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Due to the extensive applications in various fields such as science and engineering, frac-
tional differential equations attractmore andmore attention of experts and scholars. Frac-
tional differential equations may be derived from the particle sticking and trapping phe-
nomena which would be more accurate to describe certain physical phenomena (see, for
examples, [10–12]). In addition, Sobolev-type equation appears in all kinds of physical
problems such as flow of fluid through fissured rocks, thermodynamics, propagation of
long waves of small amplitude (see [13]). Therefore, it is necessary and significative to
study fractional order differential equations of Sobolev-type (see [14, 15] and the refer-
ences therein). The existence and uniqueness of mild solution to Sobolev-type fractional
nonlocal dynamical equations in Banach spaces is shown in [16]. By using the fractional
calculus, semigroup theory and stochastic analysis techniques, [17] considered a class of
nonlinear fractional Sobolev-type stochastic differential equations in a Hilbert space.
On the other hand, the property of long memory is widely used in describing the phe-

nomena in fields like hydrology and geophysics as well as economics and telecommuni-
cations. As an extension of Brownian motion, fractional Brownian motion (fBm) is a self-
similar Gaussian processes which have the properties of long/short-range dependence.
However, in comparison with Brownian motion, the process is neither a semi-martingale
nor a Markov process. For this reason, there are a few publications leaning the systems
which are driven by this type of perturbation. In [18], the authors first studied the frac-
tional Brownian motion in Hilbert spaces and some related stochastic equations. We re-
fer to [19, 20] and the references therein for the details of the theory of stochastic calcu-
lus for fractional Brownian motion. However, it should be emphasized that to the best of
our knowledge the controllability of stochastic functional differential equation of Sobolev-
type driven by fractional Brownian motion has not been studied yet and the aim of this
paper is to do some further research on this problem.
Motivated by these results, in this paper we study the approximate controllability of the

Sobolev-type fractional stochastic differential equations of the form

⎧⎨
⎩

cD�
t [Lx(t)] = Ax(t) + f (t,xt) + Bu(t) + � (t) d

dt BH(t), t ∈ (0,T],

x(t) = �(t), t ∈ (–∞, 0].
(1.1)

In the above system, we assume that
• cD� is the Caputo fractional derivative of order � ∈ (1 – H , 1),
• A, L are two linear bounded operators on a Hilbert space U ,
• B is a bounded linear operator from the Hilbert space V into Hilbert space U ,
• the time history xt(� ) = x(t + � ), t > 0,
• u(·) is a control function on L2([0,T],V ),
• BH = {BH(t), t ∈ [0,T]} is a cylindrical fractional Brownian motion with Hurst index

H ∈ ( 12 , 1),
• the functions f and � are two Borel functions with some suitable conditions.
The paper is organized as follows. In Sect. 2, we represent some preliminaries for

stochastic integral of fractional Brownian motion in Hilbert space. In Sect. 3, we obtain
the approximate controllability results of the Sobolev-type fractional stochastic system
(1.1). In Sect. 4, we give an example as an application.
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2 Preliminaries
In this section, we will introduce some definitions, lemmas and notions which will be used
in the next section.

2.1 Fractional Brownian motion
Let (�,F , (F t), P) be a complete filtered probability space. A fractional Brownian motion
(fBm) �H = {�H (t), t ∈ [0,T]} with Hurst index H ∈ (0, 1) is a mean zero Gaussian process
such that �H (0) = 0 and

E
(
�H (t)�H (s)

)
=
1
2
(
s2H + t2H – |t – s|2H)

for all t, s ≥ 0.When H = 1/2, �H coincides with the standard Brownianmotion, and when
H �= 1

2 it is neither a semi-martingale nor a Markov process. The fBm �H admits the fol-
lowing integral representation:

�H (t) =
∫ t

0
KH (t, s)dW (t)

for all t ≥ 0, where {W (t), 0≤ t ≤ T} is a standard Brownianmotion and the kernel KH (t, s)
satisfies

�KH

�t
(t, s) = 	H

(
H –

1
2

)(
s
t

) 1
2 –H

(t – s)H– 3
2

with a normalizing constant 	H > 0 such that E(�H
1 )2 = 1. Throughout this paper we as-

sume that 1
2 ≤ H < 1 is arbitrary but fixed.

