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Abstract
In this paper, a single-species discrete model with stage structure is investigated. By
analyzing the corresponding characteristic equations, the local asymptotic stability of
non-negative equilibrium points and the existence of flip bifurcation are discussed.
Using the center manifold theory, the stability of the non-hyperbolic equilibrium
point is obtained. Based on bifurcation theory, we obtain the direction and the
stability of a flip bifurcation at the positive equilibrium with the birth rate as the
bifurcation parameter. Finally, some numerical simulations, including phase portraits,
chaotic bands with period windows, and Lyapunov exponent methods, are
performed to validate the theoretical results, which extends the results in previous
papers.
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1 Introduction
It is generally known that in the theory of population dynamics, there are two kinds of
mathematical models: the continuous models governed by differential equations and the
discrete models governed by difference equations. When the population size is small or
when births and deaths all occur at discrete times, discrete models would be more ap-
propriate than the continuous models. Meanwhile, discrete models give rise to more ef-
ficient computational models for numerical simulations and these results exhibit rich dy-
namics of the discrete models compared with the continuous ones. In fact, even in one-
dimensional discrete models denoted by iterated quadratic maps, like the well-known
logistic map, periodic and chaotic trajectories can easily be observed. Moreover, two-
dimensional discrete models can reveal a plethora of complicated asymptotic behaviors,
from convergence to a fixed point or a periodic cycle until a quasi-periodic orbit along a
closed invariant curve or even an erratic motion inside a bounded chaotic attractor (see
e.g. [1–5]).

For many animal species, such as crustaceans, insects and amphibians, the individuals
take on different morphological shapes before reaching their final adult state. This mul-
tiplicity of developmental stages causes individuals with a complex life cycle. The age-
specific reproduction and mortality rate of a population is one of the most fundamen-
tal parameters in both the theory and practice of population dynamics and demography.
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The characteristics of the vital rates (rates of reproduction, mortality and development)
depending on age, size or development stage have often been argued (both theoretically
and experimentally) to be crucial determining factors in the resulting dynamical growth
and age distribution of the population [6, 7]. In recent years, stage structure models have
received a lot of attention (see, e.g., [8–16]). Tang and Chen [17] proposed that a single-
species population has stage structure, and the population is divided into immature and
mature classes, and only the mature population can reproduce as follows:

⎧
⎨

⎩

ẋ = B(N(t))y(t) – dx(t) – δx(t),

ẏ = δx(t) – dy(t),
(1)

where x(t) and y(t) are the immature and mature populations, respectively, with N(t) =
x(t) + y(t); B(N(t))y(t) is the birth rate function with B(N(t)) = be–N(t) > 0 being known as
the Ricker function; d > 0 denotes the death rate constant, and δ > 0 is the maturity rate,
which determines the mean length of the juvenile period. The boundedness and global
stability of equilibria of model (1) were discussed. Tang and Chen [17] supposed that the
death rates of immature and mature population are equal. It is unreasonable to our nat-
ural world. Subsequently, Gao and Chen [18] assumed that the death rates of immature
and mature populations are different. According to model (1), they proposed the discrete
single-species population model with stage structure

⎧
⎨

⎩

xn+1 = xn + be–(xn+yn)yn – d1xn – δxn,

yn+1 = yn + δxn – d2yn,
n ∈ N0, (2)

where N0 denotes the set of non-negative integers. xn and yn are the immature and mature
populations at generation n, respectively. d1 and d2 (di > 0, i = 1, 2) are the death rate
constants of immature and mature, respectively. The parameters b and δ have the same
biological interpretations as those in model (1). In model (2), only the mature population
have reproductive ability. Let α = 1 – d1 – δ,β = 1 – d2. For ecological reasons, we assume
that 0 < α < 1, 0 < β < 1, δ �= β . Substituting α and β in model (2), we obtain the following
model:

⎧
⎨

⎩

xn+1 = be–(xn+yn)yn + αxn,

yn+1 = δxn + βyn,
n ∈ N0. (3)

In [18], Gao and Chen pointed out that if bδ > (1 – α)(1 – β), then the positive equilib-
rium point of model (3) is globally asymptotically stable, however, if bδ < (1 – α)(1 – β),
then the trivial equilibrium point is globally asymptotically stable. They did not consider
the stability of equilibrium point when bδ = (1 – α)(1 – β). Moreover, by our results (see
Theorem 2.2), it is clear to see that the condition bδ > (1 – α)(1 – β) is not sufficient for
the stability of positive equilibrium point.

