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Abstract
A logistic model with impulsive Holling type-II harvesting is proposed and
investigated in this paper. Here, the species is harvested at fixed moments. By using
the techniques derived from the theory of impulsive differential equations, sufficient
conditions for both permanence and extinction of the system are established,
respectively. Sufficient conditions which ensure the existence, uniqueness, and global
attractivity of a positive periodic solution of the system are obtained. Our study shows
that impulsive controls play an important role in maintaining the sustainable
development of the ecological system. Compared with the linear impulsive capture
or continuous nonlinear-type capture, our study shows that the nonlinear impulsive
capture could lead to more complicated dynamic behaviors. Numeric simulations are
carried out to show the feasibility of the main results. The results obtained here
maybe useful to the practical biological economics management.
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1 Introduction
During the last decade, many scholars [1–39] proposed various single or multiple species
modeling. Such topics as the existence and stability of the equilibrium, the existence,
uniqueness, and stability of the periodic solution or almost periodic solution, the persis-
tence and extinction of the system have been extensively investigated, and many interest-
ing results have been obtained. It brings to our attention that all the models are based on
a single species model, while a logistic model is one of the basic single species models, it is
the cornerstone of the mathematics biology. On the other hand, the harvest of populations
is one of the human purposes to achieve the economic interests. Already, there are many
scholars investigating the dynamic behaviors of the population models incorporating the
harvesting, see [3, 4, 7, 28–31] and the references cited therein.

The classical single species logistic equation is as follows:

ẋ(t) = x(t)
(
r – ax(t)

)
, (1.1)

where x(t) is the density of the species at time t, r represents the intrinsic growth rate.
a = r

K is usually referred to as the density dependent rate, the positive constant K is the
environmental saturation level or carrying capacity. Traditionally, one may assume that
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the harvest rate h(t) is a constant h or under the catch-per-unit effort hypothesis Ex(t);
consequently, the logistic equation with harvesting takes the form [3, 4]:

ẋ(t) = x(t)
(
r – ax(t)

)
– h (1.2)

or

ẋ(t) = x(t)
(
r – ax(t)

)
– Ex(t),

where E denotes the harvesting effort. Two types of solution behavior may be seen in sys-
tem (1.2). If h < r2/(4a), the harvesting is subcritical and solutions either tend to a positive
limiting value as t → ∞, or, depending on the value of initial value, may tend to zero in
finite time. If h > r2/(4a), the harvesting is supercritical and solutions always tend to zero
in finite time.

A more realistic harvesting term would be small for small value of x and would incorpo-
rate a saturation effect for enough large x; one option is to replace h in (1.2) with a Holling
type-II functional response.

h(t) =
ηEx(t)

μE + νx(t)
, (1.3)

where η, E, μ, ν are positive parameters that are used for the catchability coefficient of
the species, the effort devoted to their nonselective harvesting, each proportional to the
radio of the stock-level to the catch-rate at higher levels of effort and each proportional
to the radio of the effort level to the catch-rate at higher stock-levels. One could refer to
[5–7] for more detailed information on term (1.3). As E → ∞, the limiting value of h(t)
becomes a function of x only and h(t) → (η/μ)x. When x → ∞, h(t) → (η/ν)E. One can
easily observe that the catch-rate function in (1.3) embodies saturation efforts with respect
to the effort level as well as stocking abundance. Term (1.3) can be translated into another
form as follows:

h(t) =
γ x(t)

α + βx(t)
,

where α = μ, β = ν/E, and γ = η are positive parameters that are used for the species satu-
ration constant, another saturation constant, and the effects of harvest rate, respectively.
Obviously, if β = 0, then the above term degenerates to linear capture [4].

It is often the case that harvesting occurs at fixed moments every year, which brings
about short-term rapid changes for the densities of the species. Impulsive differen-
tial systems are suitable for the mathematical simulation of this evolutionary process
([3–14, 28–39]). In this paper, we propose the following autonomous logistic model with
regular harvest pulse:

ẋ(t) = x(t)
(
r – ax(t)

)
, t �= tk ,

x
(
t+
k
)

=
(

1 –
γ

α + βx(tk)

)
x(tk), t = tk ,

(1.4)
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together with the initial condition

x(0) > 0.