LetH be the completion of the linear space E generated by the indicator functions 1[0,t],
t ∈ [0,T] with respect to the inner product

〈1[0,s], 1[0,t]〉H =
1
2
(
t2H + s2H – |t – s|2H)

.

The mapping

E 
 
 → �H (
) :=
∫ T

0

(s)d�H(s)

is an isometry from E to the Gaussian space generated by �H and it can be extended toH,
which is called the Wiener integral with respect to �H . Consider the operator K∗

H from E
to L2([0,T]) defined by

(
K∗

H

)
(s) =

∫ T

s

(t)

�KH

�t
(t, s)dt

for 
 ∈ E . Then the operator K∗
H is an isometry between E and L2([0,T]) which can be also

extended to the Hilbert spaceH.

Lemma 2.1 For every 
 ∈H, we have

∫ T

0

(s)d�H (s) =

∫ T

0

(
K∗

H

)
(s)dW (s).
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We now recall that the definition of stochastic integral of fBm in the Hilbert space V .
Let {BH (t), 0≤ t ≤ T} be a W -valued F t-adapted fBm defined on (�,F , (F t), P) with the
representation of the form

BH (t) =
∞∑

n=1

√
�n�H

n (t)en, t ≥ 0,

where {en}n∈N is a complete orthogonal basis in W , and
• {�H

n ,n = 1, 2, . . .} is a sequence of independent fBms with the same Hurst index
H ∈ ( 12 , 1),

• {�n;n ∈N} is a bounded sequence of non-negative real numbers such that Qen = �nen,
• Q is a non-negative self-adjoint trace class operator with finite trace

Tr Q =
∞∑

n=1

�n < +∞.

Let 
 : [0,T] → L0
2(W ,U) such that

∞∑
n=1

∥∥K∗
H
(

Q

1
2 en

)∥∥
L02([0,T];U) <∞, (2.1)

where L0
2(W ,U) is the space of all Hilbert–Schmidt operators from Q 1

2 W to U with norm
‖ · ‖L02(W ,U) defined by

‖�‖L02(W ,U) =
∥∥�Q

1
2
∥∥2

H–S = Tr
(
�Q� ∗) = ∞∑

n=1

‖√�n�en‖2.

Definition 2.1 Let 
 : [0,T] → L0
2(W ,U) satisfy (2.1). We define the stochastic integral∫ t

0 
(s)dBH(s) by

∫ t

0

(s)dBH(s) :=

∞∑
n=1

∫ t

0

(s)Q

1
2 en d�H

n

=
∞∑

n=1

∫ t

0

(
K∗

H
(

Q

1
2 en

))
(s)dB(s).

Lemma 2.2 Let 
 : [0,T] → L0
2(W ,U) satisfy (2.1). Then, for any a,b ∈ [0,T] with a < b

we have

E
∥∥∥∥
∫ b

a

(s)dBH(s)

∥∥∥∥
2

≤ cH(2H – 1)(b – a)2H–1
∞∑

n=1

∫ b

a

∥∥
(s)Q
1
2 en

∥∥2 ds.

In addition,
∑∞

n=1 ‖
(s)Q 1
2 en‖ is uniformly convergent in t ∈ [0,T], then we have

E
∥∥∥∥
∫ b

a

(s)dBH(s)

∥∥∥∥
2

≤ cH(2H – 1)(b – a)2H–1
∞∑

n=1

∫ b

a

∥∥
(s)
∥∥2

L02(W ,U) ds.
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2.2 Some assumptions
In this subsection, we recall that some notions of fractional calculus and give some as-
sumptions for the stochastic system (1.1). Recall that the fractional integral I� of order �
for a function f : [0,∞) →R is defined as

I�f (t) =
1


(�)

∫ t

0

f (s)
(t – s)1–� ds, t > 0,� > 0,

provided the right side is point-wise defined on [0,∞), where 
(·) is the gamma function,
which is defined by 
(x) :=

∫ ∞
0 tx–1e–t dt. Moreover, the Caputo derivative cD� of order �

for a function f ∈ Cn([0,∞)) is defined as

cD�
t f (t) =

1

(n – �)

∫ t

0

f (n)(s)
(t – s)1+�–n ds = In–�f (n)(t), t > 0,n – 1 < � < n.