To date no paper has appeared in the literature which discusses the bifurcation problem
for model (3). Our work mainly focuses on the stability of trivial equilibrium point when
it is non-hyperbolic, i.e., bδ = (1 – α)(1 – β), the stability of positive equilibrium point,
the existences and directions of the flip bifurcation of positive equilibrium point with the
birth rate b as bifurcation parameter by applying the bifurcation theory.
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The paper is organized as follows. In Sect. 2, we analyze the distribution of characteristic
roots associated with model (3), and obtain the stability of equilibrium points, especially,
the stability of non-hyperbolic equilibrium point. In Sect. 3, the direction and stability of
flip bifurcations for model (3) are determined. In Sect. 4, some numerical simulations are
performed to illustrate the theoretical results. A brief discussion is given in Sect. 5.

2 Stability of equilibrium points
In this section, we study the distribution of characteristic roots of model (3) by employ-
ing the relation between roots and coefficients of the quadratic equation, and discuss the
stability of non-hyperbolic equilibrium point by center manifold theorem.

It is obvious that solutions of model (3) always exist and stay positive. Moreover, model
(3) is dissipative (see [18]). Note that the local stability of an equilibrium point (x, y) is
determined by the modules of the roots of the characteristic equation at the equilibrium
point. Clearly, E0 = (0, 0) is the trivial equilibrium point of model (3). There exists a unique
positive equilibrium point

E∗ =
(
x∗, y∗) =

(
1 – β

1 + δ – β
ln

bδ

(1 – α)(1 – β)
,

δ

1 + δ – β
ln

bδ

(1 – α)(1 – β)

)

provided that bδ > (1 – α)(1 – β).
Now, we investigate the local stability of model (3) around equilibrium points. The Ja-

cobian matrix of model (3) at any state variable is given by

J(x, y) =

(
–be–(x+y)y + α be–(x+y)(1 – y)

δ β

)

. (4)

The characteristic equation of the Jacobian matrix J(x, y) is given by

λ2 – Tr(J)λ + Det(J) = 0, (5)

where Tr(J) and Det(J) are the trace and determinant of the Jacobian matrix J(x, y), re-
spectively. For model (3), Tr(J) = –be–(x+y)y + α + β and Det(J) = (–be–(x+y)y + α)β – (1 –
y)be–(x+y)δ.

In order to analyze the stability of equilibria for model (3), we give the following lemma
(see [19]), which can easily be proved by the relation between roots and coefficients of the
characteristic equation (5) of model (3). Denote by |λ| the modulus of λ.

Lemma 2.1 Let F(λ) = λ2 – B̂λ + Ĉ. Suppose that F(1) > 0, λ1 and λ2 are the two roots of
F(λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and Ĉ < 1.
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(–1) < 0.

(iii) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and Ĉ > 1.
(iv) λ1 = –1 and |λ2| �= 1 if and only if F(–1) = 0 and Ĉ �= 1.
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if |̂B| < 2 and Ĉ = 1.

In the following, we give the stability of trivial equilibrium point E0.
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It follows from (5) that the characteristic equation of the equilibrium point E0 is given
by

F(λ) = λ2 – (α + β)λ + αβ – bδ = 0. (6)

Obviously, Eq. (6) has two distinct real roots:

λ1 =
α + β +

√
(α – β)2 + 4bδ

2
, λ2 =

α + β –
√

(α – β)2 + 4bδ

2
.