It is assumed that the impulsive points satisfy 0 = t0 < t1 = t0 + θ < · · · < tk = t0 + kθ < · · ·
with limt→+∞ tk = +∞, that is, the harvests are regular. And it is necessary to satisfy the
relationship 0 ≤ γ < min{α, 1} for biological reality (x(t+

k ) > 0, k = 1, 2, . . .), i.e., the harvest-
ing is proportional to the current density of species x. There are some particular forms
on system (1.4). System (1.4) with β = γ = 0, α �= 0 is reduced to the logistic equation 1.1.
System (1.4) with α = 1, β = 0 is reduced to the linear impulsive logistic equation [2]:

ẋ(t) = x(t)
(
r – ax(t)

)
, t �= tk ,

x
(
t+
k
)

= (1 – γ )x(tk), t = tk .
(1.5)

In [2], by applying the comparison theorem and constructing some suitable Lyapunov
functionals, the authors discussed the permanence and global attractivity of system (1.5),
but they did not discuss the extinction property of system (1.5). System (1.4) with θ = 0 is
reduced to the logistic equation with Holling type-II harvesting [7]:

ẋ(t) = x(t)
(
r – ax(t)

)
–

γ x(t)
α + βx(t)

. (1.6)

For system (1.4), an interesting question is the following: Are the dynamical behaviors
of system (1.4) similar to or quite different from those of system (1.5) and system (1.6)?
It is generally known that the ecological system will be destroyed with the high capturing
intensity or high frequency capture. In order to ensure the economic benefits and sustain-
able population development, should we control the level of capture strength and cycle?

The paper is organized as follows. In Sect. 2, some sufficient conditions for the existence
and global attractivity of system (1.4) are derived; also, under some conditions, the system
may admit a unique positive periodic solution. In Sect. 3, we investigate the extinction
property of system (1.4). In Sect. 4, several numeric simulations are carried out to illustrate
the feasibility of the main results. We end this paper with a brief discussion.

2 Permanence and global attractivity
Theorem 2.1 Assume that

rθ – ln ξ > 0 (2.1)

holds, then for any positive solution x(t) of system (1.4),

m ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M,

where

M =
r
a

, m =
rθ – ln ξ

aθξ
, ξ =

α + βM
α – γ

.
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Proof Let y(t) = 1/x(t), from γ ≥ 0 we have

ẏ(t) = –ry(t) + a, t �= tk ,

y
(
t+
k
)

=
αy(tk) + β

αy(tk) + β – γ y(tk)
y(tk)

≥ y(tk), t = tk .

(2.2)

Applying the comparison theorem and from [8] page 19, for any T > 0, we obtain

y(t) ≥ e–r(t–T)y(T) + a
∫ t

T
e–r(t–s) ds

= e–r(t–T)y(T) +
a
r
(
1 – e–r(t–T)),

which implies that

lim inf
t→+∞ y(t) ≥ a

r
.

Consequently,

lim sup
t→+∞

x(t) ≤ r
a

def= M. (2.3)

From (2.1), there exists enough small positive ε1 > 0 such that

ζε1 e–rθ < 1, (2.4)

where ζε1 = α+β(M+ε1)
α–γ

≥ 1. For this ε1, from (2.3), there exists enough large T1 > 0 such that

1/y(t) = x(t) < M + ε1 for t ≥ T1.

Furthermore, from system (1.4), β ≥ 0, and the above inequality, it is easy to obtain

ẏ(t) = –ry(t) + a, t �= tk ,

y
(
t+
k
)

=
αy(tk) + β

αy(tk) + β – γ y(tk)
y(tk)

≤ α + β/y(tk)
α – γ

y(tk)

≤ α + β(M + ε1)
α – γ

y(tk)

= ζε1 y(tk), t = tk .

