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Abstract
This paper investigates the existence of infinitely many positive solutions for the
second-order n-dimensional impulsive singular Neumann system

–x′′(t) +Mx(t) = λg(t)f(t,x(t)), t ∈ J, t �= tk ,

–�x′|t=tk =μIk(tk ,x(tk)), k = 1, 2, . . . ,m,

x′(0) = x′(1) = 0.

The vector-valued function x is defined by

x = [x1, x2, . . . , xn]�, g(t) = diag
[
g1(t), . . . ,gi(t), . . . ,gn(t)

]
,

where gi ∈ Lp[0, 1] for some p ≥ 1, i = 1, 2, . . . ,n, and it has infinitely many singularities
in [0, 12 ). Our methods employ the fixed point index theory and the inequality
technique.

Keywords: Multi-parameter; n-dimensional impulsive Neumann system; Infinitely
many singularities; Matrix theory; Fixed point index theory and inequality technique

1 Introduction
Impulsive differential equations have gained considerable importance due to their varied
applications in many problems of physics, chemistry, biology, applied sciences and engi-
neering. For details and explanations, we refer the reader to Refs. [1–9]. In particular, great
interest has been shown by many authors in the subject of impulsive boundary value prob-
lems (IBVPs), and a variety of results for IBVPs equipped with different kinds of boundary
conditions have been obtained, for instance, see [10–28] and the references cited therein.

However, there is almost no paper on second-order n-dimensional impulsive systems,
especially for multi-parameter second-order n-dimensional impulsive singular Neumann
systems. In this paper, we will introduce this new problem and discuss the existence of
infinitely many positive solutions.

Consider the n-dimensional nonlinear second-order impulsive Neumann system

–x′′(t) + Mx(t) = λg(t)f
(
t, x(t)

)
, t ∈ J , t �= tk ,

–�x′|t=tk = μIk
(
tk , x(tk)

)
, k = 1, 2, . . . , m,

(1.1)
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with the following boundary conditions:

x′(0) = x′(1) = 0, (1.2)

where λ and μ are positive parameters and M is a positive constant, J = [0, 1], tk ∈ R, k =
1, 2, . . . , m, m ∈ N satisfy 0 < t1 < t2 < · · · < tk < · · · < tn < 1. In addition,

x = [x1, x2, . . . , xn]�,

g(t) = diag
[
g1(t), g2(t), . . . , gn(t)

]
,

f(t, x) =
[
f1(t, x), . . . , fi(t, x), . . . , fn(t, x)

]�,

Ik
(
tk , x(tk)

)
=
[
I1

k
(
tk , x(tk)

)
, . . . , Ii

k
(
tk , x(tk)

)
, . . . , In

k
(
tk , x(tk)

)]�,

–�x′|t=tk =
[
–�x′

1|t=tk , –�x′
2|t=tk , . . . , –�x′

n|t=tk

]�,

here

fi(t, x) = fi(t, x1, . . . , xi, . . . , xn), Ii
k(tk , x) = Ii

k(tk , x1, . . . , xi, . . . , xn).

Therefore, system (1.1) means that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′
1(t) + Mx1(t) = λg1(t)f1(t, x1(t), x2(t), . . . , xn(t)), t ∈ J , t �= tk ,

–�x′
1|t=tk = μI1

k (tk , x1(tk), x2(tk), . . . , xn(tk)), k = 1, 2, . . . , m,

–x′′
2(t) + Mx2(t) = λg2(t)f2(t, x1(t), x2(t), . . . , xn(t)), t ∈ J , t �= tk ,

–�x′
2|t=tk = μI2

k (tk , x1(tk), x2(tk), . . . , xn(tk)), k = 1, 2, . . . , m,

· · · ,

–x′′
n(t) + Mxn(t) = λgn(t)fn(t, x1(t), x2(t), . . . , xn(t)), t ∈ J , t �= tk ,

–�x′
n|t=tk = μIn

k (tk , x1(tk), x2(tk), . . . , xn(tk)), k = 1, 2, . . . , m,

(1.3)

where –�x′
i|t=tk = x′

i((tk)+) – x′
i((tk)–) and in which x′

i((tk)+) and x′
i((tk)–) denote the right-

hand limit and left-hand limit of x′
i(t) at t = tk , respectively.

