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1 Introduction
In this paper, we consider a nonlinear impulsive differential equations system with piece-
wise constant argument of the form

⎧
⎨

⎩

x′(t) = –a(t)x(t) – x([t – 1])f (y([t])) + h1(x([t])),

y′(t) = –b(t)y(t) – y([t – 1])g(x([t])) + h2(y([t])),
t �= n ∈ Z

+, t > 0, (1)

⎧
⎨

⎩

�x(n) = x(n+) – x(n–) = cnx(n),

�y(n) = y(n+) – y(n–) = dny(n),
n ∈ Z

+, (2)

with the initial conditions

x(–1) = x–1, x(0) = x0, y(–1) = y–1, y(0) = y0, (3)

where a, b : (0,∞) → R are continuous functions, f , g, h1, h2 ∈ C(R,R), cn and dn are se-
quences of real numbers such that cn �= 1 and dn �= 1 for all n ≥ 1, �u(n) = u(n+) – u(n–),
u(n+) = limt→n+ u(t), u(n–) = limt→n– u(t), [·] denotes the greatest integer function, and
x–1, x0, y–1, y0 are given real numbers.

Differential equations with piecewise constant arguments (DEPCA) exist in a widely
expanded areas such as biomedicine, chemistry, mechanical engineering, physics, and so
on. To the best of our knowledge, the first mathematical model that includes a piecewise
constant argument was proposed by Busenberg and Cooke [1]. They investigated the fol-
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lowing system describing the disease dynamics for n = 1, 2, . . . :

dIn

dt
(t) = –c(t)In(t) + k(t)Sn(t)In(t),

dSn

dt
(t) = –c(t)Sn(t) – k(t)Sn(t)In(t), n < t ≤ n + 1,

whereas

I(1)(1) = I0, S(1)(1) = S0,

where c is the death rate, and k is the horizontal transmission factor. Then, oscillation
and stability of DEPCA have been studied by many authors (see [2–6] and the references
therein). In 1994, Dai and Singh [7] studied the oscillatory motion of spring-mass systems
subject to piecewise constant forces of the form f (x([t])) or f ([t]). Later, they improved an-
alytical and numerical methods for solving linear and nonlinear vibration problems and
showed that a function f ([N(t)]/N) is a good approximation to the given continuous func-
tion f (t) if N is sufficiently large [8]. This method was also used to find numerical solu-
tions of a nonlinear Froude pendulum and the oscillatory behavior of the pendulum [9].
On the other hand, in 1994, the case of studying discontinuous solutions of differential
equations with piecewise continuous arguments has been proposed as an open problem
by Wiener [10]. Due to this open problem, linear impulsive differential equations with
piecewise constant arguments have been dealt with in [11–13]. Moreover, cellular neural
networks with piecewise constant argument have been investigated in [14–16]. In [14], the
existence and attractivity of the following cellular neural network with piecewise constant
argument was studied:

dxi(t)
dt

= –ai
(
[t]

)
xi(t) +

n∑

j=1

{
cij

(
[t]

)
gj
(
xj

(
[t]

))}
+ di

(
[t]

)
,

where [·] is the greatest integer function. Recently, Chiu [17] considered the following
neural network:

dxi(t)
dt

= –ai(t)xi(t) +
n∑

j=1

{

bij(t)fj
(
xj(t)

)
+ cij(t)gj

(

xj

(

2
[

t + 1
2

]))}

+ di(t),

t �= 2k – 1,

�xi|t=2k–1 = Jk
(
xi

(
2k – 1–))

, i = 1, 2, . . . , n, k ∈ N.

Although nonlinear differential equations with piecewise constant arguments have many
applications in real-world problems, there are only a few papers on the oscillation of non-
linear differential equations with piecewise constant arguments [18–20]. So, we study os-
cillation of system (1)–(2).

In Sect. 2, we prove the existence and uniqueness of the solutions, Sect. 3 consists of our
main results. Moreover, we give some examples to illustrate our results.
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2 Existence of solutions
In this section, we obtain the solution of (1)–(3) in terms of the corresponding difference
equations system.

