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Abstract
In this paper, by employing the fractional power of operators, semigroup theory, and
fixed point strategy we obtain some new criteria ensuring the existence and
exponential stability of a class of impulsive neutral stochastic integrodifferential
equations driven by a fractional Brownian motion. We establish some new sufficient
conditions that ensure the exponential stability of mild solution in the mean square
moment by utilizing an impulsive integral inequality. Also, we provide an example to
show the efficiency of the obtained theoretical result.
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1 Introduction
The theory and applications of impulsive differential equations have undergone a rapid
development in recent years. Impulsive phenomena have attracted considerable attention
due to their wide applications in engineering and scientific fields, including information
science, electronics, automatic control systems, population dynamics, robotics, telecom-
munications, and so on [1, 2]. In view of a mathematical modeling, such applications re-
quire finding criteria for qualitative properties of their solutions. Many sudden and rapid
modifications occur instantaneously, which leads to impulsive effects. It is important and
necessary to consider both time delays and impulsive effects when investigating the stabil-
ity of the dynamical systems, since impulsive perturbations can affect the dynamical be-
havior of the system [3]. In comparison with other concepts, the “aftereffect” presented in
physics is very significant. To model procedures with aftereffect, it is not sufficient to em-
ploy ordinary or partial differential equations. So, integrodifferential equations are used to
resolve this problem. In recent years, the theory of impulsive integrodifferential equations
in the field of modern applied mathematics has made considerable improvement because
the structure of its appearance has deep physical background and realistic mathematical
reasoning.
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We must transfer the deterministic problems to stochastic problems, since determin-
istic models frequently fluctuate due to noise, which is random (or at least appears to be
such). Stochastic effects are common occurrences due to disturbances or uncertainties in a
considered system. The analysis and formulation of many real-time problems in economy
and finance, in physics, mechanics, electric and control engineering, etc. can be modeled
by stochastic differential equations. Besides, SDEs with delays are often used to model
the objects where the future state depends not only on the present state but also on its
past states. Neutral differential equations, initially introduced by Hale and Meyer [4] as
retarded systems consisting of discrete and neutral delays, frequently appear in scientific
and engineering fields [5]. In various cases, the time-delay is a source of instability. Slight
changes in delay may destabilize differential equations. Therefore, many researchers in-
creased their interest in their stability problem [6, 7]. Its worth pointing out that a neutral-
type dynamical model as one of the most essential dynamical systems is omnipresent in
both nature and man-made systems [8, 9]. Some essential facts of neutral stochastic delay
differential equations are introduced in [10, 11]. Meanwhile, they can be widely applied
to many branches for the control field, including the problem of the existence and stabil-
ity of the neutral stochastic delay systems [12]. So, many researchers have focused on the
study of stability analysis of neutral stochastic delay systems during the last few decades
[10, 13–18].

On the other hand, a fractional Brownian motion (fBm) is a Gaussian stochastic process,
which varies pointedly from semimartingales and a standard Brownian motion to other
processes usually utilized in the theory of stochastic processes. An fBm depends on the
Hurst index H ∈ (0, 1), the parameter introduced by Kolmogorov [19]. We refer to [20] for
more detail on fBm. As a centered Gaussian process, it is examined by its stationary incre-
ments and the medium- or long-memory property. The fBm reduces to standard Brownian
motion when H = 1/2. However, when H �= 1/2, the fBm acts in a entirely different way,
that is, it is neither a Markov process nor a semimartingale. Recently, the theory of differ-
ential equations driven by an fBm has been investigated intensively by many researchers
(see [21–29] and references therein).

Now, we consider the neutral stochastic integrodifferential equation with impulsive mo-
ments of the form

d
[
x(t) – p(t, xt)

]
=

[
Ax(t) + f (t, xt) +

∫ t

0
h(t, s, xs) ds

]
dt

+ σ̃ (t) dBH
Q (t), t ∈ [0, a], t �= tk , (1)

�x(tk) = Ik
(
x
(
t–
k
))

, t = tk , k = 1, 2, . . . , (2)

x0(t) = ϕ(t) ∈PC
(
[–r, 0], X

)
, –r ≤ t ≤ 0, (3)

where A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 of bounded
linear operators in a Hilbert space X. The impulsive moments tk satisfy the condi-
tion 0 < t1 < t2 < · · · < tk < · · · , limk→+∞ tk = ∞, Ik : X → X, �x(tk) = x(t+

k ) – x(t–
k )

(x(t+
k ) and x(t–

k ) are the right and left limits of x(t) at tk , respectively) is the jump
size of the state x at tk . For ϕ ∈ PC,‖ϕ‖PC = sups∈[–r,0] ‖ϕ(s)‖ < +∞, where PC = {ϕ :
[–r, 0] → X,ϕ(t) is continuous everywhere except a finite number of points t̃ at which
ϕ(t̃–),ϕ(t̃+) exist and ϕ(t̃–) = ϕ(t̃)}. For any t ∈ [0, a] and any continuous function x, the el-
ement of PC is defined by xt(θ ) = x(t + θ ), –r ≤ θ ≤ 0. The functions p, f : [0, +∞) ×PC →
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X, h : [0, +∞)× [0, +∞)×PC → X, and σ̃ : [0, +∞) → L0
Q(Y , X) are appropriate functions,

and BH
Q is assumed to be a fractional Brownian motion.

Yang and Jiang [30] investigated the exponential stability in the pth moment of impul-
sive stochastic neutral partial differential equations with memory. The asymptotic behav-
ior for second-order neutral stochastic partial differential equations with infinite delay
have been studied in [31]. Taniguchi et al. [32] discussed the existence, uniqueness, and
asymptotic behavior of mild solutions to stochastic differential equations. Boufoussi and
Hajji [23] established the existence, uniqueness, and exponential decay to zero in mean
square moment for the mild solutions to neutral stochastic differential equations driven
by a fractional Brownian motion. Caraballo et al. [33] discussed the existence, uniqueness,
and exponential asymptotic behavior of stochastic delay evolution equations perturbed by
a fractional Brownian motion. Stochastic Volterra integrodifferential equations with frac-
tional Brownian motion have been studied in [34]. In [35], the author examined the expo-
nential stability for stochastic partial differential equations with delays and impulses. Very
recently, Chen et al. [36] examined the exponential stability of neutral stochastic partial
functional differential equations with impulsive effects.

