ϑ̂T
6 0 ϑ̂T

3 0
0 0 0 0 0 0 0 0 0 0 0 0

ϑT
1 0 ϑT

3 0 ϑT
4 0 ϑT

5 ε4CT Ě ϑT
6 ε5MT Hi ϑT

7 ε6MT Ě
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�∗
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 –NT
Ci

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ϑ̂T

4 ε9Ě 0 ε10PM 0 0 0 0
0 0 0 0 0 0 0 0 1

2 FT
S ε11Ě 0 0

0 0 0 0 0 0 NT
W0i

0 0 0 0 0
�11 0 0 0 0 0 NT

W1i
0 0 0 0 0

�12 0 0 0 0 0 NT
W2i

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 �13 ε12Ě

ϑT
8 ε7MĚ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 �14 ε8Ě 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
NT

Dj
�̃1 ϑ̃T

2 ε̃2Ě �̃2 ε̃3MĚ 0 0 0 0 ˆ̃
ϑT

1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

NT
V0j

0 �̃3 0 �̃4 0 0 0 0 0 0 0

NT
V1j

0 �̃5 0 �̃6 0 �̃7 0 ˆ̃
ϑT

5 0 ˆ̃
ϑT

2 0

NT
V2j

0 �̃8 0 �̃9 0 �̃10 0 ˆ̃
ϑT

6 0 ˆ̃
ϑT

3 0
0 0 0 0 0 0 0 0 0 0 0 0

ϑ̃T
1 0 ϑ̃T

3 0 ϑ̃T
4 0 ϑ̃T

5 ε̃4DT Ě ϑ̃T
6 ε̃5MT H̃j ϑ̃T

7 ε̃6MT Ě
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 –NT
Dj

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ˆ̃

ϑT
4 ε̃9Ě 0 ε̃10QM 0 0 0 0

0 0 0 0 0 0 0 0 1
2 FT

S̃ ε̃11Ě 0 0
0 0 0 0 0 0 NT

V0j
0 0 0 0 0

�̃11 0 0 0 0 0 NT
V1j

0 0 0 0 0
�̃12 0 0 0 0 0 NT

V2j
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �̃13 ε̃12Ě
ϑ̃T

8 ε̃7MĚ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 �̃14 ε̃8Ě 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�∗
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
FHT

i ε13Ě 0 ε14M 0 �∗
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
�∗

1 0 �∗
2 0 �∗

3 0 ϑ∗T
1 ε16Ě �∗

5 �∗
6 ϑ∗T

2 �∗
7

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
FH̃T

j ε̃13Ě 0 ε̃14M 0 �̃∗
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
�̃∗

1 0 �̃∗
2 0 �̃∗

3 0 ϑ̃∗T
1 ε̃16Ě �̃∗

5 �̃∗
6 ϑ̃∗T

2 �̃∗
7

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

HT
i NT

Ci
ε19CT

i M �∗
8 CT

i Ě
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �∗
5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

H̃T
j NT

Dj
ε̃19DT

j M �̃∗
8 DT

j Ě
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�∗
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

ε21Ě FT
N1

0 0 0 0 0 0 0 0
0 0 ε22Ě α∗FT

N3
0 0 0 0 0 0

0 0 0 0 ε23Ě �15 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ε24Ě FT

N3
0 0

0 0 0 0 0 0 0 0 ε25Ě σ1FT
N5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�∗
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

ε̃21Ě FT
N2

0 0 0 0 0 0 0 0
0 0 ε̃22Ě β∗FT

N4
0 0 0 0 0 0

0 0 0 0 ε̃23Ě �̃15 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ε̃24Ě FT

N4
0 0

0 0 0 0 0 0 0 0 ε̃25Ě σ2FT
N6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