(2.5)



Lin et al. Advances in Difference Equations  (2018) 2018:112 Page 5 of 22

Note that [Y ] represents the maximum integer not greater than the real number Y . Ac-
cording to the comparison theorem and [8], for any T > 0, we obtain

y(t) ≤
( ∏

T≤tk <t

ζε1

)
e–r(t–T)y(T) + a

∫ t

T

( ∏

s≤tk <t
ζε1

)
e–r(t–s) ds

≤ ζ
[ t–T

θ
]

ε1 e–r(t–T)y(T) +
aθζε1

rθ – ln ζε1

(
1 – ζ

[ t–T
θ

]
ε1 e–r(t–T)). (2.6)

In particular, if t = T + kθ , then from (2.6) it follows that

y(T + kθ ) ≤ (
ζε1 e–rθ)ky(T) +

aθζε1

rθ – ln ζε1

(
1 –

(
ζε1 e–rθ )k) for k ∈ N .

From this inequality and (2.4), and letting ε1 → 0, we obtain

lim sup
k→+∞

y(T + kθ ) ≤ aθξ

rθ – ln ξ
,

where ξ = α+βM
α–γ

.
For T + kθ ≤ t < T + (k + 1)θ , we have

ζ k
ε1 ≤ ζ

[ t–T
θ

]
ε1 ≤ ζ k+1

ε1 , e–r(k+1)θ ≤ e–r(t–T) ≤ e–rkθ .

From inequality (2.6) we obtain

y(t) ≤ ζε1

(
ζε1 e–rθ )ky(T) +

aθζε1

rθ – ln ζε1

(
1 – e–rθ (ζε1 e–rθ )k)

for k ∈ N , T + kθ ≤ t < T + (k + 1)θ .

Clearly, let ε1 → 0, we have

lim sup
k→+∞

y(t) ≤ aθξ

rθ – ln ξ
for T + kθ ≤ t < T + (k + 1)θ .

Therefore,

lim inf
t→+∞ x(t) ≥ rθ – ln ξ

aθξ

def= m.

This proof of Theorem 2.1 is completed. �

Remark 2.1 When β = γ = 0, system (1.4) is reduced to the logistic equation (1.1). In view
of r > 0, we have

ξ =
α + βM
α – γ

= 1

and

rθ – ln ξ = rθ > 0.
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It follows from Theorem 2.1 that

r/a ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ r/a,

that is limt→+∞ x(t) = r/a. Therefore, our result generalizes the simple dynamics of the
traditional logistic equation.

Remark 2.2 When α = 1 and β = 0, system (1.4) is reduced to the linear impulsive logistic
equation (1.5). In view of r > 0, 0 ≤ γ < 1, one obtains

ξ =
α + βM
α – γ

=
1

1 – γ
.

Moreover, if the inequality

rθ – ln ξ = rθ + ln(1 – γ ) > 0

holds, it follows from Theorem 2.1 that

(rθ + ln(1 – γ ))(1 – γ )
aθ

≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ r/a,

which generalizes the simple dynamics of the linear impulsive logistic equation.

Theorem 2.2 If condition (2.1) holds, then system (1.4) has at least one θ -periodic solution
x(t), for which x(0) > 0.

Proof Owing to r, a and α, β , γ are positive constants, the impulsive system (1.4) is peri-
odic.

Suppose that there is a positive θ -periodic solution x(t) of (1.4) with x(0+) = x0 > 0. For
t ∈ (0, θ ], we have

x(t) =
x0

e(t) + b(t)x0
,

where

e(t) = e–rt , b(t) =
1 – e–rt

r/a
.

Then

x(θ ) =
x0

e(θ ) + b(θ )x0
,

x0 = x(θ ) –
γ x(θ )

α + βx(θ )
.

From the condition x(θ+) = x0, we obtain

x(θ ) =
x(θ+)

e(θ ) + b(θ )x(θ+)
,
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consequently

x
(
θ+)

=
x(θ )e(θ )

1 – b(θ )x(θ )
.

Let

g
(
x(θ )

) ≡ x
(
θ+)

– x(θ )

=
x(θ )e(θ )

1 – b(θ )x(θ )
– x(θ )

=
x(θ )(e(θ ) – 1 + b(θ )x(θ ))

1 – b(θ )x(θ )

=
–γ x(θ )

α + βx(θ )
. (2.7)

Since g(x) ≥ –x for x ∈ [0, 1/b(θ )) and –γ x
α+βx ≥ –x for x ≥ 0, equation (2.7) has a positive

solution only in the interval x ∈ [0, 1/b(θ )). Suppose that equation (2.7) has a positive so-
lution x(θ ) and denote by π (t) the corresponding positive θ -periodic solution of equation
(1.4) for which

π
(
0+)

= x0 =
e(θ )x(θ )

1 – b(θ )x(θ )
, π (θ ) = x(θ ),

and

π (t) =
x0

e(t) + b(t)x0
for t ∈ (0, θ ].