Definition 1 A pair of functions (x(t), y(t)) is said to be a solution of (1)–(2) if it satisfies
the following conditions:

(i) x : R+ ∪ {–1} →R and y : R+ ∪ {–1} →R are continuous with a possible exception
at the points [t] ∈ [0,∞),

(ii) x(t) and y(t) are right continuous and have left-hand limits at the points [t] ∈ [0,∞),
(iii) x(t) and y(t) are differentiable and satisfy (1) for any t ∈R

+ with a possible
exception at the points [t] ∈ [0,∞) where one-sided derivatives exist,

(iv) (x(n), y(n)) satisfies (2) for n ∈ Z
+.

Theorem 1 If cn �= 1 and dn �= 1 for all n ≥ 1 then the initial value problem (1)–(3) has
a unique solution (x(t), y(t)) on [0,∞) ∪ {–1}, which can be formulated on the interval
n ≤ t < n + 1, n ∈ N = {0, 1, 2, . . . , }, as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(t) = exp (–
∫ t

n a(u) du){x(n)

+ [–x(n – 1)f (y(n)) + h1(x(n))]
∫ t

n exp (
∫ s

n a(u) du) ds},
y(t) = exp (–

∫ t
n b(u) du){y(n) + [–y(n – 1)g(x(n))

+ h2(y(n))]
∫ t

n exp (
∫ s

n b(u) du) ds},

(4)

where (x(n), y(n)) is the unique solution of the difference equations system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n + 1) = 1
1–cn+1

exp (–
∫ n+1

n a(u) du){x(n) + [–x(n – 1)f (y(n))

+ h1(x(n))]
∫ n+1

n exp (
∫ s

n a(u) du) ds},
y(n + 1) = 1

1–dn+1
exp (–

∫ n+1
n b(u) du){y(n) + [–y(n – 1)g(x(n))

+ h2(y(n))]
∫ n+1

n exp (
∫ s

n b(u) du) ds}

(5)

for n ≥ 0 with initial conditions (3).

Proof Let (xn(t), yn(t)) ≡ (x(t), y(t)) be a solution of (1)–(2) on n ≤ t < n + 1. So, system (1)
can be rewritten in the form

⎧
⎨

⎩

x′(t) + a(t)x(t) = –x(n – 1)f (y(n)) + h1(x(n)),

y′(t) + b(t)y(t) = –y(n – 1)g(x(n)) + h2(y(n)).
(6)

From (6), for n ≤ t < n + 1, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn(t) = exp (–
∫ t

n a(u) du){x(n) + [–x(n – 1)f (y(n))

+ h1(x(n))]
∫ t

n exp (
∫ s

n a(u) du) ds},
yn(t) = exp (–

∫ t
n b(u) du){y(n) + [–y(n – 1)g(x(n))

+ h2(y(n))]
∫ t

n exp (
∫ s

n b(u) du) ds}.

(7)
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On the other hand, for n – 1 ≤ t < n, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn–1(t) = exp (–
∫ t

n–1 a(u) du){x(n – 1) + [–x(n – 2)f (y(n – 1))

+ h1(x(n – 1))]
∫ t

n–1 exp (
∫ s

n–1 a(u) du) ds},
yn–1(t) = exp (–

∫ t
n–1 b(u) du){y(n – 1) + [–y(n – 2)g(x(n – 1))

+ h2(y(n – 1))]
∫ t

n–1 exp (
∫ s

n–1 b(u) du) ds}.

(8)

Using impulse conditions (2), from (7) and (8) we obtain difference equations sys-
tem (5).

Considering initial conditions (3), the solution of system (5) is obtained uniquely. Thus,
the solution of (1)–(3) is obtained as (4). �

3 Oscillatory solutions
Definition 2 A function x(t) defined on [0,∞) is called oscillatory if there exist two real-
valued sequences {tn}n≥0, {t′

n}n≥0 ⊂ [0,∞) such that tn → +∞, t′
n → +∞ as n → +∞ and

x(tn) ≤ 0 ≤ x(t′
n) for n ≥ N , where N is sufficiently large. Otherwise, x(t) is called nonoscil-

latory.

Remark 1 According to Definition 2, a piecewise continuous function x : [0,∞) →R can
be oscillatory even if x(t) �= 0 for all t ∈ [0,∞).

Definition 3 A sequence {yn}n≥–1 is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory.

Definition 4 The solution of problem (1)–(3) is called oscillatory if each components is
oscillatory.

The following result is clear.

Corollary 1 If the solution (x(n), y(n)), n ≥ –1, of the difference equation system (5) with
initial conditions (3) is oscillatory, then the solution (x(t), y(t)) of (1)–(3) is also oscilla-
tory.