So far, several interesting results have been presented that focused on the neutral
stochastic integrodifferential equations driven by fBm. In recent years, the theory and ap-
plications of impulsive stochastic integrodifferential equations have been received much
attention. However, there are very few papers dealing with the stability of mild solutions to
stochastic integrodifferential equations with impulsive effects. To the best of our knowl-
edge, the corresponding theory for neutral stochastic integrodifferential equations driven
by an fBm with impulsive effects has not been explored, and the aim of this paper is to
close the gap. This paper, inspired by the works mentioned, addresses the existence and
stability problems for neutral stochastic integrodifferential systems driven by an fBm with
delays and impulsive effects.

The structure of this paper is as follows. In Sect. 2, we recall some basic facts. In Sect. 3,
we discuss the results on existence and uniqueness of mild solutions. Further, we investi-
gate the exponential stability for the mild solution in mean square moment. In Sect. 4, we
give an example illustrating the results. Finally in Sect. 5, we provide a conclusion.

2 Preliminaries
For convenience, we review some fundamental concepts about the analytic semigroups
and fractional powers of their infinitesimal generators. Further, we introduce some neces-
sary facts about fractional Brownian motion (fBm) and the Wiener integral with respect
to an fBm.

We first state important properties of the semigroup theory (see [37]) and the fractional
powers of operators. Let A : D(A) → X be the infinitesimal generator of an analytic semi-
group of bounded linear operators (T(t))t≥0 on a Hilbert space X. Then for every t ≥ 0,
there exist constants N ≥ 1 and γ ∈ R such that ‖T(t)‖ ≤ Neγ t . Also, (T(t))t≥0 is a uni-
formly bounded and analytic semigroup such that 0 ∈ σ (A) (σ (A) is the resolvent set of A).
For 0 < α ≤ 1, the fractional power (–A)α is defined as a closed linear operator on its do-
main D(–A)α , and the equality ‖ρ‖α = ‖(–A)αρ‖ defines a norm in the subspace D(–A)α ,
which is dense in X. Also, Xα represents the space D(–A)α endowed with the norm ‖ · ‖α .

Lemma 2.1 ([37]) Assume that the stated conditions are satisfied.
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(1) If 0 < α ≤ 1, then Xα is a Banach space.
(2) If 0 < β ≤ α, then the injection Xα ↪→ Xβ is continuous.
(3) There exists Nα > 0 such that

∥
∥(–A)αT(t)

∥
∥ ≤ Nα

tα
e–γ t , t > 0,γ > 0,

for every 0 < α ≤ 1.

Let X and Y be real separable Hilbert spaces, and let L(Y , X) denote the space of all
bounded linear operators from Y into X. For convenience, by | · | we denote the norms
in X, Y , and L(Y , X). Let (
,F ,P) be a complete probability space, and let Q ∈ L(Y , Y )
be a nonnegative self-adjoint operator. By L0

Q we denote the space of all ν ∈ L(Y , X) such
that νQ 1

2 is a Hilbert–Schmidt operator with norm |ν|2
L0

Q(Y ,X) = |νQ 1
2 |2HS = tr(νQν∗). Such

ν are called Q-Hilbert–Schmidt operators. The mathematical expectation operator with
respect to P is denoted by E(·).

Definition 2.2 A two-sided one-dimensional fractional Brownian motion (fBm) with
Hurst parameter H ∈ (0, 1) is a continuous centered Gaussian process βH = {βH(t), t ∈R}
with covariance function

RH(t,s) = E
[
βH (t)βH(s)

]
=

1
2
(|t|2H + |s|2H – |t – s|2H)

, t, s ∈ R.

Now we introduce the Wiener integral with respect to a one-dimensional fBm βH . Fix
a > 0. The linear space of R-valued step functions on [0, a] is denoted by �, that is, ϕ ∈ �

if

ϕ(t) =
n–1∑

i=1

xiϑ[ti ,ti+1)(t), t ∈ [0, a],

where 0 = t1 < t2 < · · · < tn = a and xi ∈ R. Next, we define the Wiener integral of ϕ ∈ �

with respect to βH by

∫ a

0
ϕ(s) dβH(s) =

n–1∑

i=1

xi
(
βH (ti+1) – βH (ti)

)
.

We denote byH the Hilbert space that is the closure of � with respect to the scalar product
〈ϑ[0,t],ϑ[0,s]〉H = RH (t, s). Then, we have the following mapping:

ϕ =
n–1∑

i=1

xiϑ[ti ,ti+1) →
∫ a

0
ϕ(s) dβH (s).

This mapping is an isometry between the linear space span{βH , t ∈ [0, a]} and �, and
thus it can be extended to an isometry between H and the first Wiener chaos of the fBm
spanL2(
){βH , t ∈ [0, a]} (see [29]). Denote by βH (ϕ) the image of ϕ by this isometry. At this
point in time, we present an explicit expression of this integral. Let KH (t, s) be the kernel
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given by

KH (t, s) = cH s
1
2 –H

∫ t

s
(τ – s)H– 3

2 τH– 1
2 dτ , t > s,

where cH =
√

H(2H–1)
B(2–2H,H– 1

2 )
, and B is the beta function. Then we have

∂KH (t, s)
∂t

= cH

(
t
s

)H– 1
2

(t – s)H– 3
2 .

Let us consider the linear operator K∗
H : � → L2([0, a]) defined by

(
K∗

Hϕ
)
(s) =

∫ t

s
ϕ(t)

∂KH (t, s)
∂t

dt and then
(
K∗

Hϑ[0,t]
)
(s) = KH (t, s)ϑ[0,t](s).

The isometry K∗
H between � and L2([0, a]) can be extended to H. Now we consider W =

{W(t), t ∈ [0, a]} defined by W(t) = βH ((K∗
H)–1ϑ[0,t]). Then W is a Wiener process and

βH (t) =
∫ t

0
KH (t, s) dW(s).

For any ϕ ∈H,

∫ a

0
ϕ(s) dβH(s) =

∫ a

0

(
K∗

Hϕ
)
(t) dW(t)

if and only if K∗
Hϕ ∈ L2([0, a]). Moreover, letting L2

H([0, a]) = {ϕ ∈ H, K∗
Hϕ ∈ L2([0, a])},

when H > 1
2 , we have L1/H([0, a]) ⊂ L2

H([0, a]); see [26].