From

x0 = x(θ ) –
γ x(θ )

α + βx(θ )
,

we have

x(θ ) =
x0

e(θ ) + b(θ )x0

=
x(θ ) – γ x(θ )

α+βx(θ )

e(θ ) + b(θ )(x(θ ) – γ x(θ )
α+βx(θ ) )

,

that is,

βb(θ )x2(θ ) +
(
βe(θ ) + αb(θ ) – γ b(θ ) – β

)
x(θ ) +

(
αe(θ ) – α + γ

)
= 0. (2.8)

We declare that under assumption (2.1), equation (2.8) admits a positive solution.
When β = 0, equation (2.8) has a positive solution

x(θ ) =
α(1 – e(θ )) – γ

(α – γ )b(θ )
.
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When β �= 0, because of

ln
α

α – γ
≤ ln

α + βM
α – γ

,

from (2.1), we have

rθ – ln
α

α – γ
≥ rθ – ln ξ > 0.

It is easy to see that

γ < α
(
1 – e(θ )

)
,

γ – α + αe(θ ) < 0,

hence,

� > B2,

where B = βe(θ ) + αb(θ ) – γ b(θ ) – β , � = B2 – 4βb(θ )(αe(θ ) – α + γ ).
That is,

–B +
√

� > 0.

Then equation (2.8) has a positive solution

x(θ ) =
–B +

√
�

2βb(θ )
.

Therefore, when β = 0, set

x0 =
α – αe(θ ) – γ

αb(θ )
;

when β �= 0, set

x0 =
(–B +

√
�)e(θ )

2βb(θ ) – b(θ )(–B +
√

�)
.

Consequently, system (1.4) has at least one positive θ -period solution

π (t) =
x0

e(t) + b(t)x0

for which x(0) > 0.
The proof of Theorem 2.2 is completed. �

Theorem 2.3 If condition (2.1) holds and assume that

0e–amθ < 1, (2.9)
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where

0 =
α + β(m + 2M) – γ

α + βm – γ
,

then for any two positive solutions x(t) and x∗(t) of system (1.4), limt→+∞(x(t) – x∗(t)) = 0.

Proof From (2.9) and the expression of 0, we could choose ε > 0 small enough. Without
loss of generality, we may assume that ε < 1

2 m such that

εe–a(m–ε)θ < 1, (2.10)

where ε = α+β(m+2M+ε)–γ

α+β(m–ε)–γ
≥ 1. For this ε, from Theorem 2.1, there exists enough large

T > 0 such that

m – ε < x(t) < M + ε, m – ε < x∗(t) < M + ε for t ≥ T .

Now, we will prove that x(t) is globally attractive.
Using the mean value theorem, we can obtain

1
M + ε

∣
∣x(t) – x∗(t)

∣
∣ <

∣
∣ ln x(t) – ln x∗(t)

∣
∣ <

1
m – ε

∣
∣x(t) – x∗(t)

∣
∣.

Let

V (t) =
∣∣ ln x(t) – ln x∗(t)

∣∣,

then

V̇ (t) = sgn
(
x(t) – x∗(t)

)(
r – ax(t) – r + ax∗(t)

)

≤ –a
∣
∣x(t) – x∗(t)

∣
∣

≤ –a(m – ε)
∣
∣ ln x(t) – ln x∗(t)

∣
∣

= –a(m – ε)V (t) for t ≥ T , t �= tk .