Remark 2 If cn > 1 and dn > 1 for all n ∈ Z
+, then from the impulse conditions (2) it is clear

that the solution (x(t), y(t)) of problem (1)–(3) is already oscillatory.

Theorem 2 Assume that there exist M1 > 0 and M2 > 0 such that f (u) ≥ M1 and g(u) ≥ M2

for all u ∈ R, uh1(u) < 0 and uh2(u) < 0 for u �= 0, and cn < 1 and dn < 1 for n ∈ Z
+. If the

following conditions are satisfied, then all solutions of system (5) are oscillatory:

lim sup
n→∞

(1 – cn)
∫ n+1

n
exp

(∫ s

n–1
a(u) du

)

ds >
1

M1
, (9)

lim sup
n→∞

(1 – dn)
∫ n+1

n
exp

(∫ s

n–1
b(u) du

)

ds >
1

M2
. (10)
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Proof Let (x(n), y(n)) be a solution of (5). Suppose that x(n) > 0, x(n–1) > 0, and x(n–2) > 0
for n > N , where N is sufficiently large. From the first equation of (5) we have

(1 – cn) exp

(∫ n

n–1
a(u) du

)

x(n) = x(n – 1) +
[
–x(n – 2)f

(
y(n – 1)

)

+ h1
(
x(n – 1)

)]
∫ n

n–1
exp

(∫ s

n–1
a(u) du

)

ds

< x(n – 1).

Multiplying both sides of this inequality by –f (y(n))
∫ n+1

n exp (
∫ s

n a(u) du) ds < 0 and adding
x(n) + h1(x(n))

∫ n+1
n exp (

∫ s
n a(u) du) ds, we obtain from (5) that

–(1 – cn) exp

(∫ n

n–1
a(u) du

)

x(n)f
(
y(n)

)
∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds + x(n)

+ h1
(
x(n)

)
∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds

> (1 – cn+1)x(n + 1) exp

(∫ n+1

n
a(u) du

)

> 0. (11)

Since x(n) > 0, n > N , and h1(x(n)) < 0, from (11) we get

1 > (1 – cn)f
(
y(n)

)
∫ n+1

n
exp

(∫ s

n–1
a(u) du

)

ds.

So, we have

1
M1

≥ lim sup
n→∞

(1 – cn)
∫ n+1

n
exp

(∫ s

n–1
a(u) du

)

ds, (12)

which contradicts (9).
If x(n) < 0, x(n – 1) < 0, and x(n – 2) < 0 for n > N , then we obtain the same contradiction.

So the component x(n) of the solution (x(n), y(n)) is oscillatory. Similarly, we can show that
the component y(n) is oscillatory under condition (10). Hence, the proof is complete. �

Corollary 2 Under the hypotheses of Theorem 2, all solutions of system (1)–(2) are oscil-
latory.

Theorem 3 Assume that there exist constants K1, K2, M1, M2 > 0 such that f (u) ≥ M1,
g(u) ≥ M2 for all u ∈ R, cn ≤ 1 – K1, dn ≤ 1 – K2 for n ∈ N, and uh1(u) < 0, uh2(u) < 0
for u �= 0. Suppose that the following conditions are satisfied:

1
4K1M1

< lim inf
n→∞ exp

(∫ n+1

n
a(u) du

)

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds < ∞, (13)

1
4K2M2

< lim inf
n→∞ exp

(∫ n+1

n
b(u) du

)

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
b(u) du

)

ds < ∞. (14)

Then all solutions of (5) are oscillatory.
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Proof Let (x(n), y(n)) be a solution of (5). We need to show that under condition (13), x(n)
is oscillatory. Assume that x(n) > 0, x(n – 1) > 0 for n > N , where N is sufficiently large.
From the first equation of (5) we obtain that

1 = (1 – cn+1)
x(n + 1)

x(n)
exp

(∫ n+1

n
a(u) du

)

+
x(n – 1)

x(n)
f
(
y(n)

)
∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds

–
h1(x(n))

x(n)

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds.