Lemma 2.3 ([38]) For ϕ ∈ L1/H([0, a]),

H(2H – 1)
∫ a

0

∫ a

0

∣
∣ϕ(υ)

∣
∣
∣
∣ϕ(τ )

∣
∣|υ – τ |2H–2 dυ dτ ≤ cH‖ϕ‖2

L1/H ([0,a]).

Consider a sequence of independent two-sided one-dimensional standard fBms
{βH

n (t)}n∈N on (
,F ,P) and the following series, which not necessarily converge in the
space Y :

∞∑

n=1

βH
n (t)an, t ≥ 0,

where {an}n∈N is a complete orthonormal basis in Y . Hence, consider a Y -valued stochas-
tic process BH

Q (t) specified by the following series that converges in the space Y if Q is
a nonnegative self-adjoint trace class operator:

BH
Q (t) =

∞∑

n=1

βH
n (t)Q

1
2 an, t ≥ 0.

Obviously, BH
Q (t) ∈ L2(
, Y ), and BH

Q (t) is a Y -valued Q-cylindrical fBm with covariance
operator Q. For example, if {λn}n∈N is a bounded sequence of nonnegative real numbers



Ma et al. Advances in Difference Equations  (2018) 2018:110 Page 6 of 20

such that Qan = λnan, then if Q is a nuclear operator in Y (that is,
∑∞

n=1 λn < ∞), then the
stochastic process

BH
Q (t) =

∞∑

n=1

βH
n (t)Q

1
2 an =

∞∑

n=1

(λn)
1
2 βH

n (t)an, t ≥ 0,

is well-defined as a Y -valued Q-cylindrical fBm.
Let ϕ : [0, a] → L0

Q(Y , X) be such that

∞∑

n=1

∥
∥K∗

H
(
ϕQ

1
2 an

)∥∥
L2([0,a];X) < ∞. (4)

Definition 2.4 Let ϕ(s), s ∈ [0, a], be a function with values in L0
Q(Y , X). Then the Wiener

integral of ϕ with respect to BH
Q is defined by

∫ t

0
ϕ(s) dBH

Q (s) =
∞∑

n=1

∫ t

0
ϕ(s)Q

1
2 an dβH

n =
∞∑

n=1

∫ t

0

(
K∗

H
(
ϕQ

1
2 an

))
(s) dW(s), t ≥ 0.

If

∞∑

n=1

∥
∥ϕQ

1
2 an

∥
∥

L1/H ([0,a];X) < ∞, (5)

then certainly (4) holds, which follows directly from L1/H([0, a]) ⊂ L2
H([0, a]).

Lemma 2.5 For any ϕ : [0, a] → L0
Q(Y , X) such that (5) holds and for any α,β ∈ [0, a] with

α > β ,

E

∣∣
∣∣

∫ α

β

ϕ(s) dBH
Q (s)

∣∣
∣∣

2

X
≤ cH(2H – 1)(α – β)2H–1

∞∑

n=1

∫ α

β

∣
∣ϕ(s)Q

1
2 an

∣
∣2
X ds,

where c = c(H). Also, If
∑∞

n=1 |ϕ(t)Q 1
2 an|X is uniformly convergent for t ∈ [0, a], then

E

∣
∣∣∣

∫ α

β

ϕ(s) dBH
Q (s)

∣
∣∣∣

2

X
≤ cH(2H – 1)(α – β)2H–1

∫ α

β

∣∣ϕ(s)
∣∣2
L0

Q(Y ,X) ds.

The proof of the lemma is given in [33], and this lemma is essential in the proof of our
result, which is established as a simple application of Lemma 2.3. The following integral
inequality (Lemma 3.1 in [30]) is crucial in proving the exponential stability of a mild
solution of the considered system with impulses in mean square moments.

Lemma 2.6 Let a function � : [–r, +∞) → [0, +∞) be such that there exist positive con-
stants ω > 0,αj (j = 1, 2, 3), and βi (i = 1, 2, . . .) such that

�(t) ≤ α1e–ωt for t ∈ [–r, 0]
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and

�(t) ≤ α1e–ωt + α2 sup
θ∈[–r,0]

�(t + θ ) + α3

∫ t

0
e–ω(t–s) sup

θ∈[–r,0]
�(t + θ ) ds

+
∑

ti<t
βie–ω(t–ti)�

(
t–
i
)

for t ≥ 0.

If α2 + α3
ω

+
∑+∞

i=1 βi < 1, then �(t) ≤ Ne–γ t for t ≥ –r, where γ > 0 is the unique solution to
the equation α2 + α3

(ω–γ ) eγ r +
∑+∞

i=1 βi = 1, and N = max{α1, α1(ω–γ )
α3eγ r } > 0.

3 Main results
3.1 Existence of mild solution
In this section, we first formulate and prove sufficient conditions for the existence and
uniqueness of a mild solution of system (1)–(3) by utilizing the fixed-point theory. Then,
under certain assumptions, we show the exponential stability of the mild solution for the
considered system in the mean square moment. Before proceeding our discussion, let us
first introduce the concept of a mild solution.

Definition 3.1 An X-valued stochastic process x(t), t ∈ [–r, a], is called a mild solution of
system (1)–(3) if

(1) x(·) ∈PC([–r, a], L2(
, X));
(2) x(t) = ϕ(t) for t ∈ [–r, 0];
(3) For t ∈ [0, a], x(t) satisfies the following integral equation:

x(t) = T(t)
[
ϕ(0) – p(0,ϕ)

]
+ p(t, xt) +

∫ t

0
AT(t – s)p(s, xs) ds

+
∫ t

0
T(t – s)f (s, xs) ds +

∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)
ds

+
∑

0<tk<t

T(t – tk)Ik
(
x
(
t–
k
))

+
∫ t

0
T(t – s)σ̃ (s) dBH

Q (s) P-a.s. (6)

To guarantee the existence and uniqueness of the solution, we impose some hypotheses:
(H1) A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 of bounded

linear operators on the Hilbert space X and satisfies 0 ∈ σ (A). By Lemma 2.1, for
every t ∈ [0, a], there exist some constants N and N1–α such that

∥∥T(t)
∥∥ ≤ N and

∥∥(–A)1–αT(t)
∥∥ ≤ N1–α

t1–α
.