Using the mean value theorem, we can easily check that

V
(
t+
k
)

=
∣∣ln x

(
t+
k
)

– ln x∗(t+
k
)∣∣

=
∣∣
∣∣ln

[(
1 –

γ

α + βx(tk)

)
x(tk)

]
– ln

[(
1 –

γ

α + βx∗(tk)

)
x∗(tk)

]∣∣
∣∣

=
∣
∣∣
∣ln

α + βx(tk) – γ

α + βx(tk)
– ln

α + βx∗(tk) – γ

α + βx∗(tk)
+ ln x(tk) – ln x∗(tk)

∣
∣∣
∣

≤ ∣∣ln x(tk) – ln x∗(tk)
∣∣ +

∣
∣∣
∣ln

α + βx(tk) – γ

α + βx(tk)
– ln

α + βx∗(tk) – γ

α + βx∗(tk)

∣
∣∣
∣

=
∣∣ln x(tk) – ln x∗(tk)

∣∣ +
∣∣ ln

(
α + βx(tk) – γ

)
– ln

(
α + βx(tk)

)

– ln
(
α + βx∗(tk) – γ

)
+ ln

(
α + βx∗(tk)

)∣∣
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≤ ∣∣ln x(tk) – ln x∗(tk)
∣∣ +

∣∣ln
(
α + βx(tk) – γ

)
– ln

(
α + βx∗(tk) – γ

)∣∣

+
∣∣ln

(
α + βx(tk)

)
– ln

(
α + βx∗(tk)

)∣∣

≤ ∣
∣ln x(tk) – ln x∗(tk)

∣
∣ +

β

α + β(m – ε) – γ

∣
∣x(tk) – x

(
t∗
k
)∣∣

+
β

α + β(m – ε)
∣∣x(tk) – x

(
t∗
k
)∣∣

≤ ∣∣ln x(tk) – ln x∗(tk)
∣∣ +

β(M + ε)
α + β(m – ε) – γ

∣∣ln x(tk) – ln x
(
t∗
k
)∣∣

+
β(M + ε)

α + β(m – ε)
∣
∣ln x(tk) – ln x

(
t∗
k
)∣∣

≤
(

1 +
2β(M + ε)

α + β(m – ε) – γ

)
V (tk)

=
α + β(m + 2M + ε) – γ

α + β(m – ε) – γ
V (tk)

= εV (tk) for t = tk .

According to the impulsive differential inequality in [8], for any T > 0, it follows that

V (t) ≤
( ∏

T≤tk <t

ε

)
e–a(m–ε)(t–T)V (T)

= 
[ t–T

θ
]

ε e–a(m–ε)(t–T)V (T) for t ≥ T . (2.11)

In particular, if t = T + kθ , then from (2.11) it follows that

V (T + kθ ) ≤ (
εe–a(m–ε)θ)kV (T) for k ∈ N .

From this inequality and (2.10), we obtain

V (T + kθ ) → 0 as k → +∞.

For T + kθ ≤ t < T + (k + 1)θ , we have


[ t–T

θ
]

ε ≤ k+1
ε , e–a(m–ε)(t–T) ≤ e–a(m–ε)kθ .

From inequality (2.11) we obtain

V (t) ≤ ε

(
εe–a(m–ε)θ)kV (T), for k ∈ N , T + kθ ≤ t < T + (k + 1)θ .

Clearly, from (2.10) we have

V (t) → 0 as k → +∞, for T + kθ ≤ t < T + (k + 1)θ .

Therefore,

V (t) → 0 as t → +∞.
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That shows

lim
t→+∞

(
x(t) – x∗(t)

)
= 0.

This proof of Theorem 2.3 is completed. �

As a direct corollary of Theorems 2.2 and 2.3, we have the following.

Theorem 2.4 If conditions (2.1) and (2.9) hold, then system (1.4) has a unique θ -periodic
solution x(t), which is globally attractive.

3 Extinction
In this section, we give the following result which indicates that species x(t) will be driven
to extinction.

Theorem 3.1 If the assumption

rθ – ln δ < 0 (3.1)

holds, then the species x will be driven to extinction, that is, for any positive solution x(t) of
system (1.4), x(t) → 0 as t → +∞.

Here,

δ =
α + βM

α + βM – γ
.

Proof Let y(t) = 1/x(t), from α – γ > 0, we have

ẏ(t) = –ry(t) + a, t �= tk ,

y
(
t+
k
)

=
α + β/y(tk)

α + β/y(tk) – γ
y(tk)

≥ α + β(M + ε)
α + β(M + ε) – γ

y(tk), t = tk .