If f is an abstract function with values in U , then the integrals appearing in the above
definitions are taken in Bochner’s sense.
To study the stochastic system (1.1), we need some assumptions. Throughout this paper

we assume that U , V , W is three real separable Hilbert spaces with inner products 〈·, ·〉U ,
〈·, ·〉V and 〈·, ·〉W , respectively. We first give some conditions about the three operators L,
A, B as follows:

(A1) A and L are two linear unbounded operators on U such that D(A) ⊂ U , D(L) ⊂ U ,
and A is closed,

(A2) D(L)⊂ D(A),
(A3) L–1 : U → D(U) is compact,
(A4) B is a bounded linear operator from V into U .

Based on the above assumptions (A1), (A2) and the closed graph theorem, the linear oper-
ator AL–1 : U → U the bounded, and AL–1 generates a semigroup {S(t), t > 0} in U . Denote
M = maxt>0 ‖S(t)‖, ‖L‖ = M1 and ‖L–1‖ = M̃1.
For x ∈ U , we define two families {T L(t), t ≥ 0} and {S L(t), t ≥ 0} of operators by

T L(t)x :=
∫ ∞

0
L–1��(� )S

(
t��

)
x d�

and

S L(t)x := �
∫ ∞

0
L–1���(� )S

(
t��

)
x d� ,

where

� �→ ��(� ) =
1

��

∞∑
n=1

(–� )n–1
1
n!


(n� + 1) sin(n��)

is a probability density function defined on (0,∞).

Lemma 2.3 ([21]) The operators T L(t) and S L(t) have the following properties:
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(i) For every t ≥ 0, T L(t) and S L(t) are linear and bounded, and, moreover, for every
x ∈ U

∥∥T L(t)x
∥∥ ≤ MM̃1‖x‖,

∥∥S L(t)x
∥∥ ≤ MM̃1


(�)
‖x‖.

(2.2)

(ii) T L(t) and S L(t) are strong continuous and compact.

We now introduce the abstract phase space. For a continuous function h : (–∞, 0] →
(0,∞) satisfying

l :=
∫ 0

–∞
h(t)dt < ∞,

we define a phase space B h associated with h as follows (see, Cui and Yan [11]):

B h =
{
� : (–∞, 0]→ U , for any a > 0,

(
E
∥∥�(� )

∥∥2)1/2 is bounded
and measurable functions on [–a, 0] with �(0) = 0

and
∫ 0

–∞
h(s) sup

s≤�≤0

(
E
∥∥�(� )

∥∥2)1/2 ds < ∞
}
.

Clearly, (B h,‖ · ‖Bh ) is a Banach space if B h is endowed with the norm

‖�‖Bh =
∫ 0

–∞
h(s) sup

s≤�≤0

(
E
∥∥�(� )

∥∥2)1/2 ds

for � ∈ B h. According to the definition of the fractional derivative and Caputo derivative,
we rewrite (1.1) as the equivalent integral equation

Lx(t) = �(0) +
1


(�)

∫ t

0
(t – s)�–1

[
Ax(s) + f (s,xs) + Bu(s)

]
ds

+
1


(�)

∫ t

0
(t – s)�–1� (s)dBH(s). (2.3)

We present the definition of mild solutions of (1.1).

Definition 2.2 An U-valued stochastic process {x(t), t ∈ [0,T]} is a mild solution of (1.1)
if the next conditions hold:

(i) x(t) is measurable and F t-adapted, and xt is B h-valued,
(ii) for each t ∈ [0,T], x(t) satisfies the equation

x(t) = T L(t)
(
L�(0)

)
+

∫ t

0
(t – s)�–1S L(t – s)

[
f (s,xs) + Bu(s)

]
ds

+
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s), (2.4)

(iii) x(t) = �(t) on (–∞, 0] such that ‖�‖2Bh
<∞.
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Finally, in order to prove ourmain statement, we need some conditions on the functions
f and � as follows.

(B1) Let the function f : [0,T]× B h → U is continuous and there exist some constants
Nf > 0, kf > 0 such that, for t ∈ [0,T] and � ,� ∈ B h

E
∥∥f (t, � ) – f (t,�)

∥∥2 ≤ Nf ‖� – �‖Bh

for all t ∈ [0,T] and kf = supt∈[0,T] ‖f (t, 0)‖2.
(B2) For the complete orthogonal basis {en}n∈N in W , the function � : [0,T] → L0

2(W ,U)
satisfy

∞∑
n=1

∥∥�Q
1
2 en

∥∥
L2([0,T],U) < ∞

and
∑∞

n=1 ‖� (t)Q 1
2 en‖ is uniformly convergent in t ∈ [0,T]. In addition, there exist

some t0 and � > 0 such that

∫ t0

0

∫ t0

0
r–�s–�∥∥� (r)

∥∥
L02(W ,U)

∥∥� (s)
∥∥

L02(W ,U) dr ds < ∞.