Similarly, (1.2) means that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1(0) = x′

1(1) = 0,

x′
2(0) = x′

2(1) = 0,

· · · ,

x′
n(0) = x′

n(1) = 0.

(1.4)

By a solution x to system (1.1)–(1.2), we understand a vector-valued function x =
[x1, x2, . . . , xn]� ∈ C2(J , Rn), which satisfies (1.1) and (1.2) for t ∈ J . In addition, for each
i = 1, 2, . . . , n, k = 1, 2, . . . , m, xi(t+

k ) and xi(t–
k ) exist and xi(t) is absolutely continuous on

each interval (0, t1] and (tk , tk+1]. A solution is positive if, for each i = 1, 2, . . . , n, xi(t) > 0
for all t ∈ J and there is at least one nontrivial component of x is positive on J .

For the case of n = 1,λ = 1 and Ik ≡ 0, k = 1, 2, . . . , m, system (1.1)–(1.2) reduces to the
problem studied by Sun, Cho and O’Regan in [29]. By using a cone fixed point theorem,
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the authors obtained some sufficient conditions for the existence of positive solutions in
Banach spaces. Very recently, in the case n = 1, M = 0,λ = 1 and Ik ≡ 0, k = 1, 2, . . . , m,
Sovrano and Zanolin [30] presented a multiplicity result of positive solutions for system
(1.1)–(1.2) by applying shooting method. For other excellent results on Neumann bound-
ary value problems, we refer the reader to the references [31–42].

Here we emphasize that our problem is new in the sense of multi-parameter second-
order n-dimensional impulsive singular Neumann systems introduced here. To the best of
our knowledge, the existence of single or multiple positive solutions for multi-parameter
second-order n-dimensional impulsive singular Neumann systems (1.1)–(1.2) has not yet
to be studied, especially for the existence of infinitely many positive solutions for system
(1.1)–(1.2). In consequence, our main results of the present work will be a useful contri-
bution to the existing literature on the topic of second-order n-dimensional impulsive sin-
gular Neumann systems. The existence of infinitely many positive solutions for the given
problem are new, though they are proved by applying the well-known method based on
the fixed index theory in cones and the inequality technique.

Throughout this paper, we use i = 1, 2, . . . , n, unless otherwise stated.
Let the components of g, f and Ik satisfy the following conditions:
(H1) gi(t) ∈ Lp[0, 1] for some p ∈ [1, +∞), and there exists Ni > 0 such that gi(t) ≥ Ni a.e.

on J ;
(H2) for every gi(t), i = 1, 2, . . . , n, there exists a sequence {t′

j}∞j=1 such that t′
1 < δ, where

δ = min{t1, 1
2 }, t′

j ↓ t′
0 > 0 and limt→t′j gi(t) = +∞ for all j = 1, 2, . . . ;

(H3) fi(t, x) ∈ C(J × Rn
+, R+), Ii

k(tk , x(tk)) ∈ C(J × Rn
+, R+), where R+ = [0, +∞) and Rn

+ =
∏n

i=1 R+.

Remark 1.1 It is not difficult to see that the condition (H2) plays an important role in
the proof of Theorem 3.1, and there are many functions satisfying (H2), for detail to see
Example 3.1.

Remark 1.2 From the proof of the main results reported by Sovrano and Zanolin [30], it is
not difficult to see that f (t, u) > 0 for u > 0 is an important condition, although we consider
the multiplicity of positive solution on the parameter λ and μ without using it, for detail,
to see Theorem 3.1.

Our plan of this article is as follows. In Sect. 2, we collect some well-known results to be
used in the subsequent sections and present several new properties of Green’s function,
which plays a pivotal role in obtaining the main results given in Sect. 3. In the final section,
we also give an example of a family of diagonal matrix functions g(t) such that (H2) holds.