Let ε → 0, we have

ẏ(t) = –ry(t) + a, t �= tk ,

y
(
t+
k
) ≥ δy(tk), t = tk ,

(3.2)

where δ = α+βM
α+βM–γ

> 1.
Condition (3.1) is equivalent to

δ
1
θ

er > 1.
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From (3.2), applying the comparison theorem and the theory of impulsive differential in-
equality [8], we get

y(t) ≥
( ∏

0≤tk <t

δ

)
e–rty(0) + a

∫ t

0

( ∏

s≤tk <t
δ

)
e–r(t–s) ds

≥ δ
t
θ

–1e–rty(0) + a
∫ t

0
δ

t–s
θ

–1e–r(t–s) ds

= δ–1
(

δ
1
θ

er

)t

y(0) +
aθ

δ(ln δ – rθ )

[(
δ

1
θ

er

)t

– 1
]

→ +∞ as t → +∞.

Consequently,

x(t) → 0 as t → +∞.

This proof of Theorem 3.1 is completed. �

As a direct corollary of Theorem 3.1, we have the following.

Corollary 3.1 Assume β = γ = 0, in this case, system (1.4) degenerates to system (1.1).
Assume further that r < 0, then any positive solution x(t) of system (1.1)

x(t) → 0 as t → +∞.

That is, the species x will be driven to extinction when the intrinsic growth rate is negative.

Corollary 3.2 Assume that α = 1 and β = 0, in this case, system (1.4) is reduced to the
linear impulsive logistic equation (1.5). Assume further that

rθ + ln(1 – γ ) < 0,

then the species x will be driven to extinction in system (1.5).

Remark 3.1 Noting that the authors in [2] did not investigate the extinction property of
system (1.5), Corollary 3.2 supplements and complements the main results of [2].

4 Numeric simulations
Example 4.1 Consider system (1.4) with the following coefficients: r = 3, a = 2, θ = 1.

When α = 1 and β = γ = 0, system (1.4) is reduced to the traditional logistic equation
(1.1). It follows from Remark 2.1 that

lim
t→+∞ x(t) = r/a = 3/2 = 1.5.

When α = 1, β = 0, and γ = 0.5, system (1.4) is reduced to the linear impulsive logistic
equation (1.5). One obtains that

ξ =
α + βM
α – γ

=
1

1 – γ
= 2,

rθ – ln ξ = 3 × 1 – ln 2 ≈ 2.3069 > 0.
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It follows from Remark 2.2 that

m =
(rθ + ln(1 – γ ))(1 – γ )

aθ

=
(3 × 1 + ln(1 – 0.5))(1 – 0.5)

2 × 1
≈ 0.5767

≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t)

≤ M =
r
a

= 1.5.

Moreover,

0 =
α + β(m + 2M) – γ

α + βm – γ
=

1 – 0.5
1 – 0.5

= 1,

0e–amθ ≈ 1 × e–2×0.5767×1 ≈ 0.3156 < 1.

It follows from Theorem 2.4 that system (1.4) has a unique globally attractive positive
1-periodic solution.

When α = 1, β = 0.2, and γ = 0.5, it is easy to obtain

ξ =
α + βM
α – γ

=
1 + 0.2 × 1.5

1 – 0.5
= 2.6,

rθ – ln ξ = 3 × 1 – ln 2.6 ≈ 2.0445 > 0.

From Theorem 2.1, one has

m =
rθ – ln ξ

aθξ

=
3 × 1 – ln 2.6
2 × 1 × 2.6

≈ 0.3932

≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t)

≤ M =
r
a

= 1.5,

and

0 =
α + β(m + 2M) – γ

α + βm – γ
≈ 1 + 0.2 × (0.3932 + 2 × 1.5) – 0.5

1 + 0.2 × 0.3932 – 0.5
≈ 2.0369,

0e–amθ ≈ 2.0369 × e–2×0.3932×1 ≈ 0.9278 < 1.

From Theorem 2.4, then system (1.4) has a unique globally attractive positive 1-periodic
solution. Numeric simulation (Fig. 1) supports these findings.