(H2) For all t ∈ [0, a], there exist constants 1
2 < α < 1 and L1 > 0 such that, for

ψj ∈PC, j = 1, 2, the Xα-valued function p : [0, +∞) ×PC → X satisfies the
condition

∥
∥(–A)αp(t,ψ1) – (–A)αp(t,ψ2)

∥
∥ ≤ L1‖ψ1 – ψ2‖.

Also, L̃1 = supt∈[0,a] ‖(–A)αp(t, 0)‖.
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(H3) (–A)αp is a continuous function in the quadratic mean sense. For all ψ ∈PC ,

lim
t→s

E
∥
∥(–A)αp(t,ψ) – (–A)αp(s,ψ)

∥
∥2 = 0.

(H4) There exists a constant L2 > 0 such that, for ψj ∈PC, j = 1, 2, the mapping
f : [0, +∞) ×PC → X satisfies the following Lipschitz condition for all t ∈ [0, a]:

∥∥f (t,ψ1) – f (t,ψ2)
∥∥ ≤ L2‖ψ1 – ψ2‖.

Here L̃2 = supt∈[0,a] ‖f (t, 0)‖.
(H5) The mapping h : [0, +∞) × [0, +∞) ×PC → X satisfies the following Lipschitz

condition. For t ∈ [0, a], there exists a constant L3 > 0 such that, for ψj ∈PC ,
j = 1, 2,

∥∥
∥∥

∫ t

0

[
h(t, s,ψ1) – h(t, s,ψ2)

]
ds

∥∥
∥∥ ≤ L3‖ψ1 – ψ2‖.

Here L̃3 = a sup0≤s≤t≤a ‖h(t, s, 0)‖.
(H6) The impulsive function Ik : X → X is continuous and there exist positive numbers

qk (k = 1, 2, . . .) such that
∑∞

k=1 qk < ∞ and, for all ψ1,ψ2 ∈PC ,

∥∥Ik(ψ1) – Ik(ψ2)
∥∥ ≤ qk‖ψ1 – ψ2‖ and

∥∥Ik(0)
∥∥ = 0.

(H7) A function σ̃ : [0, +∞) → L0
Q(Y , X) satisfies

∫ t

0

∥
∥σ̃ (s)

∥
∥2

L0
Q

ds < ∞, ∀t ∈ [0, a].

We have the following two conditions for the complete orthonormal basis {an}n∈N
in Y .
(C.1)

∑∞
n=1 ‖σ̃Q1/2an‖L2([0,a];X) < ∞.

(C.2)
∑∞

n=1 |σ̃ (t)Q1/2an|X is uniformly convergent for all t ∈ [0, a].
We now establish the existence and uniqueness results for system (1)–(3).

Theorem 3.2 Assume that hypotheses (H1)–(H7) are satisfied for all φ ∈PC, a > 0, and

4N2(
∑+∞

k=1 qk)2

(1 – k)2 < 1, (7)

where k = ‖(–A)–α‖L1. Then system (1)–(3) has a unique mild solution on [–r, a].

Proof In what follows, the Banach space of all continuous functions from [–r, a] into
L2(
, X) stands for the set �a := PC([–r, a], L2(
, X)) equipped with the supremum norm
‖ζ‖2

�a = sups∈[–r,a](E‖ζ (s)‖2). Fix a > 0. Denote �̂a = {x ∈ �a : x(τ ) = ϕ(τ ) for τ ∈ [–r, 0]},
which is a closed subset of �a provided with the norm ‖ · ‖�a . Now problem (1)–(3)
transformed into a fixed point problem. We define the operator � : �̂a → �̂a as follows:
(�x)(t) = ϕ(t), t ∈ [–r, 0], and

(�x)(t) = T(t)
[
ϕ(0) – p(0,ϕ)

]
+ p(t, xt) +

∫ t

0
AT(t – s)p(s, xs) ds
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+
∫ t

0
T(t – s)f (s, xs) ds +

∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)
ds

+
∫ t

0
T(t – s)σ̃ (s) dBH

Q (s) +
∑

0<tk<t

T(t – tk)Ik
(
x
(
t–
k
))

, t ∈ [0, a].

We will show that the operator � has a fixed point. The proof is based on the fixed point
theorem for contraction mapping principle. We divide the proof into two steps.

Step 1: We first show that the mapping t → (�x)(t) is continuous on the interval [0, a].
Let x ∈ �̂a, 0 < t < a, and let |τ | be sufficiently small. Then we have

E
∥
∥(�x)(t + τ ) – (�x)(t)

∥
∥2 ≤ 7

{
E

∥
∥(

T(t + τ ) – T(t)
)[

ϕ(0) – p(0,ϕ)
]∥∥2}

+ 7
6∑

j=1

E
∥∥Gj(t + τ ) – Gj(t)

∥∥2.

Now by the semigroup property we can write

E
∥∥(

T(t + τ ) – T(t)
)[

ϕ(0) – p(0,ϕ)
]∥∥2 = E

∥∥(
T(τ )T(t) – T(t)

)[
ϕ(0) – p(0,ϕ)

]∥∥2.

By strong continuity of T(t) and hypothesis (H1) we conclude that

E
∥∥(

T(t + τ ) – T(t)
)[

ϕ(0) – p(0,ϕ)
]∥∥2 ≤ 2N2

E
∥∥ϕ(0) – p(0,ϕ)

∥∥2.

The strong continuity of T(t), together with the Lebesgue dominated convergence theo-
rem, gives that

lim
τ→0

E
∥
∥(

T(t + τ ) – T(t)
)[

ϕ(0) – p(0,ϕ)
]∥∥2 = 0.

Since the operator (–A)–α is bounded, by (H3) we obtain that

lim
τ→0

E
∥∥G1(t + τ ) – G1(t)

∥∥2 = 0.