2 Preliminaries
Let J ′ = J \ {t1, t2, . . . , tm} and E = C[0, 1]. We define PC1[0, 1] in E by

PC1[0, 1] =
{

x ∈ E : x′(t) ∈ C(tk , tk+1),∃x′(t–
k
)
, x′(t+

k
)
, k = 1, 2, . . . , m

}
. (2.1)

Then PC1[0, 1] is a real Banach space with the norm

‖x‖PC1 = max
{‖x‖∞,

∥∥x′∥∥∞
}

,
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where ‖x‖∞ = supt∈J |x(t)|,‖x′‖∞ = supt∈J |x′(t)|.
Let PCn

1 [0, 1] = PC1[0, 1] × · · · × PC1[0, 1]︸ ︷︷ ︸
n

, and, for any x = [x1, x2, . . . , xn]� ∈ PCn
1 [0, 1],

‖x‖ =
n∑

i=1

‖xi‖PC1 . (2.2)

Then (PCn
1 [0, 1],‖ · ‖) is a real Banach space.

Suppose that G(t, s) is the Green’s function of the boundary value problem

–x′′
i (t) + Mxi(t) = 0, x′

i(0) = x′
i(1) = 0,

then

G(t, s) =
1

γ sinhγ

⎧
⎨

⎩
coshγ (1 – t) coshγ s, 0 ≤ s ≤ t ≤ 1,

coshγ (1 – s) coshγ t, 0 ≤ t ≤ s ≤ 1,
(2.3)

where cosh t = et+e–t

2 , sinh t = et–e–t

2 , γ =
√

M.
It is obvious that

A =
1

γ sinhγ
≤ G(t, s) ≤ coshγ

γ sinhγ
= B, ∀t, s ∈ J , (2.4)

and then we have

A ≤ G(s, s) ≤ B, ∀s ∈ J .

Lemma 2.1 For any θ ∈ (t′
0, δ), there is

coshγ θ

γ sinhγ
≤ G(t, s) ≤ coshγ θ coshγ (1 – θ )

γ sinhγ
, ∀t ∈ [θ , 1], s ∈ J . (2.5)

Proof We get Eq. (2.5) easily by the definition of G(t, s), we omit it here. �

To establish the existence of positive solutions to system (1.1)–(1.2), for a fixed θ ∈ (t′
0, δ),

we construct the cone Kθ in PCn
1 [0, 1] by

Kθ =

{

x = (x1, x2, . . . , xn) ∈ PCn
1 [0, 1] : xi(t) ≥ 0,

i = 1, 2, . . . , n, t ∈ J , min
t∈[θ ,1]

n∑

i=1

xi(t) ≥ σ‖x‖
}

, (2.6)

where

σ =
coshγ θ

ργ sinhγ
, (2.7)
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here ρ is defined by

ρ = max{B, sinhγ }, (2.8)

and it is easy to see Kθ is a closed convex cone of PCn
1 [0, 1].

Let {θj}∞j=1 be such that t′
j+1 < θj < t′

j , j = 1, 2, . . . . Then we get 0 < · · · < t′
j+1 < θj < t′

j < · · · <
t′
3 < θ2 < t′

2 < θ1 < t′
1 < δ ≤ t1 < t2 < · · · < tm < 1, and then, for any j ∈ N, we can define the

cone Kθj by

Kθj =

{

x ∈ PCn
1 [0, 1] : xi(t) ≥ 0, t ∈ J , i = 1, 2, . . . , n, min

t∈[θj ,1]

n∑

i=1

xi(t) ≥ σj‖x‖
}

, (2.9)

where

σj =
coshγ θj

ργ sinhγ
, (2.10)

here ρ is defined by (2.8), and

θj ∈
[
t′
j+1, t′

j
]
, j = 1, 2, . . . . (2.11)

It is easy to see Kθj is also a closed convex cone of PCn
1 [0, 1].

Also, for a positive number τ , define Kτθj by

Kτθj =
{

x ∈ Kθj : ‖x‖ < τ
}

.

Remark 2.1 It is obvious that 0 < σ ,σj < 1 by the definition of σ and σj.