Example 4.2 Consider system (1.4) with the following coefficients: r = 3, a = 2, θ = 0.05.
When α = 1 and β = γ = 0 in system (1.4) (i.e., system (1.1)), it follows from Remark 2.1

that

lim
t→+∞ x(t) = 1.5.
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Figure 1 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.4, x(0) = 0.8,
x(0) = 1.8, respectively

When α = 1, γ = 0.5, and β = 0 in system (1.4) (i.e., system (1.5)), one has

rθ + ln(1 – γ ) ≈ –0.5431 < 0.

The condition of Corollary 3.2 holds. It follows from Corollary 3.2 that the species of
system (1.5) will be driven to extinction.

When α = 1, β = 1, and γ = 0.5, by simple computation, we have

δ =
α + βM

α + βM – γ
= 1.25,

and so

rθ – ln δ ≈ –0.0731 < 0,

that is, the condition of Theorem 3.1 holds. It follows from Theorem 3.1 that the species
of system (1.4) will be driven to extinction. Numeric simulation (Fig. 2) supports these
findings.

Remark 4.1 For fixed values of r, a and α, β , γ (i.e., the population nature coefficients and
capture intensity are fixed), if the harvesting cycle

θ <
1
r

ln
α

α – γ
,

then, from Theorem 3.1, the species x will be driven to extinction in system (1.4), that is,
too intensive harvesting could lead to the extinction of the species.

If the harvesting cycle satisfies

θ >
1
r

ln
αa + βr
a(α – γ )

,
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Figure 2 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.4, x(0) = 0.8,
x(0) = 1.8, respectively

then, from Theorem 2.1, system (1.4) is permanent. That is, the period of harvesting is
one of the essential factors leading to the extinction or permanence of the species.

All the analytical calculations are performed in detail in Appendix A.1.

Example 4.3 Take r = 3, a = 2, α = 1, β = 0.2, γ = 0.5.
Through simple computation, one can see that when θ = 0.05 in system (1.4),

δ = 1.625,

rθ – ln δ ≈ –0.3355 < 0,

then from Theorem 3.1, the species x will be driven to extinction.
Similarly, if θ = 0.02 and θ = 0.01, the species x will be driven to extinction. Numeric

simulation (Fig. 3) supports this finding.
When θ = 1 in system (1.4), one has

M = 1.5, ξ = 2.6, rθ – ln ξ ≈ 2.0455 > 0,

then from Theorem 2.1,

m ≈ 0.3932,

0.3932 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ 1.5.

Similarly, if θ = 1.3 and θ = 2, system (1.4) is permanent. Numeric simulation (Fig. 4)
supports this finding.

When θ = 0, from [7], we can obtain that system (1.4) has a globally stable positive equi-
librium. Numeric simulation (Fig. 5) supports this finding.
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Figure 3 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.2, x(0) = 0.4,
x(0) = 0.6, respectively

Figure 4 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.6, x(0) = 1.2,
x(0) = 1.6, respectively

Figure 3, Fig. 4, and Fig. 5 exhibit the effect of harvesting cycle θ . One could easily see
that if θ is large enough (θ > 1

r ln αa+βr
a(α–γ ) ), then (2.1) holds; and consequently, species x is

permanent. With the increase in θ , the density of species x is increasing accordingly. If θ is
small enough such that θ < 1

r ln α
α–γ

, then (3.1) holds, and the species will be driven to ex-
tinction. That is, the harvesting cycle can change the persistence and extinction property
of the system.
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Figure 5 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.6, x(0) = 1.2,
x(0) = 1.8, respectively

Remark 4.2 For fixed values of r, a and α, β , θ (i.e., the population nature coefficients and
harvesting cycle are fixed), if the capture intensity

γ > α –
α

erθ ,

then, from Theorem 3.1, the species x will be driven to extinction in system (1.4), that is,
this harvesting cycle cannot be sustained.

If the capture intensity

γ < α –
αa + βr

aerθ ,

then, from Theorem 2.1, system (1.4) is permanent, that is, this harvesting cycle can be
sustained.

All the analytical calculations are performed in detail in Appendix A.2.

Example 4.4 Take r = 3, a = 2, α = 1, β = 0.2.
Through simple computation, one can see that when γ = 0.5, θ = 1 in system (1.4), then

from Theorem 2.1,

0.3932 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ 1.5.

Similarly, if γ = 0.2 and γ = 0.1, system (1.4) is permanent. Numeric simulation (Fig. 6)
supports this finding.