Let vn = x(n)
x(n–1) . Since v(n) > 0, lim infn→∞ vn ≥ 0 and

1 ≥ (1 – cn+1)vn+1 exp

(∫ n+1

n
a(u) du

)

+
1
vn

M1

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds. (15)

So, we need to consider two cases.
Case 1. Let lim infn→∞ vn = v = +∞. Then, from (15) we get

1 ≥ lim inf
n→∞ (1 – cn+1) lim inf

n→∞ vn+1 lim inf
n→∞ exp

(∫ n+1

n
a(u) du

)

+ M1 lim inf
n→∞

1
vn

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds,

which is a contradiction. So, we consider the second case.
Case 2. Let lim infn→∞ vn < ∞. If the first equation of (5) is divided by x(n – 1), then we

have

x(n)
x(n – 1)

= (1 – cn+1)
x(n + 1)
x(n – 1)

exp

(∫ n+1

n
a(u) du

)

+ f
(
y(n)

)
∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds

–
h1(x(n))
x(n – 1)

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds,

and then we obtain that

vn ≥ (1 – cn+1)vnvn+1 exp

(∫ n+1

n
a(u) du

)

+ M1

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds. (16)

Taking the inferior limit on both sides of inequality (16), we get

v ≥ v2 lim inf
n→∞ (1 – cn+1) lim inf

n→∞ exp

(∫ n+1

n
a(u) du

)

+ M1 lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds.
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Let lim infn→∞ exp (
∫ n+1

n a(u) du) = A and lim infn→∞
∫ n+1

n exp (
∫ s

n a(u) du) ds = B. Then the
last inequality can be rewritten as

v ≥ lim inf
n→∞ (1 – cn+1)v2A + M1B. (17)

Now we consider two subcases:
(i) If lim infn→∞(1 – cn+1) = ∞, then we have a contradiction from (17).

(ii) Assume that 0 < K1 ≤ lim infn→∞(1 – cn+1) < ∞. Then from (17) we have

AK1v2 – v + M1B ≤ 0

or

AK1

[(

v –
1

2K1A

)2

+
4M1BK1A – 1

4K2
1 A2

]

≤ 0.

Since A > 0 and K1 > 0, we have

4M1BK1A – 1
4K2

1 A2 ≤ 0,

which contradicts condition (13).
In the case of x(n) < 0, x(n – 1) < 0 for sufficiently large n > N , the proof is similar, and

we obtain the same contradiction.
On the other hand, if we assume rgar y(n) is a nonoscillatory sequence, then we have

a contradiction to condition (14). Hence, (x(n), y(n)) is an oscillatory solution of sys-
tem (5). �

Corollary 3 Under the hypothesis of Theorem 3, all solutions of system (1)–(2) are oscilla-
tory.

Remark 3 In the case of a(t) ≡ a and b(t) ≡ b, conditions (9) and (10) are reduced to the
following forms, respectively:

lim sup
n→∞

(1 – cn) >
ae–a

M1(ea – 1)
,

lim sup
n→∞

(1 – dn) >
be–b

M2(eb – 1)
.

Remark 4 In the case of a(t) ≡ a and b(t) ≡ b, conditions (13) and (14) are reduced to the
following conditions, respectively:

1
4K1M1

<
ea(ea – 1)

a
,

1
4K2M2

<
eb(eb – 1)

b
.
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If cn ≡ dn ≡ 0, n ∈ Z
+, then we have the nonimpulsive equation system

⎧
⎨

⎩

x′(t) = –a(t)x(t) – x([t – 1])f (y([t])) + h1(x([t])),

y′(t) = –b(t)y(t) – y([t – 1])g(x([t])) + h2(y([t])),
t > 0. (18)

In this case, the following results are clear.

Corollary 4 Assume that there exist M1 > 0 and M2 > 0 such that f (u) ≥ M1 and g(u) ≥
M2 for all u ∈ R, and uh1(u) < 0 and uh2(u) < 0 for u �= 0. Suppose that the following con-
ditions are satisfied:

lim sup
n→∞

∫ n+1

n
exp

(∫ s

n–1
a(u) du

)

ds >
1

M1
,

lim sup
n→∞

∫ n+1

n
exp

(∫ s

n–1
b(u) du

)

ds >
1

M2
.

Then all solutions of system (18) are oscillatory.