�1 = �2 = –ε1I, �3 = �4 = –ε2I, �7 = �8 = –ε4I, �11 = �12 = –ε6I,

�19 = –ε10I, �9 = �10 = –ε5I, �13 = �14 = –ε7I, �15 = �16 = –ε8I,

�17 = �18 = –ε9I, �20 = –ε10I, �5 = �6 = –ε3I, �21 = �22 = –ε11I,

�23 = �24 = –ε12I, �1 = �2 = ε̃1I, �3 = �4 = ε̃2I, �5 = �6 = ε̃3I,

�7 = �8 = ε̃4I, �15 = �16 = ε̃8I, �11 = �12 = ε̃6I, �13 = �14 = ε̃7I,

�9 = �10 = ε̃5I, �17 = �18 = ε̃9I, �19 = �20 = ε̃10I, �21 = �22 = ε̃11I,

�23 = �24 = ε̃12I, �∗
1 = �∗

2 = –ε21I, �∗
3 = �∗

4 = –ε22I, �∗
5 = �∗

6 = –ε23I,

�∗
7 = �∗

8 = –ε24I, �∗
9 = �∗

10 = –ε25I, �∗
1 = �∗

2 = –ε̃21I, �∗
3 = �∗

4 = –ε̃22I,

�∗
5 = �∗

6 = –ε̃23I, �∗
7 = �∗

8 = –ε̃24I, �∗
9 = �∗

10 = –ε̃25I, �1 = ε1MHi,

�2 = NT
Ci

FT
Hi

, �3 = FT
Hi

W T
0i ,�4 = FT

Hi
NT

W0i
, �5 = FT

Hi
W T

1i , �6 = FT
Hi

NT
W1i

,
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�7 = –W T
1 FT

Hi
, �8 = FT

Hi
W T

2i , �12 = CFT
Hi

NT
W2i

, �10 = –W T
2 FT

Hi
,

�11 = CFT
Hi

NT
W1i

, �9 = FT
Hi

NT
W2i

, �13 =
–1
2σ1

FT
T , �14 =

–λi

2
FT

R2 ,

�̃1 = ε̃1MH̃j, �̃2 = NT
Dj

FT
H̃j

, �̃3 = FT
H̃j

V T
0j , �̃4 = FT

H̃j
NT

V0j
, �̃5 = FT

H̃j
V T

1j ,

�̃6 = FT
H̃j

NT
V1j

, �̃7 = –V T
1 FT

H̃j
, �̃8 = FT

H̃j
V T

2j , �̃10 = –V T
2 FT

H̃j
,

�̃9 = FT
H̃j

NT
V2j

, �̃11 = DFT
H̃j

NT
V1j

, �̃12 = DFT
H̃j

NT
V2j

, �̃13 =
–1
2σ2

FT
T̃ ,

�̃14 =
–μj

2
FT

R̃2
, �̃1 = �̃2 = –ε13I, �̃3 = �̃4 = –ε14I, �̃5 = �̃6 = –ε15I,

�̃7 = �̃8 = –ε16I, ϑ̃∗
2 = DT

j NT
Dj

FT
H̃j

, �̃9 = �̃10 = –ε17I,

�̃11 = �̃12 = –ε18I, �̃13 = �̃14 = –ε19I, �̃15 = �̃16 = –ε20I,

�̃1 = �̃2 = –ε̃13I, �̃3 = �̃4 = –ε̃14I, �̃5 = �̃6 = –ε̃15I,

�̃7 = �̃8 = –ε̃16I, �̃∗
8 = ε̃20FT

H̃j
MNT

Dj
, �̃9 = �̃10 = –ε̃17I,

�̃11 = �̃12 = –ε̃18I, �̃13 = �̃14 = –ε̃19I, �̃15 = �̃16 = –ε̃20I, �̃∗
2 = NT

Dj
H̃T

j ,

ϑ∗
1 = CT

i FHi Ci + MT NT
Ci

FHi MNCi , ϑ̃∗
1 = DT

j FH̃j Dj + MT NT
Dj

FH̃j MNDj ,

ϑ∗
2 = CT

i NT
Ci

FT
Hi

, �∗
1 = –CT

i FT
Hi

, �∗
2 = NT

Ci
HT

i , �∗
3 = NT

Ci
FHi ,

�∗
4 = ε15MĚ, �∗

5 = NCi H
T
i , �̃∗

5 = NDj H̃
T
j , �∗

6 = ε17CiMT ,

�∗
7 = ε18MT Ě, �∗

8 = ε20FT
Hi

MNT
Ci

, �̃∗
6 = ε̃17DjMT , �̃∗

7 = ε̃18MT Ě,

�̃∗
1 = –DT

j FT
H̃j

,

∗
99 =

N∑
l=1

γ̃jlDT
j H̃lDj +

N∑
l=1

γ̃jlMT NT
Dj