Lemma 2.2 If (H1)–(H3) hold, then system (1.1)–(1.2) has a unique solution x = [x1, x2, . . . ,
xn]� ∈ Rn

+ in which xi(t) given by

xi(t) = λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)
. (2.12)

Proof We use the fact that system (1.1)–(1.2) is equivalent to system (1.3)–(1.4). Therefore
system (1.1)–(1.2) has a unique solution x, which is equivalent to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–x′′
i (t) + Mxi(t) = λgi(t)f (t, x1(t), x2(t), . . . , xn(t)), t ∈ J , t �= tk ,

–�x′
i|t=tk = Ik(tk , x1(t1), x2(t2), . . . , xn(tn)), k = 1, 2, . . . , m,

x′
i(0) = x′

i(1) = 0,

(2.13)

has a unique solution xi, which is given by (2.12).
Next, by a proof which is similar to that of Lemma 2.4 in [40], we can show that (2.12)

holds. This finishes the proof of Lemma 2.2. �
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Let Tλμ : Kθj → PCn
1 [0, 1] be a map with components (T1

λμ, . . . , Ti
λμ, . . . , Tn

λμ). We under-
stand that Tλμx = (T1

λμx, . . . , Ti
λμx, . . . , Tn

λμx)�, where

(
Ti

λμx
)
(t) = λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds

+ μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)
, i = 1, 2, . . . , n. (2.14)

Remark 2.2 It follows from Lemma 2.2 and the definition of Tλμ that

x = [x1, x2, . . . , xn]� ∈ PCn
1 [0, 1]

is a solution of the system (1.1)–(1.2) if and only if x = [x1, x2, . . . , xn]� is a fixed point of
operator Tλμ.

Lemma 2.3 Assume that (H1)–(H3) hold. Then Tλμ(Kθj ) ⊂ Kθj and Tλμ : Kθj → Kθj is a
completely continuous.

Proof By the theory of matrix analysis, if we want to prove that Tλμ(Kθj ) ⊂ Kθj and Tλμ :
Kθj → Kθj is a completely continuous, then, for i = 1, 2, . . . , n, we only prove that Ti

λμ(Kθj ) ⊂
Kθj and Ti

λμ : Kθj → Kθj is a completely continuous.
Firstly, we prove that Ti

λμ(Kθj ) ⊂ Kθj . For t ∈ [θj, 1], it follows from (2.5) and (2.14) that

(
Ti

λμx
)
(t) = λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)

≤ B

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

. (2.15)

It is obvious that

G′
t(t, s) =

1
sinhγ

⎧
⎨

⎩
– sinhγ (1 – t) coshγ s, 0 ≤ s ≤ t ≤ 1,

sinhγ (1 – s) coshγ t, 0 ≤ t ≤ s ≤ 1,
(2.16)

and

max
t,s∈J ,t �=s

∣
∣G′

t(t, s)
∣
∣≤ sinhγ . (2.17)

By (2.14) and (2.17), we have

∣∣(Ti
λμx
)′(t)
∣∣ =

∣∣
∣∣
∣
λ

∫ 1

0
G′

t(t, s)gi(s)fi
(
s, x(s)

)
ds + μ

m∑

k=1

G′
t(t, tk)Ii

k
(
tk , x(tk)

)
∣∣
∣∣
∣

≤ λ

∫ 1

0

∣∣G′
t(t, s)

∣∣gi(s)fi
(
s, x(s)

)
ds + μ

m∑

k=1

∣∣G′
t(t, tk)

∣∣Ii
k
(
tk , x(tk)

)

≤ sinhγ

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

. (2.18)
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For any t ∈ J , combined with (2.15) and (2.18), we have

∥∥Ti
λμx
∥∥

PC1
≤ ρ

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

. (2.19)

Then, by (2.5), (2.6) and (2.19)

min
t∈[θj ,1]

(
Ti

λμx
)
(t) = min

t∈[θj ,1]

[

λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)
]

≥ coshγ θj

γ sinhγ

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

≥ coshγ θj

ργ sinhγ
ρ

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

≥ σj
∥
∥Ti

λμx
∥
∥

PC1 . (2.20)

This shows that Ti
λμ(Kθj ) ⊂ Kθj .

Next, by using similar arguments of Lemmas 5 and 6 [16] one can prove that the operator
Ti

λμ : Kθj → Kθj is completely continuous. So the proof of Lemma 2.3 is complete. �

To obtain some of the norm inequalities in our main results, we employ the famous
Hölder inequality.

Lemma 2.4 (Hölder) Let e ∈ Lp[a, b] with p > 1, h ∈ Lq[a, b] with q > 1 and 1
p + 1

q = 1. Then
eh ∈ L1[a, b] and

‖eh‖1 ≤ ‖e‖p‖h‖q.