Corollary 5 Assume that there exist the constants M1, M2 > 0 such that f (u) ≥ M1, g(u) ≥
M2 for all u ∈ R, 0 < K1 ≤ 1, 0 < K2 ≤ 1, and uh1(u) < 0 and uh2(u) < 0 for u �= 0. Suppose
that the following conditions are satisfied:

1
4K1M1

< lim inf
n→∞ exp

(∫ n+1

n
a(u) du

)

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds

< ∞,

1
4K2M2

< lim inf
n→∞ exp

(∫ n+1

n
b(u) du

)

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
b(u) du

)

ds

< ∞.

Then all solutions of (18) are oscillatory.

Now, let us consider following nonlinear differential equation:

⎧
⎨

⎩

x′(t) = –a(t)x(t) – x([t – 1])f (x([t])) + h(x([t])),

�x(n) = cnx(n), n = 1, 2, . . . ,
t �= n, t > 0, (19)

which is investigated in [18] with h(u) ≡ 0.

Corollary 6 Assume that there exists M > 0 such that f (u) ≥ M for u ∈ R, uh(u) < 0 for
u �= 0, and cn < 1 for n ∈ Z

+. If

lim sup
n→∞

(1 – cn)
∫ n+1

n
exp

(∫ s

n–1
a(u) du

)

ds >
1
M

,

then all solutions of equation (19) are oscillatory.
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Figure 1 Oscillatory solutions of the
system (20)–(21) with the initial conditions x(–1) = 0,
x(0) = 0.01, y(–1) = 0, y(0) = –0.01

Corollary 7 Assume that there exist M, K > 0 such that f (u) ≥ M for u ∈R, cn ≤ 1 – K for
n ∈ Z

+, and uh(u) < 0 for u �= 0. If

1
4KM

< lim inf
n→∞ exp

(∫ n+1

n
a(u) du

)

lim inf
n→∞

∫ n+1

n
exp

(∫ s

n
a(u) du

)

ds < ∞,

then all solutions of equation (19) are oscillatory.

Remark 5 It is clear that the problem considered in this paper is more general than the
problem investigated in [18]. When h(t) ≡ 0, Corollaries 6 and 7 coincide with Corollar-
ies 1 and 3 in [18], respectively.

Here we give two numerical examples to illustrate our results. Mathematica® software is
used to get the figures.

Example 1 Let us consider the following nonlinear impulsive differential equations system
with piecewise constant argument and variable coefficient:

⎧
⎨

⎩

x′(t) = – 2
t x(t) – x([t – 1])(e–y([t]) + 2) – 3√x([t]),

y′(t) = – 2t
t2+1 y(t) – y([t – 1])(x2([t]) + 2) – 5

√
y([t]),

t �= n, t > 0, (20)

⎧
⎨

⎩

�x(n) = (–1)n

2 x(n),

�y(n) = (–1)n

3 y(n),
n ∈ Z

+. (21)

It is clear that a(t) = 2
t , f (u) = exp(–u) + 2, h1(u) = –u1/3, and b(t) = 2t

t2+1 , g(u) = u2 + 2,
h2(u) = –u1/5 satisfy all hypotheses of Theorems 2 and 3. Then all solutions of system (20)–
(21) are oscillatory. The solution (xn(t), yn(t)) of system (20)–(21) with initial conditions
x(–1) = 0, x(0) = 0.01, y(–1) = 0, y(0) = –0.01 is shown in Fig. 1.

Example 2 Consider the following system:

⎧
⎨

⎩

x′(t) = –(ln 2)x(t) – x([t – 1])(y2([t]) + 1) – x3([t]),

y′(t) = –(ln 3)y(t) – y([t – 1])(x4([t]) + 1) – y([t]),
t �= n, t > 0, (22)

⎧
⎨

⎩

�x(n) = 1
2n x(n),

�y(n) = 1
3n y(n),

n = Z
+. (23)
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Figure 2 Oscillatory solutions of system (22)–(23)
with the initial conditions x(–1) = 0, x(0) = 1, y(–1) = 0,
y(0) = –0.5

Since all hypotheses of Theorem 2 are satisfied for a(t) = ln 2, f (u) = u2 + 1, h1(u) = –u3

and b(t) = ln 3, g(u) = u4 + 1, h2(u) = –u, all solutions of system (22)–(23) are oscillatory.
The solution (xn(t), yn(t)) of system (22)–(23) with the initial conditions x(–1) = 0, x(0) =
1, y(–1) = 0, y(0) = –0.5 is shown in Fig. 2.
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