Note that if bδ = (1 – α)(1 – β), then λ1 = 1, λ2 = α + β – 1. In this case, E0 is non-
hyperbolic. However, due to –1 < λ2 = α + β – 1 < 1, it is difficult to determine the stability
of E0. Now, by the center manifold theorem, we will analyze the stability for E0 when bδ =
(1 – α)(1 – β).

Let T =
( 1–β α–1

δ δ

)
and use the translation

( xn
yn

)
= T

( x̃n
ỹn

)
, then model (3) becomes

(
x̃n+1

ỹn+1

)

=

(
1 0
0 α + β – 1

)(
x̃n

ỹn

)

+

(
f̃ (̃xn, ỹn)
g̃ (̃xn, ỹn)

)

, (7)

where

f̃ (̃xn, ỹn) = –
(

(1 – β )̃xn + (α – 1)̃y +
1
2
(
(1 – β )̃xn + (α – 1)̃y

)2
)

(̃xn + ỹn)

+ O
((|xn| + |yn|

)4),

g̃ (̃xn, ỹn) =
(

(1 – β )̃xn + (α – 1)̃y –
1
2
(
(1 – β )̃xn + (α – 1)̃y

)2
)

(̃xn + ỹn)

+ O
((|xn| + |yn|

)4).

According to the center manifold theorem (see [20]), the center manifold for the map
(7) can be represented as follows:

W c(0, 0) =
{

(̃xn, ỹn)|̃yn = h(̃xn), h(0) = 0, Dh(0) = 0
}

. (8)

To obtain the specific expression of the center manifold, we take

h(̃xn) = a1̃x2
n + a2̃x3

n + O
(∣
∣̃x4

n
∣
∣
)
. (9)

Then the center manifold satisfies

h
(
x̃n + f̃

(
x̃n, h(̃xn)

))
–

(
(α + β – 1)h(̃xn) + g̃

(
x̃n, h(̃xn)

))
= 0. (10)

Substituting (9) into (10) and equating coefficients, we obtain

a1 =
1 – β

2 – α – β
, a2 = –

(1 – β)2(6 – α – β)
4(1 – α)(2 – α – β)

.



Wu et al. Advances in Difference Equations  (2018) 2018:116 Page 5 of 11

Table 1 Stability of trivial equilibrium point E0

Conditions Distribution of roots of Eq. (6) Topological types of E0

bδ < (1 – α)(1 – β) –1 < λ2 < λ1 < 1 sink, stable
bδ = (1 – α)(1 – β) –1 < λ2 = α + β – 1 < λ1 = 1 non-hyperbolic, stable
(1 – α)(1 – β) < bδ < (1 + α)(1 + β) –1 < λ2 < 1 < λ1 saddle, unstable
bδ = (1 + α)(1 + β) –1 = λ2 < 1 < λ1 = α + β + 1 non-hyperbolic, unstable
bδ > (1 + α)(1 + β) λ2 < –1 < 1 < λ1 source, unstable

Thus the map (7) restricted to the center manifold is given by

x̃n+1 = x̃n – (1 – β )̃x2
n –

(1 – β)(2(α – β) + (1 – β)(2 – α – β))
2(2 – α – β)

x̃3
n + O

(|̃xn|4
)
. (11)

By Theorem 2.3 in [21], since –(1 – β) < 0, the fixed point 0 of the map (11) is semi-
asymptotically stable from the right. Thus E0 of model (3) is locally asymptotically stable
in {(x, y) : x ≥ 0, y ≥ 0} if bδ = (1 – α)(1 – β).

By Lemma 2.1 and the discussion above, we list the stability of trivial equilibrium point
E0 for all permissible values of parameters in Table 1.

Now, we discuss the stability of the equilibrium E∗. The characteristic equation of the
equilibrium E∗ can be represented as

F(λ) = λ2 – Tr
(
J
(
E∗))λ + Det

(
J
(
E∗)) = 0, (12)

where Tr(J(E∗)) = x∗(α – 1) + α + β and Det(J(E∗)) = (x∗(α – 1) + α)β – (x∗(α – 1)δ + (1 –
α)(1 – β)).