Let e ∈ L1[a, b], h ∈ L∞[a, b]. Then eh ∈ L1[a, b] and

‖eh‖1 ≤ ‖e‖1‖h‖∞.

Finally, we state the well-known fixed point index theorem in [43].

Lemma 2.5 Let E be a real Banach space and let K be a cone in E. For r > 0, we define
Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx �= x
for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 0.
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 1.

3 Main result
In this section, we establish the solvable intervals of the positive parameters λ and μ

for the existence of the infinitely many positive solutions for system (1.1)–(1.2) by using
Lemma 2.4 and Lemma 2.5.
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For ease of expression, we introduce the following notation:

(
f τ
0
)i = max

{
max

t∈J

fi(t, x)
τ

, 0 ≤ ‖x‖ ≤ τ

}
, Fτ

0 = max
1≤i≤n

(
f τ
0
)i;

(
f τ
σjτ

)i = min

{
min

t∈[θj ,1]

fi(t, x)
τ

,σjτ ≤ ‖x‖ ≤ τ

}
, Fτ

σjτ
= min

1≤i≤n

(
f τ
σjτ

)i;

Iτ
0 (k))i = max

{
max

t∈J

Ii
k(t, x)

τ
, 0 ≤ ‖x‖ ≤ τ

}
, Iτ

0(k) = max
1≤i≤n

(
Iτ

0 (k)
)i;

(
Iτ
σjτ

(k)
)i = min

{
min

t∈[θj ,1]

Ii
k(t, x)

τ
,σjτ ≤ ‖x‖ ≤ τ

}
, Iτ

σjτ
(k) = min

1≤i≤n

(
Iτ
σjτ

(k)
)i,

where i = 1, 2, . . . , n, j = 1, 2, . . . , and

D = max
{‖G‖q‖gi‖p,‖G‖1‖gi‖∞, B‖gi‖1

}
, ρ0 = min

{
1,

A
coshγ

}
.

We consider the following three cases for ωi(t) ∈ LP[0, 1] : p > 1, p = 1 and p = ∞. Case
p > 1 is treated in the following theorem. It is our main result.

Theorem 3.1 Assume that (H1)–(H3) hold. Let {rj}∞j=1, {ηj}∞j=1 and {Rj}∞j=1 be such that

Rj+1 < σjrj < rj < σjηj < ηj < Rj, j = 1, 2, . . . . (3.1)

For each natural number j, we assume that f and Ik satisfy
(H4) Frj

0 ≤ L, FRj
0 ≤ L and for any k ∈ {1, 2, . . . , m}, Irj

0 (k) ≤ L, IRj
0 (k) ≤ L, where

L < min

{
1

nλρ0D
,

1
nμmA

}
; (3.2)

(H5) Fηj
σjηj ≥ l and for any k ∈ {1, 2, . . . , m}, Iηj

σjηj ≥ l, where l > 0.
Then there exist λ0 > 0, μ0 > 0 such that, for λ > λ0, μ > μ0, system (1.1)–(1.2) has two

infinite families of positive solutions {x(1)
j }∞j=1, {x(2)

j }∞j=1 and ‖x(1)
j ‖ > σjηj.

Proof Letting λ0 = sup{λj}, λj = 1
2ANi(1–θj)l

, and μ0 = sup{μj},μj = 1
2Ajml , j = 1, 2, . . . . Then,

for any λ > λ0, μ > μ0, (2.14) and Lemma 2.3 imply that Tλμ and Ti
λμ (i = 1, 2, . . . , n) are all

completely continuous.
Let t ∈ J , x ∈ ∂Krjθj . Then ‖x‖ = rj.
Therefore, for any x ∈ ∂Krjθj , it follows from (H4) that

(
Ti

λμx
)
(t) = λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)

≤ λ

∫ 1

0
G(s, s)gi(s)Lrj ds + μ

m∑

k=1

G(t, tk)Lrj

≤ λL‖G‖q‖gi‖prj + μLmBrj

<
rj

n
+

rj

n
=

rj

n
=

‖x‖
n

. (3.3)
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Moreover, by (2.4), (2.5), (2.14), (2.16) and (H4),