By Hölder’s inequality we have

E
∥∥G2(t + τ ) – G2(t)

∥∥2

≤ 2E
∥∥
∥∥

∫ t

0

[(
T(τ ) – I

)
(–A)1–αT(t – s)(–A)α

]
p(s, xs) ds

∥∥
∥∥

2

+ 2E
∥∥
∥∥

∫ t+τ

t
(–A)1–αT(t + τ – s)(–A)αp(s, xs) ds

∥∥
∥∥

2

.

From assumptions (H1) and (H2) the right-hand side of this inequality becomes

∥∥[(
T(τ ) – I

)
(–A)1–αT(t – s)(–A)α

]
p(s, xs)

∥∥2 ≤ ∥∥T(τ ) – I
∥∥2 N2

1–α

(t – s)2(1–α)

[
L1‖xs‖2 + L̃1

]

and

∥
∥(–A)1–αT(t + τ – s)(–A)αp(s, xs)

∥
∥2 ≤ N2

1–α

(t + τ – s)2(1–α)

[
L1‖xs‖2 + L̃1

]
.
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From these inequalities, by the strong continuity of T(t) and the Lebesgue dominated
convergence theorem we get

E
∥∥G2(t + τ ) – G2(t)

∥∥2 → 0 as |τ | → 0.

Similarly, we have

E
∥
∥G3(t + τ ) – G3(t)

∥
∥2

≤ 2E
∥∥
∥∥

∫ t

0

[(
T(τ ) – I

)
T(t – s)

]
f (s, xs) ds

∥∥
∥∥

2

+2E
∥∥
∥∥

∫ t+τ

t
T(t + τ – s)f (s, xs) ds

∥∥
∥∥

2

.

By assumption (H4), the right-hand side of this inequality becomes

∥∥[(
T(τ ) – I

)
T(t – s)

]
f (s, xs)

∥∥2 ≤ ∥∥T(τ ) – I
∥∥2N2[L2‖xs‖2 + L̃2

]

and

∥∥T(t + τ – s)f (s, xs)
∥∥2 ≤ N2[L2‖xs‖2 + L̃2

]
.

By the Lebesgue dominated convergence theorem from these inequalities, along with the
strong continuity of T(t), we conclude that

E
∥
∥G3(t + τ ) – G3(t)

∥
∥2 → 0 as |τ | → 0.

Now we have

E
∥
∥G4(t + τ ) – G4(t)

∥
∥2

≤ 2E
∥
∥∥
∥

∫ t

0

[(
T(τ ) – I

)
T(t – s)

]
(∫ s

0
h(s,η, xη) dη

)
ds

∥
∥∥
∥

2

+ 2E
∥
∥∥∥

∫ t+τ

t
T(t + τ – s)

(∫ s

0
h(s,η, xη) dη

)
ds

∥
∥∥∥

2

.

From assumption (H5) the right-hand side of the last inequality becomes

∥
∥∥
∥
[(

T(τ ) – I
)
T(t – s)

]
(∫ s

0
h(s,η, xη) dη

)∥
∥∥
∥

2

≤ ∥∥T(τ ) – I
∥∥2N2[L3‖xη‖2 + aL̃3

]

and

∥
∥∥
∥T(t + τ – s)

(∫ s

0
h(s,η, xη) dη

)∥
∥∥
∥

2

≤ N2[L3‖xη‖2 + aL̃3
]
.

From these inequalities and the strong continuity of T(t), by the Lebesgue dominated con-
vergence theorem we get that

E
∥∥G4(t + τ ) – G4(t)

∥∥2 → 0 as |τ | → 0.
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Further, we have

E
∥∥G5(t + τ ) – G5(t)

∥∥2

≤ 2E
∥∥
∥∥

∑

0<tk <t

(
T(τ ) – I

)
T(t – tk)Ik

(
x
(
t–
k
))

∥∥
∥∥

2

+ 2E
∥∥
∥∥

∑

t<tk <t+τ

T(t + τ – tk)Ik
(
x
(
t–
k
))

∥∥
∥∥

2

.

By (H1) and (H6) the right-hand side of this inequality becomes

∥
∥(

T(τ ) – I
)
T(t – tk)Ik

(
x
(
t–
k
))∥∥2 ≤ ∥

∥T(τ ) – I
∥
∥2N2[qk

∥
∥x

(
t–
k
)∥∥2]

and

∥∥T(t + τ – tk)Ik
(
x
(
t–
k
))∥∥2 ≤ N2[qk

∥∥x
(
t–
k
)∥∥2].

Hence, we get that

E
∥∥G5(t + τ ) – G5(t)

∥∥2 → 0 as |τ | → 0.

Now, we have

E
∥
∥G6(t + τ ) – G6(t)

∥
∥2

≤ 2E
∥
∥∥
∥

∫ t

0

[(
T(τ ) – I

)
T(t – s)

]
σ̃ (s) dBH

Q (s)
∥
∥∥
∥

2

+ 2E
∥
∥∥
∥

∫ t+τ

t
T(t + τ – s)σ̃ (s) dBH

Q (s)
∥
∥∥
∥

2

:= J1 + J2.

By Lemma 2.5 and (H1) we have

J1 ≤ 2cH(2H – 1)t2H–1
∫ t

0

∥∥[(
T(τ ) – I

)
T(t – s)

]
σ̃ (s)

∥∥2
L0

Q
ds

≤ 2cH(2H – 1)t2H–1N2
∫ t

0

∥∥(
T(τ ) – I

)
σ̃ (s)

∥∥2
L0

Q
ds → 0 as |τ | → 0

since

T(τ )σ̃ (s) → σ̃ (s),
∥
∥T(τ )σ̃ (s)

∥
∥2

L0
Q

≤ N2∥∥σ̃ (s)
∥
∥2

L0
Q

for all s.

By Lemma 2.5 we get

J2 ≤ 2cH(2H – 1)τ 2H–1N2
∫ t+τ

t

∥∥σ̃ (s)
∥∥2

L0
Q

ds → 0 as |τ | → 0.

Hence, we obtain

lim
τ→0

E
∥
∥G6(t + τ ) – G6(t)

∥
∥2 = 0.



Ma et al. Advances in Difference Equations  (2018) 2018:110 Page 12 of 20

Therefore, the combination of all previous estimations yields that

lim
τ→0

E
∥∥(�x)(t + τ ) – (�x)(t)

∥∥2 = 0.

As a result, we conclude that the function t → (�x)(t) is continuous on the interval
[0, a].