Clearly,

F(1) = x∗(1 – α)(1 + δ – β) > 0.

Note that δ �= β . Let m1 = e
2(α+β)(1+δ–β)

(1+β–δ)(1–α)(1–β) and m2 = e
(2–α–β)(1+δ–β)
(δ–β)(1–α)(1–β) . Then F(–1) > 0 if and

only if bδ < (1 – α)(1 – β)m1. Meanwhile, when δ < β , always Det(J(E∗)) < 1. In fact, under
the condition δ < β , one obtains

Det
(
J
(
E∗)) =

(
x∗(α – 1) + α

)
β –

(
x∗(α – 1)δ + (1 – α)(1 – β)

)
< –1 + α + β < 1.

However, when δ > β , Det(J(E∗)) < 1 is equivalent to bδ < (1 – α)(1 – β)m2. To determine
the size relation between m1 and m2, we consider the following two cases.

Case 1: δ < β . It is obvious that m2 < 1 < m1.
Case 2: δ > β . Note that α + β < α + δ < 1. It is easy to obtain

2(α + β)
1 + β – δ

<
2(α + β)
α + β

= 2,
2 – α – β

δ – β
>

2 – α – β

1 – α – β
> 2.

Thus, in this case, m2 > m1 > 1.
By Lemma 2.1, we have the following results as regards the stability of the equilibrium

point E∗.
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Theorem 2.2 Suppose that bδ > (1 – α)(1 – β).
(i) If bδ < (1 – α)(1 – β)m1, then F(–1) > 0 and Det(J(E∗)) < 1. By Lemma 2.1, we have

|λ1| < 1 and |λ2| < 1. Therefore, E∗ is a sink.
(ii) If bδ > (1 – α)(1 – β)m1, then F(–1) < 0. By Lemma 2.1, we have |λ1| < 1 and |λ2| > 1

(or |λ1| > 1 and |λ2| < 1). Therefore, E∗ is a saddle.
(iii) If bδ = (1 – α)(1 – β)m1, then F(–1) = 0 and Det(J(E∗)) �= 1. By Lemma 2.1, we have

λ1 = –1 and |λ2| �= 1. Therefore, E∗ is non-hyperbolic.

In the following, we will prove that it is impossible that Eq. (12) has a pair of conjugate
complex roots with modulus 1. Assume that bδ = (1 – α)(1 – β)m2, i.e., Det(J(E∗)) = 1. We
have δ > β and

Tr
(
J
(
E∗)) = α + β –

2 – α – β

δ – β
.

Thus,

α + β –
2 – α – β

δ – β
+ 2 <

(2 + α + β)(1 – α – β) – 2 + α + β

δ – β
= –

(α + β)2

δ – β
< 0.

It shows that Tr(J(E∗)) < –2. As a result, Eq. (12) has no a pair of conjugate complex roots
with modulus 1 for all permissible values of parameters. It implies that model (3) does not
undergo a Neimark–Sacker bifurcation at the positive equilibrium point E∗.

Denote M1 = {(b, δ,α,β)|bδ = (1 – α)(1 – β)m1}. From the above analysis, it follows that
if (b, δ,α,β) ∈ M1, then one of the two eigenvalues of the equilibrium E∗ is –1 and the
other is neither 1 nor –1. Therefore, model (3) may undergo flip bifurcation at E∗ if the
parameters vary in the small neighborhood of M1.

3 Flip bifurcation
In this section, we choose the birth rate b as a bifurcation parameter to study the flip
bifurcation of the equilibrium point E∗ by using the bifurcation approach in [22].

Let un = xn – x∗, vn = yn – y∗. Then model (3) becomes
⎧
⎨

⎩

un+1 = be–(un+vn+x∗+y∗)(vn + y∗) + α(un + x∗) – x∗,

vn+1 = δun + βvn,
n ∈ N0. (13)

By introducing a new variable Xn = (un, vn)T , we can rewrite (13) in the form

Xn+1 = G(Xn), (14)

where G = (G1, G2)T with

G1 = be–(un+vn+x∗+y∗)(vn + y∗) + α
(
un + x∗) – x∗,

G2 = δun + βvn.