∣∣(Ti
λμx
)′(t)

∣∣≤ λ

∫ 1

0

∣∣G′
t(t, s)

∣∣gi(s)fi
(
s, x(s)

)
ds

+ μ

m∑

k=1

∣
∣G′

t(t, tk)
∣
∣Ii

k
(
tk , x(tk)

)

≤ sinhγ

[

λ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

≤ sinhγ

A

[

λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

AIi
k
(
tk , x(tk)

)
]

≤ sinhγ

A

[

λ

∫ 1

0
‖G‖q‖gi‖pfi

(
s, x(s)

)
ds + μA

m∑

k=1

Ii
k
(
tk , x(tk)

)
]

≤ sinhγ

A
(
λLrj‖G‖q‖gi‖p + μAmLrj

)

<
rj

n
+

rj

n

=
rj

n
=

‖x‖
n

. (3.4)

Consequently, from (3.3) and (3.4), we have

‖Tλμ‖ =
n∑

i=1

∥∥Ti
λμx‖PC1 ≤ ‖x

∥∥, ∀x ∈ ∂Krjθj . (3.5)

And then, by Lemma 2.5, we get

i(Tλμ, Krjθi , Kθj ) = 1. (3.6)

Similarly, for x ∈ ∂KRjθj , we have ‖Tλμx‖ ≤ ‖x‖, and it follows from Lemma 2.5 that

i(Tλμ, KRjθj , Kθj ) = 1. (3.7)

On the other hand, letting

x ∈ Kηj
σjηjθj

=

{

x ∈ Kθj : ‖x‖ < ηj, min
t∈[θj ,1]

n∑

i=1

xi(t) > σjηj

}

,

then ‖x‖ ≤ ηj. And hence, it is similar to the proof of (3.5), we have

‖Tλμx‖ ≤ ηj. (3.8)

Furthermore, for x ∈ K̄ηj
σjηjθj

, we have ‖x‖ ≤ ηj, mint∈[θj ,1]
∑n

i=1 xi(t) ≥ σjηj, and then it
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follows from (H5) that

min
t∈[θj ,1]

(
Ti

λμx
)
(t) = min

t∈[θj ,1]

[

λ

∫ 1

0
G(t, s)gi(s)fi

(
s, x(s)

)
ds + μ

m∑

k=1

G(t, tk)Ii
k
(
tk , x(tk)

)
]

≥ Aλ

∫ 1

0
gi(s)fi

(
s, x(s)

)
ds + Aμ

m∑

k=1

Ii
k
(
tk , x(tk)

)

≥ ANiλ

∫ 1

θj

fi
(
s, x(s)

)
ds + Aμmlηj

≥ ANiλ(1 – θj)lηj + Aμmlηj

> ANiλ0(1 – θj)lηj + Aμ0mlηj

≥ ANiλi(1 – θj)lηj + Aμjmlηj

>
ηj

2
+

ηj

2

= ηj = ‖x‖,

which shows that

min
t∈[θj ,1]

n∑

i=1

(
Ti

λμxi(t)
)≥ min

t∈[θj ,1]

(
Ti

λμxi(t)
)

> ‖x‖. (3.9)

Letting x0 = (x1
0, . . . , xi

0, . . . , xn
0) and F(t, x) = (1 – t)Tλμx + tx0, where xi

0 ≡ σjηj+ηj
2 , i =

1, 2, . . . , n, then F : J × K̄ηj
σjηjθj

→ Kθj is completely continuous, and from the analysis above,
we obtain for (t, x) ∈ J × K̄ηi

σjηjθj
,

F(t, x) ∈ K̄ηj
σjηjθj

. (3.10)

Therefore, for t ∈ J , x ∈ K̄ηj
σjηjθj

, we have F(t, x) �= x. Hence, by the normality property and
the homotopy invariance property of the fixed point index, we obtain

i
(
Tλμ, Kηj

σiηjθj
, Kθj

)
= i
(
x0, Kηj

σjηjθj
, Kθj

)
= 1. (3.11)

Consequently, by the solution property of the fixed point index, Tλμ has a fixed point
x(1)

j and x(1)
j ∈ K̄ηj

σjηjθj
. By Lemma 2.2 and (2.14), it follows that x(1)

j is a solution to system
(1.1)–(1.2), and

∥
∥x(1)

j
∥
∥ > σjηj.