Step 2: We show that the mapping � is contraction in �̂a1 with some a1 ≤ a to be spec-
ified later. Let x, y ∈ �̂a and t ∈ [0, a]. By an elementary inequality we get that

∥∥(�x)(t) – (�y)(t)
∥∥2

≤ 1
k
∥∥p(t, xt) – p(t, yt)

∥∥2 +
4

1 – k

{∥
∥∥
∥

∫ t

0
AT(t – s)

[
p(s, xs) – p(s, ys)

]
ds

∥
∥∥
∥

2

+
∥
∥∥
∥

∫ t

0
T(t – s)

[
f (s, xs) – f (s, ys)

]
ds

∥
∥∥
∥

2

+
∥
∥∥
∥

∫ t

0
T(t – s)

[∫ s

0
h(s,η, xη) dη

–
∫ s

0
h(s,η, yη) dη

]
ds

∥
∥∥∥

2

+
∥
∥∥∥

∑

0<tk<t

T(t – tk)
[
Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))]

∥
∥∥∥

2}

≤ 1
k
∥∥(–A)–α

∥∥2∥∥(–A)α
[
p(t, xt) – p(t, yt)

]∥∥2

+
4

1 – k

∥
∥∥
∥

∫ t

0
(–A)1–αT(t – s)(–A)α

[
p(s, xs) – p(s, ys)

]
ds

∥
∥∥
∥

2

+
4

1 – k

∥
∥∥
∥

∫ t

0
T(t – s)

[
f (s, xs) – f (s, ys)

]
ds

∥
∥∥
∥

2

+
4

1 – k

∥
∥∥∥

∫ t

0
T(t – s)

[∫ s

0
h(s,η, xη) dη –

∫ s

0
h(s,η, yη) dη

]
ds

∥
∥∥∥

2

+
4

1 – k

∥∥
∥∥

∑

0<tk<t

T(t – tk)
[
Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))]

∥∥
∥∥

2

.

By the Hölder inequality, together with the Lipschitz property of (–A)αp, f , h, and Ik , k =
1, 2, . . . , we have

E
∥
∥(�x)(t) – (�y)(t)

∥
∥2

≤ kE‖xt – yt‖2 +
4

1 – k
N2

1–αL2
1

(
t2α–1

2α – 1

)∫ t

0
E‖xs – ys‖2 ds

+
4

1 – k
tN2[L2

2 + L2
3
] ∫ t

0
E‖xs – ys‖2 ds +

4
1 – k

N2

( +∞∑

k=1

qk

)2

E
∥
∥x

(
t–
k
)

– y
(
t–
k
)∥∥2.

So, we obtain

sup
s∈[–r,t]

E
∥
∥(�x)(s) – (�y)(s)

∥
∥2 ≤ ρ(t) sup

s∈[–r,t]
E

∥
∥x(s) – y(s)

∥
∥2,

where

ρ(t) = k +
4N2

1–αL2
1

(1 – k)(2α – 1)
t2α +

4N2L2
2

1 – k
t2 +

4N2L2
3

1 – k
t2 +

4N2

1 – k

( +∞∑

k=1

qk

)2

.
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Hence, by inequality (7) we have

ρ(0) = k +
4N2

1 – k

( +∞∑

k=1

qk

)2

=
4N2(

∑+∞
k=1 qk)2

(1 – k)2 < 1.

Then there exists 0 < a1 ≤ a such that 0 < ρ(a1) < 1 and � is contraction on �̂a1 . Hence,
the operator � has a unique fixed point, which is a mild solution of system (1)–(3) on the
interval [–r, a1]. Evidently, the solution can be continued on the succeeding intervals, and
this procedure can be repeated in finitely many steps to the entire interval [–r, a]. Thus,
the proof is completed. �

Remark 3.3 It is well known that by the theorem the solution of system (1)–(3) is well
defined.

3.2 Exponential stability
In this subsection, to establish some sufficient conditions ensuring the exponential stabil-
ity in the mean square moment of the mild solution for system (1)–(3), we need to state
the following additional assumptions.

(H8) (T(t))t≥0 satisfies the following condition in addition to (H1):
There exist γ > 0 and N > 0 such that ‖T(t)‖ ≤ Ne–γ t for all t ≥ 0. Let us

assume that the strongly continuous semigroup (T(t))t≥0 is exponentially stable.
(H9) For all t ≥ 0 and ψ ∈PC , there exist nonnegative real numbers R1, R2, R3 ≥ 0 and

continuous functions ξi : [0, +∞) →R+, i = 1, 2, 3, such that

∥∥(–A)αp(t,ψ)
∥∥2 ≤ R1

[‖ψ‖2] + ξ1(t),
∥∥f (t,ψ)

∥∥2 ≤ R2
[‖ψ‖2] + ξ2(t),

∥∥
∥∥

∫ t

0
h(t, s,ψ) dt

∥∥
∥∥

2

≤ R3
[‖ψ‖2] + ξ3(t).

(H10) There exist nonnegative real numbers P1, P2, P3 ≥ 0 such that

ξj(t) ≤ Pje–γ t , ∀t ≥ 0, j = 1, 2, 3.

(H11) The function σ̃ : [0, +∞) → L0
Q(Y , X) satisfies the following condition in addition

to assumptions (C.1) and (C.2):

∫ +∞

0
eγ s∥∥σ̃ (s)

∥
∥2

L0
Q

ds < ∞.

Theorem 3.4 Suppose that conditions (H6)–(H11) are satisfied and

6{[γ 1–2α22(1–α)N2
1–αN2�(2α – 1)R1/γ ] + [N2(R2 + R3)/γ 2] + [N2(

∑+∞
k=1 qk)2]}

(1 – k)2 < 1, (8)

where k :=
√

R1‖(–A)–α‖. Then the mild solution of system (1)–(3) is exponentially stable
in mean square moment.
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Proof By inequality (8) there is ε > 0 small enough such that

k +
6γ 1–2α22(1–α)N2

1–αN2�(2α – 1)R1

(γ – ε)(1 – k)
+

6N2(R2 + R3)
γ (γ – ε)(1 – k)

+
6N2(

∑+∞
k=1 qk)2

1 – k
< 1.