For the map (14), we obtain

Xn+1 = AXn +
1
2

B(Xn, Xn) +
1
6

C(Xn, Xn, Xn) + O
(‖Xn‖4),
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where A = J(E∗), B(Xn, Xn) and C(Xn, Xn, Xn) are multilinear functions with

B(Xn, Xn) =
(
B1(Xn, Xn), 0

)T = be–(x∗+y∗)(y∗u2
n + 2

(
y∗ – 1

)
unvn +

(
y∗ – 2

)
v2

n, 0
)T

and

C(Xn, Xn, Xn) =
(
C1(Xn, Xn, Xn), 0

)T

= be–(x∗+y∗)(–y∗u3
n + 3

(
1 – y∗)u2

nvn + 3
(
2 – y∗)unv2

n +
(
3 – y∗)v3

n, 0
)T .

Consider the flip bifurcation case. Denote the critical value b = 1
δ
(1 – α)(1 – β)m1 by b∗

at which the map (14) may undergo a flip bifurcation at the origin. In this case, A has a
simple critical eigenvalue λ1 = –1, and the corresponding critical eigenspace TC is one-
dimensional and spanned by an eigenvector q ∈ R

2 such that Aq = –q. Let p ∈ R
2 be the

adjoint eigenvector, that is, AT p = –p, where AT is the transposed matrix. Normalize p
with respect to q such that 〈p, q〉 = 1, where 〈p, q〉 = p1q1 + p2q2 is the scalar product in R

2.
For satisfying the normalization 〈p, q〉 = 1, we choose

q =
(

1, –
δ

1 + β

)T

,

p =
1 + β

x∗(α – 1) + α + β + 2

(

1, –
x∗(α – 1) + α + 1

δ

)T

.

Based on the theories developed by Kuznetsov [22], the restriction of the map (14) to its
one-dimensional center manifold at the critical parameter values b∗ can be transformed
into the normal form

ξ 	→ –ξ + c
(
b∗)ξ 3 + O

(
ξ 4),

where

c
(
b∗) =

1
6
〈
p, C(q, q, q)

〉
–

1
2
〈
p, B

(
q, (A – I)–1B(q, q)

)〉

= –
γ (β – δ + 1)3

6(β + 1)2(α + β + α2 – β2)(α – β + 2δ – αβ + αδ + βδ – β2 – 2)

with

γ = 3α – 3β + 6δ + 2αβ – 10αβ2 + 4α2β + 3αβ3 – 3α3β – 2α2 + α3 + 4β2 – β3

– 6α2β3 + 6α2β3 + 12αβδ,

and I is the unit 2 × 2 matrix.
Note that

α – β + 2δ – αβ + αδ + βδ – β2 – 2 < α – β + (2 + α + β)(1 – α) – αβ – β2 – 2

= –(α + β)2 < 0.
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Thus, we can obtain the stability and direction of flip bifurcation at the equilibrium E∗

as follows.

Theorem 3.1 If γ �= 0, then model (3) undergoes a flip bifurcation at the equilibrium E∗

when the parameter b varies and passes through b∗. Moreover, if γ > 0 (respectively, γ < 0),
then the flip bifurcation of model (3) at b = b∗ is supercritical (respectively, subcritical) and
the period-doubling cycle is stable (respectively, unstable).