On the other hand, from (3.6), (3.7) and (3.11) together with the additivity of the fixed
point index, we get

i
(
Tλμ, KRjθj /

(
K̄f rjθj ∪ K̄ηj

σjηjθj

)
, Kθj

)

= i(Tλμ, KRjθj , Kθj ) – i
(
Tλμ, K̄ηj

σjηjθj
, Kθj

)
– i(Tλμ, K̄rjθj , Kθj ) = 1 – 1 – 1 = –1. (3.12)
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Hence, by the solution property of the fixed point index, Tλμ has a fixed point x(2)
j and

x(2)
j ∈ KRj /(K̄rj ∪ K̄ηj

σjηjθj
). Since j ∈ N was arbitrary, the proof is complete. �

The following corollary deals with the case p = ∞.

Corollary 3.1 Assume that for each natural number j, (H1)–(H5) hold. Let {ri}∞i=1,
{ηj}∞j=1and {Rj}∞j=1 be such that

Rj+1 < σjrj < rj < σjηj < ηj < Rj, i = 1, 2, . . . .

Then there exists λ0 > 0, μ0 > 0 such that, for λ > λ0, μ > μ0, system (1.1)–(1.2) has two
infinite families of positive solutions {x(1)

j }∞j=1 and {x(2)
j }∞j=1.

Proof Let ‖G‖1‖gi‖∞ replace ‖G‖q‖gi‖p and repeat the argument above. �

Finally, we consider the case of p = 1.

Corollary 3.2 Assume that for each natural number j, (H1)–(H5) hold. Let {rj}∞j=1,
{ηj}∞j=1and {Rj}∞j=1 be such that

Rj+1 < σjrj < rj < σjηj < ηj < Rj, i = 1, 2, . . . .

Then there exists λ0 > 0, μ0 > 0 such that, for λ > λ0, μ > μ0, system (1.1)–(1.2) has two
infinite families of positive solutions {x(1)

j }∞j=1 and {x(2)
j }∞j=1.

Proof Let B‖gi‖1 replace ‖G‖q‖gi‖p and repeat the previous argument. Similar to the proof
of Theorem 3.1, we can get Corollary 3.2. �

Corollary 3.3 Assume that for each natural number j, (H1)–(H3) and (H5) hold. Let {rj}∞j=1,
{ηj}∞j=1and {Rj}∞j=1 be such that

Rj+1 < σjrj < rj < σjηj < ηj < Rj, i = 1, 2, . . . .

Then there exists λ0 > 0, μ0 > 0 such that, for λ > λ0, μ > μ0, system (1.1)–(1.2) has one
infinite families of positive solutions.

Remark 3.1 Some ideas of the n-dimensional system are from [44].

Remark 3.2 Some ideas of the existence of denumerably many positive solutions are from
[45].

Remark 3.3 From the proof of Theorem 3.1, it is not difficult to see that (H2) plays an
important role in the proof that system (1.1)–(1.2) has two infinite families of positive
solutions. As an example, we consider a family of diagonal matrix functions g(t) as follows.

Example 3.1 We will check that there exists a family of diagonal matrix functions g(t)
satisfying condition (H2).
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For ease of the discussion, an example of the case n = 2 is given as follows. Define g(t)
by

g(t) =

(
g1(t) 0

0 g2(t)

)

,

where g1(t) and g2(t) singular at t′
j , j = 1, 2, . . . , where

t′
j =

2
5

–
1

10

j∑

i=1

1
(2i – 1)4 , j = 1, 2, . . . . (3.13)

It follows from (3.13) that

t′
1 =

2
5

–
1

10
=

3
10

,

t′
j – t′

j+1 =
1

10(2j + 1)4 , j = 1, 2, . . . ,

and from
∑∞

j=1
1

(2j–1)4 = π4

96 , we have

t′
0 = lim

j→∞ t′
j =

2
5

–
1

10

∞∑

j=1

1
(2j – 1)4 =

2
5

–
1

10
· π4

96
=

2
5

–
π4

960
>

1
10

.