Let x(t) be a mild solution of system (1)–(3) and denote μ = γ – ε. Then from Eq. (6) we
have

E
∥∥x(t)

∥∥2 ≤ 1
k
E

∥∥p(t, xt)
∥∥2 +

6
1 – k

E

{∥∥T(t)
[
ϕ(0) – p(0,ϕ)

]∥∥2

+
∥
∥∥
∥

∫ t

0
AT(t – s)p(s, xs) ds

∥
∥∥
∥

2

+
∥
∥∥
∥

∫ t

0
T(t – s)σ̃ (s) dBH

Q (s)
∥
∥∥
∥

2

+
∥
∥∥∥

∫ t

0
T(t – s)f (s, xs) ds

∥
∥∥∥

2

+
∥
∥∥∥

∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)
ds

∥
∥∥∥

2

+
∥∥
∥∥

∑

0<tk<t

T(t – tk)Ik
(
x
(
t–
k
))

∥∥
∥∥

2}

≤
7∑

j=1

Fj(t).

From assumptions (H9) and (H10) we obtain that

F1(t) =
1
k
E

∥
∥(–A)–α(–A)αp(t, xt)

∥
∥2

≤ ‖(–A)–α‖2

k
{

R1E‖xt‖2 + ξ1(t)
}

≤ kE‖xt‖2 + G1e–γ t , (9)

where G1 = ‖(–A)–α‖2

k P1.
It follows from (H8), (H9), and (H10) that

F2(t) ≤ 12
1 – k

E
∥∥T(t)ϕ(0)

∥∥2 +
12

1 – k
E

∥∥T(t)p(0,ϕ)
∥∥2

≤ 12N2

1 – k
e–2γ t

E
∥
∥ϕ(0)

∥
∥2 +

12N2

1 – k
e–2γ t∥∥(–A)–α

∥
∥2{R1E‖ϕ‖2 + ξ1(t)

}

≤ G2e–μt , (10)

where G2 = 12N2

1–k [E‖ϕ(0)‖2 + ‖(–A)–α‖2{R1E‖ϕ‖2 + P1}].
Combining conditions (H8), (H9), and (H10) with the Hölder inequality and Lemma 2.1,

we get that

F3(t) =
6

1 – k
E

∥∥
∥∥

∫ t

0
(–A)1–αT

(
t – s

2

)
T

(
t – s

2

)
(–A)αp(s, xs) ds

∥∥
∥∥

2

≤ 6
1 – k

∫ t

0

N2
1–α

(t – s)2(1–α) 22(1–α)e–γ (t–s) ds
∫ t

0
e–γ (t–s)N2

E
∥
∥(–A)αp(s, xs)

∥
∥2 ds

≤ 6γ 1–2α22(1–α)N2
1–αN2�(2α – 1)R1

1 – k

∫ t

0
e–γ (t–s)

E‖xs‖2 ds + G3e–μt , (11)
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where G3 = 6γ 1–2α22(1–α)N2
1–αN2�(2α–1)

1–k
P1

γ –μ
.

By assumptions (H8), (H9), and (H10), applying the Hölder inequality, we get

F4(t) ≤ 6
1 – k

E

(∫ t

0
Ne–γ (t–s)∥∥f (s, xs)

∥∥ds
)2

≤ 6N2R2

γ (1 – k)

∫ t

0
e–γ (t–s)

E‖xs‖2 ds + G4e–μt , (12)

where G4 = 6N2

γ (1–k)
P2

γ –μ
.

Also,

F5(t) ≤ 6
1 – k

E

(∫ t

0
Ne–γ (t–s)

∥
∥∥
∥

∫ s

0
h(s,η, xη) dη

∥
∥∥
∥ds

)2

≤ 6N2R3

γ (1 – k)

∫ t

0
e–γ (t–s)

E‖xs‖2 ds + G5e–μt , (13)

where G5 = 6N2

γ (1–k)
P3

γ –μ
.

By Lemma 2.5 and (H8) we have

F6(t) ≤ 6
1 – k

N2cH(2H – 1)t2H–1
∫ t

0
e–2γ (t–s)∥∥σ̃ (s)

∥∥2
L0

Q
ds

≤ e–μt 6N2

(1 – k)
cH(2H – 1)t2H–1e–εt

∫ t

0
eγ s∥∥σ̃ (s)

∥∥2
L0

Q
ds.

Notice that assumption (H11) guarantees the existence of a constant G6 > 0 such that, for
all t ≥ 0,

6N2

(1 – k)
cH(2H – 1)t2H–1e–εt

∫ t

0
eγ s∥∥σ̃ (s)

∥
∥2

L0
Q

ds ≤ G6.

So, we obtain

F6(t) ≤ G6e–μt . (14)

From (H6) we get

F7(t) ≤ 6N2

1 – k

( +∞∑

k=1

qk

)2

e–2γ (t–tk )
E

∥
∥x

(
t–
k
)∥∥2

≤ 6N2

1 – k

( +∞∑

k=1

qk

)( +∞∑

k=1

qk

)

e–γ (t–tk )
E

∥∥x
(
t–
k
)∥∥2. (15)

By Lemma 2.6 and inequalities (9)–(15) it follows that

E
∥
∥x(t)

∥
∥2 ≤ ρe–μt for t ∈ [–r, 0]

and, for each t ≥ 0,

E
∥
∥x(t)

∥
∥2 ≤ ρe–μt + k sup

–r≤θ≤0
E

∥
∥x(t + θ )

∥
∥2 + k̂

∫ t

0
e–μ(t–s) sup

–r≤θ≤0
E

∥
∥x(t + θ )

∥
∥2 ds
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+
+∞∑

k=1

ωke–μ(t–tk )
E

∥
∥x

(
t–
k
)∥∥2,

where

k̂ =
6γ 1–2α22(1–α)N2

1–αN2�(2α – 1)R1

1 – k
+

6N2(R2 + R3)
γ (1 – k)

and

ρ = max

( 6∑

j=1

Gj, sup
–r≤θ≤0

E
∥
∥ϕ(θ )

∥
∥2

)

.