H̃jMNDj – η̃jDT
j H̃jDj + MT NT

Dj
H̃jMNDj ,

�∗
29 = CT

i HiCi –
N∑

l=1

γilCiHl + MT NT
Ci

HiMNCi – ηiCT
i Hi,

∗
69 = –DT

j H̃jV1j – MT NT
Dj

H̃jMNV1j , �∗
69 = –CT

i HiW1i – MT NT
Ci

HiMNW1i ,

∗
29 = DT

j H̃jDj –
N∑

l=1

γ̃jlDjH̃l + MT NT
Dj

H̃jMNDj – η̃jDT
j H̃j,

�∗
99 =

N∑
l=1

γilCT
i HlCi +

N∑
l=1

γilMT NT
Ci

HiMNCi + ηiCT
i HiCi + MT NT

Ci
HiMNCi ,

�̃∗
3 = NT

Dj
FH̃j ,

�∗
79 = –CT

i HiW2i – MT NT
Ci

HiMNW2i , ∗
79 = –DT

j H̃jV2j – MT NT
Dj

H̃jMNV2j ,

�̃∗
4 = ε̃15MĚ, �15 =

–1
σ1

FT
N5

, �̃15 =
–1
σ2

FT
N6

,

α∗ = –(1 – τ1)e–ηi τ̄1 , β∗ = –(1 – τ2)e–η̃j τ̄2 .
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The remaining values of �∗
1, �∗

1 are the same as in Theorem 2.1, and ∗ means the symmetric
terms.

Proof The matrices Ci, Hi, Dj, H̃j, R2, R̃2, S, S̃, T , T̃ , N1, N2, N3, N4, N5, and N6 in the
Lyapunov–Krasovskii functional of Theorem 2.1 are replaced by Ci + �Ci(t), Hi + �Hi,
Dj + �Dj(t), H̃j + �H̃j, R2 + �R2, R̃2 + �R̃2, S + �S, S̃ + �S̃, T + �T , T̃ + �T̃ , N1 + �N1,
N2 + �N2, N3 + �N3, N4 + �N4, N5 + �N5, and N6 + �N6, respectively.

Hence, by applying the same procedure of Theorem 2.1 and using Assumption 5, Lem-
mas 1.8, 1.9, 1.10 and 1.11 and putting η = maxi,j∈M{maxi∈M ηi, maxj∈M η̃j}, we have from
(28) and Definition 2 (weak infinitesimal operator LV ) that

LV ≤ eηt{�T (t)∗�(t) + �T (t)��(t)
}

,

where �(t) and �(t) are given in Theorem 2.1. The remaining proof of this theorem is
similar to the procedure of Theorem 2.1, and we get that the uncertain neural network
(28) is global robust exponentially stable in the mean square sense. �

4 Numerical examples
In this section, we provide two numerical examples with their simulations to demonstrate
the effectiveness of our results.

Example 4.1 Consider the second order stochastic impulsive BAM neural networks (4)
with u(t) = (u1(t), u2(t))T , v(t) = (v1(t), v2(t))T ; ω̄(t), ¯̃ω(t) are second order Brownian mo-
tions and r(t), r̃(t) denote right-continuous Markovian chains taking values in M = {1, 2}
with generator

� =

[
0.2 0.1
0.4 0.3

]
, �̃ =

[
0.5 0.2
0.4 0.3

]
.

The associated parameters of neural networks (4) take the values as follows:

C1 =

[
1 0
0 3

]
, C2 =

[
2 0
0 1

]
, D1 =

[
2 0
0 3

]
, D2 =

[
5 0
0 2

]
,

W01 =

[
0.02 0.01

–0.02 0.01

]
, W02 =

[
0.02 0.01
0.02 0.01

]
, W11 =

[
0.03 –0.02
0.03 0.02

]
,

W12 =

[
0.02 0.02

–0.01 0.01

]
, W21 =

[
0.03 0.04
0.03 0.02

]
, W22 =

[
0.02 –0.02
0.03 –0.01

]
,

V01 =

[
0.02 0.02
0.01 0.03

]
, V02 =

[
0.02 0.01
0.01 0.02

]
, V11 =

[
0.01 –0.02
0.02 0.01

]
,

V12 =

[
0.01 0.02
0.02 –0.03

]
, V21 =

[
0.02 0.01
0.02 0.01

]
, V22 =

[
0.02 0.02
0.03 0.02

]
,

R2 =

[
0.02 0

0 0.03

]
, R̃2 =

[
0.05 0

0 0.02

]
, R11 =

[
0.06 0

0 0.04

]
,
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R12 =

[
0.03 0

0 0.02

]
, R21 =

[
0.02 0

0 0.03

]
, R22 =

[
0.05 0

0 0.02

]
,

R31 =

[
0.03 0

0 0.08

]
, R32 =

[
0.07 0

0 0.04

]
, R̃11 =

[
0.2341 0

0 0.3421

]
,

R̃12 =

[
0.2451 0

0 0.0251

]
, R̃21 =

[
0.1802 0

0 0.0102

]
,

R̃22 =

[
0.1212 0

0 0.0140

]
, R̃31 =

[
0.02 0

0 0.05

]
, R̃32 =

[
0.03 0

0 0.04

]
,

M̄k =

[
0.04 0

0 0.05

]
, N̄k =

[
0.05 0

0 0.03

]
.

Taking

ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, 1

)

=
[

0.04 ∗ u1(t – ν1) + 0.04 ∗ v1(t) + 0.03 ∗ v1(t – τ̄1) 0
0 0.05 ∗ u2(t – ν1) + 0.02 ∗ v2(t) + 0.03 ∗ v2(t – τ̄1)

]
,

ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, 2

)

=
[

0.04 ∗ u1(t – ν1) + 0.03 ∗ v1(t) + 0.05 ∗ v1(t – τ̄1) 0
0 0.02 ∗ u2(t – ν1) + 0.04 ∗ v2(t) + 0.02 ∗ v2(t – τ̄1)

]
,

ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, 1

)

=
[

0.02 ∗ v1(t – ν2) + 0.02 ∗ u1(t) + 0.02 ∗ u1(t – τ̄2) 0
0 0.03 ∗ v2(t – ν2) + 0.02 ∗ u2(t) + 0.05 ∗ u2(t – τ̄2)

]
,

ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, 2

)

=
[

0.01 ∗ v1(t – ν2) + 0.03 ∗ u1(t) + 0.03 ∗ u1(t – τ̄2) 0
0 0.04 ∗ v2(t – ν2) + 0.03 ∗ u2(t) + 0.02 ∗ u2(t – τ̄2)

]
,

ν1 = ν2 = 1, τ̄1 = τ̄2 = 7.46, σ1 = 0.6, σ2 = 0.8.

The following activation functions play in neural network system (4):

f̄ (v) = sinh(v), ¯̃f (u) = sinh(u), ḡ(v) = v,

¯̃g(u) = u, h̄(v) = sin(v), ¯̃h(u) = sin(u).

It is easy to obtain that, for any a, b ∈ R with a < b, there exists a scalar c ∈ (a, b) such
that

fi(b) – fi(a)
b – a

=
sinh(b) – sinh(a)

b – a
= cosh(c) ≥ 1.

Therefore fi(·) and ¯̃fj(·), i, j = 1, 2, are 1-inverse Holder functions. In addition, for any a, b ∈
R, it is easy to check that

∣∣hi(b) – hi(a)
∣∣ =

∣∣sin(b) – sin(a)
∣∣≤ ∣∣gi(b) – gi(a)

∣∣ = |b – a|
≤ ∣∣fi(b) – fi(a)

∣∣ =
∣∣sinh(b) – sinh(a)

∣∣.
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By a similar way, we get the same inequalities for ¯̃gj(·) and also ¯̃hj(·) (j = 1, 2). That means
the activation functions f̄i(·), ¯̃fj(·), ḡi(·), ¯̃gj(·), h̄i(·), ¯̃hj(·) (i, j = 1, 2) satisfy Assumptions 1
and 2.