Let

τ1 =
√

2
3

(
π2

4
– 1
)

, τ2 = –
√

2e
(

π2

4
– 1
)

.

Consider the functions

g1(t) =
∞∑

j=1

g(1)
j (t), t ∈ J ,

g2(t) =
∞∑

j=1

g(2)
j (t), t ∈ J ,

where

g(1)
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+2
(j+1)!(t′j +t′j+1) , t ∈ [0,

t′j +t′j+1
2 ),

1
τ1
√

t′j –t
, t ∈ [

t′j +t′j+1
2 , t′

j),

1
τ1
√

t–t′j
, t ∈ [t′

j ,
t′j +t′j–1

2 ],

j+2
(j+1)!(2–t′j –t′j–1) , t ∈ (

t′j +t′j–1
2 , 1],
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and

g(2)
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(2j–2)!(t′j +t′j+1) , t ∈ [0,

t′j +t′j+1
2 ),

1
τ2
√

t′j –t
, t ∈ [

t′j +t′j+1
2 , t′

j),

1
τ2
√

t–t′j
, t ∈ [t′

j ,
t′j +t′j–1

2 ],

2
(2j–2)!(2–t′j –t′j–1) , t ∈ (

t′j +t′j–1
2 , 1].

From
∑∞

j=1
j+2

(j+1)! = 2e – 3,
∑∞

j=1
2

(2j–2)! = e + e–1 and
∑∞

j=1
1

(2j–1)2 = π2

8 , we have

∞∑

j=1

∫ 1

0
g(1)

j (t) dt =
∞∑

j=1

{∫ t′j +t′j+1
2

0

j + 2
(j + 1)!(t′

j + t′
j+1)

dt +
∫ 1

t′j–1+t′j
2

j + 2
(j + 1)!(2 – t′

j – t′
j–1)

dt

+
∫ tj

t′j +t′j+1
2

1

τ1

√
t′
j – t

dt +
∫ t′j–1+t′j

2

tj

1

τ1

√
t – t′

j

dt
}

=
∞∑

j=1

j + 2
(j + 1)!

+
√

2
τ1

∞∑

j=1

(√(
t′
j – t′

j+1
)

+
√(

t′
j–1 – t′

j
))

= 2e – 3 +
√

2
τ1

∞∑

j=1

(
1

(2j + 1)2 +
1

(2j – 1)2

)

= 2e – 3 +
√

2
τ1

(
π2

8
– 1 +

π2

8

)

= 2e – 3 +
√

2
τ1

(
π2

4
– 1
)

= 2e – 3 + 3 = 2e, (3.14)

∞∑

j=1

∫ 1

0
g(2)

j (t) dt =
∞∑

j=1

{∫ t′j +t′j+1
2

0

2
(2j – 2)!(t′

j + t′
j+1)

dt +
∫ 1

t′j–1+t′j
2

2
(2j – 2)!(2 – t′

j – t′
j–1)

dt

+
∫ tj

t′j +t′j+1
2

1

τ2

√
t′
j – t

dt +
∫ t′j–1+t′j

2

tj

1

τ2

√
t – t′

j

dt
}

=
∞∑

j=1

2
(2j – 2)!

+
√

2
τ2

∞∑

j=1

(√(
t′
j – t′

j+1
)

+
√(

t′
j–1 – t′

j
))

= e + e–1 +
√

2
τ2

∞∑

j=1

(
1

(2j + 1)2 +
1

(2j – 1)2

)

= e + e–1 +
√

2
τ2

(
π2

8
– 1 +

π2

8

)

= e + e–1 +
√

2
τ2

(
π2

4
– 1
)

= e + e–1 – e–1 = e. (3.15)
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Thus, from (3.14) and (3.15), it is easy to see that

∫ 1

0
g(t) dt =

∫ 1

0

∞∑

j=1

g(1)
j (t) dt =

∞∑

j=1

∫ 1

0
ω

(1)
j (t) dt = 2e < ∞,

∫ 1

0
g(t) dt =

∫ 1

0

∞∑

j=1

g(2)
j (t) dt =

∞∑

j=1

∫ 1

0
ω

(2)
j (t) dt = e < ∞.

Therefore ω1(t),ω2(t) ∈ L1[0, 1], which shows that condition (H2) holds.
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