The mild solution of system (1)–(3) is exponentially stable in mean square moment, since
k + k̂

μ
+

∑+∞
k=1 ωk < 1 and by Lemma 2.6 there exist two positive constants G and θ such

that E‖x(t)‖2 ≤ Ge–θ t for any t ≥ –r, where θ > 0 is the unique solution to the equation
k + k̂

(μ–θ ) eθr +
∑+∞

k=1 ωk = 1 and G = max{ρ, ρ(μ–θ )
k̂eθr } > 0. This completes the proof of the

theorem. �

Remark 3.5 If the impulsive moments �x(tk) = Ik(·) = 0, k = 1, 2, . . . , then system (1)–(3)
reduces to the following form:

d
[
x(t) – p(t, xt)

]
=

[
Ax(t) + f (t, xt) +

∫ t

0
h(t, s, xs) ds

]
dt

+ σ̃ (t) dBH
Q (t), t ∈ [0, a], (16)

x0(t) = ϕ(t) ∈ C, –r ≤ t ≤ 0, (17)

where the operators A, p, f , h, and σ̃ are defined as before. Here C = C([–r, 0], X) is en-
dowed with the norm ‖ϕ‖C = supθ∈[–r,0] ‖ϕ(θ )‖.

We can easily deduce the following corollary by utilizing the same technique as in The-
orem 3.4.

Corollary 3.6 Assume that conditions (H7)–(H11) hold and

5{[γ 1–2α22(1–α)N2
1–αN2�(2α – 1)R1/γ ] + [N2(R2 + R3)/γ 2]}

(1 – k)2 < 1. (18)

Then the mild solution of system (16)–(17) is exponentially stable in mean square moment.

4 Example
In this section, we consider an application of the theory developed in the previous section.
Let X = Y = L2[0,π ] and define the operator A : X → X by A = ∂2

∂τ2 with domain D(A) =
H1

0 (0,π ) ∩ H2(0,π ). It is well known that there exists a complete orthonormal set {en}n∈N
of eigenvectors of A with en(x) =

√
2
π

sin nx, n = 1, 2, . . . . Then

Ax = –
+∞∑

n=1

n2〈x, en〉en, x ∈ D(A).
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It is easy to see that A is the infinitesimal generator of an analytic semigroup T(t), t ≥ 0,
in X and

T(t)x =
+∞∑

n=1

exp
(
–n2t

)〈x, en〉en, x ∈ X.

Furthermore, we know that ‖T(t)‖ ≤ exp(–π2t), t ≥ 0. The bounded linear operator (–A) 3
4

is defined by

(–A)
3
4 x =

+∞∑

n=1

n
3
2 〈x, en〉Xen

with domain

D
(
(–A)

3
4
)

= X 3
4

=

{

x ∈ X,
+∞∑

n=1

n
3
2 〈x, en〉Xen ∈ X

}

.

Consider the impulsive neutral stochastic partial integrodifferential equations of the form

d
[
w(t, τ ) – β1

(
t, w(t – ζ , τ )

)]

=
[

∂2

∂τ 2 w(t, τ ) + β2
(
t, w(t – ζ , τ )

)
+

∫ s

0
β3

(
t, s, w(s – ζ , τ )

)
ds

]
dt + σ̃ (t) dBH

Q (t), (19)

0 ≤ τ ≤ π , t �= tk , t ∈ [0, a], subject to the initial conditions

w(t, 0) = w(t,π ) = 0, 0 ≤ t ≤ a,

�w(tk , ·)(τ ) =
β4

k2 z
(
t–
k , τ

)
, t = tk , k = 1, 2, . . . ,

w(t, τ ) = ϕ(t, τ ) ∈PC
(
[–r, 0], L2[0,π ]

)
, –r ≤ t ≤ 0,

where βj > 0, j = 1, 2, 3, 4, and σ̃ : R+ → R is a continuous function satisfying assumption
(H11).

Let

p(t, wt)(τ ) = β1
(
t, w(t – ζ , τ )

)
,

f (t, wt)(τ ) = β2
(
t, w(t – ζ , τ )

)
,

∫ s

0
h(t, s, wt)(τ ) ds =

∫ s

0
β3

(
t, s, w(s – ζ , τ )

)
ds,

Ik
(
z
(
t–
k
))

=
β4

k2 z
(
t–
k
)

(k = 1, 2, . . .).

To define the operator Q : X → X, we can choose a sequence {λn}n≥1 ⊂ R
+ and set Qen =

λnen. Also, assume that tr(Q) =
∑∞

n=1(λn) 1
2 < ∞. Now we define the process BH

Q (t) by

BH
Q (t) =

∞∑

n=1

(λn)
1
2 αH

n (t)en,
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where H ∈ ( 1
2 , 1), and {αH

n }n∈N is a sequence of independent two-sided one-dimensional
fBms.

It is obvious that all the assumptions are satisfied with

γ = π2, N = 1, r = 1,

R1 = β1
∥∥(–A)

3
4
∥∥, R2 = β2, R3 = β3, qk =

β4

k2 (k = 1, 2, . . .).

By the definition of (–A)– 3
4 (see [37]) it is easy to conclude that

∥∥(–A)– 3
4
∥∥ ≤ 1

�( 3
4 )

∫ +∞

0
u– 1

4
∥∥T(u)

∥∥du ≤ 1
π

3
2

and ‖(–A) 3
4 ‖ = 1. Consequently, all the assumptions of Theorem 3.2 are satisfied, and if

β2
4π4

9
<

(
1 –

β1

π
3
2

)2

,

then we easily get that system (19) has a unique mild solution. Here L1 = β1‖(–A) 3
4 ‖. Fur-

thermore, by Theorem 3.4 we may infer that if

6
{[√

2β1�

(
1
2

)
/π3

]
+

[
(β2 + β3)/π4] +

[
β2

4π4/36
]
}

<
(

1 –
β1/2

1

π
3
2

)2

, (20)

then the mild solution of the considered system (19) is exponentially stable in mean square
sense.

5 Conclusion
In this paper, we study a general class of impulsive neutral stochastic integrodifferen-
tial equations driven by an fBm. We give sufficient conditions ensuring the existence and
uniqueness of a mild solution to the considered system by using the fixed point approach.
Further, exponential stability of mild solutions to impulsive neutral stochastic integrod-
ifferential equations is examined based on the impulsive integral inequality. Finally, we
illustrate the efficiency of the derived criteria by an example.
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