Then, by Theorem 2.1, solving the LMIs using the Matlab LMI control toolbox, one can
obtain the following feasible solutions:

S = 10–4 ×
[

0.2968 –0.0000
–0.0000 0.2957

]
, T = 10–4 ×

[
0.8435 –0.0000

–0.0000 0.8461

]
,

N1 =

[
0.4948 –0.0001

–0.0001 0.4948

]
, N3 =

[
0.7465 0.0147
0.0147 0.7263

]
,

N4 =

[
0.8333 –0.0046

–0.0046 0.8248

]
, N5 =

[
0.4424 0.0001
0.0001 0.4423

]
,

S̃ =

[
0.0373 0.0000
0.0000 0.0373

]
, T̃ = 10–3 ×

[
0.2156 –0.0001

–0.0001 0.2155

]
,

H1 =

[
0.3533 –0.0069

–0.0069 0.0936

]
, H̃1 =

[
0.0728 0

0 0.0076

]
,

H̃2 =

[
0.0355 –0.0030

–0.0030 0.0350

]
, P = 10–4 ×

[
0.4368 0

0 0.4487

]
,

N2 =

[
0.4979 0.0215
0.0215 0.9157

]
, N6 =

[
0.4841 0.0000
0.0000 0.4840

]
,

H2 =

[
0.0016 –0.0000

–0.0000 0.0017

]
, P1 = 10–4 ×

[
0.4947 0

0 0.4947

]
,

Q1 = 10–3 ×
[

0.4947 0
0 0.4947

]
, Q = 10–3 ×

[
0.5549 0

0 0.4465

]
,

λ1 = 0.6805, λ2 = 0.0023, μ1 = 2.0060, μ2 = 0.8234.

Figure 1 narrates the time response of state variables u1(t), u2(t), v1(t), v2(t) with and
without stochastic noises, and Fig. 2 depicts the time response of Markovian jumps r(t) = i,

Figure 1 The state response u1(t), u2(t), v1(t), v2(t) of (1) with stochastic disturbances and without stochastic
disturbances



Maharajan et al. Advances in Difference Equations  (2018) 2018:113 Page 27 of 31

Figure 2 The state responses r(t) and r̃(t) denote Markovian jump in system (4)

Table 1 Maximum allowable upper bounds of discrete time delays

Methods τ̄1 = τ̄2 > 0 System status

In Ref. [41] 0.5784 feasible
In Ref. [42] 2.1 feasible
In Ref. [43] 4.822 feasible
In Ref. [44] 5 feasible
In Ref. [34] 5.912 feasible
In Ref. [45] 6.884 feasible
Theorem 2.1 7.46 feasible

r̃(t) = j. By solving LMIs (5)–(10), we get the feasible solutions. The obtained discrete time
delay upper bounds of τ̄1 and τ̄2 for neural networks (4), which are given in Table 1, are
very maximum. This shows that the contributions of this research work is more effective
and less conservative than some existing results. Therefore, by Theorem 2.1, we can con-
clude that neural networks (4) are globally exponentially stable in the mean square for the
maximum allowable upper bounds τ̄1 = τ̄2 = 7.46.

Example 4.2 Consider the second order uncertain stochastic impulsive BAM neural net-
works (28) with u(t) = (u1(t), u2(t))T , v(t) = (v1(t), v2(t))T ; ω̄(t), ¯̃ω(t) are second order Brow-
nian motions and r(t), r̃(t) denote right-continuous Markovian chains taking values in
M = {1, 2} with generator

� = �̃ =

[
–3 3
4 –2

]
.

The associated parameters of neural networks (28) are as follows:

C1 =

[
1 0
0 3

]
, C2 =

[
2 0
0 1

]
, D1 =

[
2 0
0 1

]
, D2 =

[
2 0
0 2

]
,

W01 =

[
0.02 0.01

–0.02 0.01

]
, W02 =

[
0.02 0.01
0.02 0.01

]
, W11 =

[
0.03 –0.02
0.03 0.02

]
,

W12 =

[
0.02 0.02

–0.01 0.01

]
, W21 =

[
0.05 0.01
0.03 0.02

]
, W22 =

[
0.02 –0.01
0.03 –0.01

]
,
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V01 =

[
0.02 0.02
0.01 0.03

]
, V02 =

[
0.02 0.01
0.01 0.02

]
, V11 =

[
0.01 –0.02
0.02 0.01

]
,

V12 =

[
0.01 0.02
0.02 –0.03

]
, V21 =

[
0.02 0.01
0.02 0.01

]
, V22 =

[
0.02 0.02
0.03 0.02

]
,

M =

[
0.5 0.6
0.2 0.5

]
, NC1 =

[
0.1 0
0 0.3

]
, NC2 =

[
0.2 0
0 0.2

]
,

ND1 =

[
0.1 0
0 0.3

]
, ND2 =

[
0.2 0
0 0.2

]
, NW01 =

[
0.05 0.06
0.02 0.02

]
,

NW02 =

[
0.02 0.06
0.02 0.02

]
, NW11 =

[
0.03 0.04
0.02 0.01

]
, NW12 =

[
0.01 0.03
0.03 0.01

]
,

NW21 =

[
0.04 0.03
0.03 0.02

]
, NW22 =

[
0.02 0.03
0.02 0.01

]
, NV01 =

[
0.03 0.06
0.02 0.02

]
,

NV02 =

[
0.02 0.04
0.01 0.03

]
, NV11 =

[
0.02 0.04
0.02 0.03

]
, NV12 =

[
0.06 0.03
0.01 0.04

]
,

NV21 =

[
0.05 0.05
0.03 0.01

]
, NV22 =

[
0.03 0.03
0.02 0.03

]
.

Taking

ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, 1

)

=
[

0.3 ∗ u1(t – ν1) + 0.4 ∗ v1(t) + 0.4 ∗ v1(t – τ̄1) 0
0 0.3 ∗ u2(t – ν1) + 0.2 ∗ v2(t) + 0.3 ∗ v2(t – τ̄1)

]
,

ρ̄1
(
u(t – ν1), v(t), v

(
t – τ1(t)

)
, t, 2

)

=
[

0.4 ∗ u1(t – ν1) + 0.3 ∗ v1(t) + 0.4 ∗ v1(t – τ̄1) 0
0 0.2 ∗ u2(t – ν1) + 0.5 ∗ v2(t) + 0.2 ∗ v2(t – τ̄1)

]
,

ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, 1

)

=
[

0.3 ∗ v1(t – ν2) + 0.2 ∗ u1(t) + 0.2 ∗ u1(t – τ̄2) 0
0 0.4 ∗ v2(t – ν2) + 0.5 ∗ u2(t) + 0.3 ∗ u2(t – τ̄2)

]
,

ρ̄2
(
v(t – ν2), u(t), u

(
t – τ2(t)

)
, t, 2

)

=
[

0.2 ∗ v1(t – ν2) + 0.3 ∗ u1(t) + 0.4 ∗ u1(t – τ̄2) 0
0 0.2 ∗ v2(t – ν2) + 0.3 ∗ u2(t) + 0.2 ∗ u2(t – τ̄2)

]
,

ν1 = ν2 = 1, τ̄1 = τ̄2 = 0.4, σ1 = σ2 = 0.3. The following activation functions play in neural
network system (28):

f̄ (v) = sinh(v), ¯̃f (u) = sinh(u), ḡ(v) = v,

¯̃g(u) = u, h̄(v) = sin(v), ¯̃h(u) = sin(u).

Therefore, by Theorem 3.2 in this paper, the uncertain delayed stochastic impulsive
BAM neural networks (28) under consideration are global robust exponentially stable in
the mean square.
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5 Conclusions
In this paper, we have treated the problem of global exponential stability analysis for the
leakage delay terms. By employing the Lyapunov stability theory and the LMI framework,
we have attained a new sufficient condition to justify the global exponential stability of
stochastic impulsive uncertain BAMNNs with two kinds of time-varying delays and leak-
age delays. The advantage of this paper is that different types of uncertain parameters
were introduced into the Lyapunov–Krasovskii functionals, and the exponential stability
behavior was studied. Additionally, two numerical examples have been provided to re-
veal the usefulness of our obtained deterministic and uncertain results. To the best of our
knowledge, there are no results on the exponential stability analysis of inertial-type BAM
neural networks with both time-varying delays by using Wirtinger based inequality, which
might be our future research work.
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