4 Numerical simulations
In this section we will give examples to illustrate the analytic results.

Fix parameters α = 0.1, β = 0.3 and δ = 0.2. Take b = 3.15. Clearly, bδ = (1 – α)(1 – β).
The characteristic roots corresponding to trivial equilibrium point E0 are λ1 = 1 and λ2 =
–0.6, respectively. It follows from Table 1 that E0 is non-hyperbolic and stable. Figure 1
shows that the trivial equilibrium point E0 is stable. Further, take b = 3.4. It is easy to that
2–α–β

2+α+β
+ β – δ = 0.7667 and (1 – α)(1 – β)m1 – bδ = 1.1006. From Theorem 2.2(i), it follows

that the positive equilibrium point (0.0594, 0.017) is stable (see Fig. 2).
In the following, we will give the diagrams of flip bifurcation and Lyapunov expo-

nents. For model (3), fix the parameters α = 0.2, β = 0.4 and δ = 0.1, respectively. Take
b = b∗ = 15.4141. By the simple calculation, one obtains γ = 0.5328 > 0. From Theorem 3.1,
the flip bifurcation emerges from equilibrium (1, 0.1667) at b = b∗. Vary b in the range
12 ≤ b ≤ 150. As b increases beyond b∗, model (3) passes through a series of bifurcations
that eventually lead to chaotic dynamics. Figure 3 shows bifurcation diagrams for model
(3). After the flip bifurcation, the model undergoes a series of period-doubling bifurcations

Figure 1 Stability of trivial equilibrium point E0 with
α = 0.1, β = 0.3, δ = 0.2 and b = 3.15

Figure 2 The dynamical behaviors of immature
populations x and mature populations y with
α = 0.1, β = 0.3, δ = 0.2 and b = 3.4
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(a) (b)

Figure 3 (a) Flip bifurcation diagrams of x following the variation b ∈ [12, 150]. (b) Flip bifurcation diagrams of
y following the variation b ∈ [12, 150]

Figure 4 Lyapunov exponents corresponding to
Fig. 3

Figure 5 Chaotic sets with b = 120

wherein 2k-cycle loses stability and a stable 2k+1-cycle is born as b increases. Subsequently,
there is a cascade of period-doubling bifurcations leading to chaos. The Lyapunov expo-
nent diagram corresponding to Fig. 3 is given in Fig. 4. Figure 5 shows that when b = 120,
model (3) possesses two chaotic sets.

5 Conclusion and discussion
There has been much work discussing the stability and bifurcation of single-species model
with stage structure, but most of them dealt with only the continuous system. In this pa-
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per, we discuss the dynamical behaviors of a single-species discrete model with the Ricker
function as the birth rate and only the mature population reproducing. By analyzing the
location of the roots in the characteristic equation, some conditions are derived to ensure
the asymptotically stable of equilibria of model (3). In [18], the authors provided the result
that E∗ is asymptotically stable if bδ > (1 – α)(1 – β). However, according to Theorem 2.2,
we see that bδ > (1 – α)(1 – β) is not the sufficient condition under which E∗ is asymp-
totically stable. Moreover, by the results of [17], we find the interesting phenomenon that
E∗ of the continuous model corresponding to model (3) is globally asymptotically stable if
bδ > (1 – α)(1 – β).

As pointed out by [17], R0 = bδ
(1–α)(1–β) represents the intrinsic net reproductive num-

ber, which combines the age-specific fertility rates and the age-specific survival rates and
gives the expected number of offspring per individual over its life time. R0 = 1 is a thresh-
old which controls whether or not the population will survive. From Table 1, if R0 ≤ 1, then
the trivial equilibrium (0, 0) is asymptotically stable, that is, if on average individuals do
not replace themselves before they die, then the population becomes extinct. From The-
orem 2.2, if 1 < R0 < m1, then the positive equilibrium point E∗ is asymptotically stable. It
means that the population can survive over the long term. If R0 = m1, the positive equilib-
rium point E∗ is non-hyperholic, that is, it may lose stability. Moreover, as the birth rate b
increases, the positive equilibrium of model (3) exchanges its stability and occurs flip bi-
furcation. In fact, we see that for the continuous model corresponding to model (3) does
not occur the bifurcation at the equilibrium E∗. Furthermore, the direction and stability of
flip bifurcation are determined. Numerical simulations also show the rich dynamical be-
havior of model (3), including cascades of period-doubling bifurcations in orbit of period
2, 4, 8 and chaotic sets and invariant circles.
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