When γ = 0.5, θ = 0.05 in system (1.4),

δ = 1.625, rθ – ln δ ≈ –0.3355 < 0,

then, from Theorem 3.1, the species x will be driven to extinction.
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Figure 6 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 1, x(0) = 1.3,
x(0) = 1.6, respectively

Figure 7 Dynamic behaviors of the species x(t) in system (1.4) with the initial conditions x(0) = 0.2, x(0) = 0.4,
x(0) = 0.6, respectively

Similarly, if γ = 0.6 and γ = 0.8, the species x will be driven to extinction. Numeric sim-
ulation (Fig. 7) supports this finding.

Numerical simulations (Fig. 6, Fig. 7) show that if γ is small enough (γ < α – αa+βr
aerθ ), such

that (2.1) holds, then the species is permanent. For the fixed θ , as γ gradually decreases, the
density of species x is increasing accordingly. If γ is large enough such that γ > α – α

erθ , then
(3.1) holds, the species will be driven to extinction. From this point, the capture intensity
γ plays a negative effect on the persistence property of the system. Also, for the fixed θ , as
γ is increasing gradually, the time for the species to be extinct becomes shorter.
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5 Discussion
In this paper, a logistic model incorporating nonlinear impulsive Holling type-II harvest-
ing is proposed and studied.

Based on the theoretical analysis and numerical simulations, we show that different pa-
rameter relationships may result in different dynamical behaviors of the system. From Re-
marks 4.1 and 4.2, sufficiently small value of θ and sufficiently large value of γ will cause
the extinction of the species. Furthermore, high capture frequency θ (Fig. 3) and high cap-
ture intensity γ (Fig. 7) accelerate the speed of extinction. If the value of θ is large enough
and the value of γ is small enough, the species is permanent (Figs. 4 and 6). Furthermore,
with the increase in the harvesting cycle and the decrease in the capture intensity, the
density of species x is increasing.

To sum up, to ensure the permanence of the specie, we could increase the period be-
tween the capture or decrease the capture strength.

At the end of the paper, we would like to mention that we assume that θ is a positive
constant in system (1.4), that is, for all k ∈ Z+, tk – tk–1 = θ . What would happen if we
assume that tk is a periodic sequence or an almost periodic sequence? We leave this for
future investigation.

Appendix
The system is defined by the set of (1.4) of the paper.

A.1 Fixed values of r, a and α, β , γ
A.1.1 Case I: Permanence
The condition for permanence of system (1.4) is rθ – ln ξ > 0, where

ξ =
α + βM
α – γ

=
αa + βr
a(α – γ )

> 0.

That is,

rθ – ln
αa + βr
a(α – γ )

> 0,

rθ > ln
αa + βr
a(α – γ )

,

then we have

θ >
1
r

ln
αa + βr
a(α – γ )

.

A.1.2 Case II: Extinction
The condition for extinction of system (1.4) is rθ – ln δ < 0, where

δ =
α + βM

α + βM – γ
.



Lin et al. Advances in Difference Equations  (2018) 2018:112 Page 20 of 22

That is,

rθ – ln
α + βM

α + βM – γ
< 0,

rθ < ln
α + βM

α + βM – γ
,

θ <
1
r

ln
α + βM

α + βM – γ
.

A.2 Fixed values of r, a and α, β , θ
A.2.1 Case I: Permanence
The condition for permanence of system (1.4) is rθ – ln ξ > 0, that is,

rθ > ln
αa + βr
a(α – γ )

,

erθ >
αa + βr
a(α – γ )

,

a(α – γ ) >
αa + βr

erθ ,

α – γ >
αa + βr

aerθ ,

then we have

γ < α –
αa + βr

aerθ .

A.2.2 Case II: Extinction
The condition for extinction of system (1.4) is rθ – ln δ < 0, that is,

rθ – ln
α + βM

α + βM – γ
< 0,

rθ < ln
α + βM

α + βM – γ
,

erθ <
α + βM

α + βM – γ
,

α + βM – γ <
α + βM

erθ ,

then we have

γ > α + βM –
α + βM

erθ

= (α + βM)
(
1 – e–rθ ).
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