3 Main results
In this section, we will show the approximate controllability of the stochastic system (1.1).
We need to establish the existence of the solution for the stochastic control system and to
show that the corresponding linear part is approximate controllability.

Definition 3.1 The system (1.1) is called approximately controllable on [0,T] if

R(T) = U

withR(t) = {x(t) = x(t,u) : u ∈ L2([0,T],V )}.

Consider the corresponding linear fractional deterministic control system to (1.1)

⎧⎨
⎩

cD�
t [Lx(t)] = Ax(t) + Bu(t), t ∈ [0,T],

x(0) = �(0),
(3.1)

and define the relevant operators


T
0 =

∫ T

0
(T – s)�–1S L(T – s)BB∗S ∗

L (T – s)ds

and

R
(
�,
T

0
)
=

(
�I + 
T

0
)–1,

where B∗ and S ∗
L (T – s) denote the adjoint operators of B and S L(T – s), respectively. It is

clear that the operator 
T
0 is a linear bounded operator. The fact that the linear Sobolev-

type fractional control system (3.1) is approximately controllable on [0,T] is equivalent to
the next hypothesis (see, for example, Mahmudov and Denker [22]):
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(H0) �R(�,
T
0 ) → 0 in the strong operator topology, as � → 0+.

Lemma 3.1 (Guendouzi and Idrissi [23]) For any zT ∈ L2(�;U), there exists 
̂(t) ∈
L2(�,L2(0,T ;L0

2)) such that

zT = EzT +
∫ T

0

̂(s)dBH (s).

For any � > 0 and zT ∈ L2(�;U), we now define the control function u� as follows:

u�(t) = B∗S ∗
L (T – t)

(
�I + 
T

0
)–1[–T L(T)

(
L�(0)

)
+ EzT +

∫ T

0

̂(s)dBH (s)

]

– B∗S ∗
L (T – t)

∫ t

0

(
�I + 
T

s
)–1(T – s)�–1S L(T – s)f (s,xs)ds

– B∗S ∗
L (T – t)

∫ t

0

(
�I + 
T

s
)–1(T – s)�–1S L(T – s)� (s)dBH(s). (3.2)

Theorem 3.1 (Pachpatte [24]) Let N be a convex subset of a normed linear space X and
let 0 ∈ N . If � : N → N is a completely continuous operator and

�(�) :=
{

x ∈ N : x = ��x for some � ∈ (0, 1)
}
,

then either � has a fixed point or �(�) is bounded.

Define the space

B a =
{

x : x ∈ C
(
(–∞,T],U

)
with x0 = � ∈ B h

}
and let ‖ · ‖a be a seminorm defined by

‖x‖a = ‖�‖Bh + sup
s∈[0,T]

(
E
∥∥x(s)

∥∥2) 1
2 , x ∈ B a,

where C((–∞,T],U) denotes the space of all continuous U-valued stochastic process
{� (t), t ∈ (–∞,T]}.

Lemma 3.2 (Li and Liu [25]) Assume that x ∈ B a, then, for all t ∈ [0,T], xt ∈ B h. More-
over,

l
(
E
∥∥x(t)

∥∥2)1/2 ≤ l sup
s∈[0,t]

(
E
∥∥x(s)

∥∥2)1/2 + ‖x0‖Bh ,

where l =
∫ 0
–∞ h(s)ds is given in Sect. 2.

Theorem 3.2 Assume the conditions (B1), (B2) hold, then, for each � > 0 there exists a mild
solution of (1.1) on (–∞,T], provided that there is a constant K > 0 such that K1K

K2
> 1,

where

K1 = 1 – 24l2
(

MM̃1T�

�
(�)

)2

Nf

(
1 + 4

(
M2M̃2

1MBT�

��
(�)2

)2)
> 0,
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K2 = 4l2(MM1M̃1)2E‖�0‖2
[
1 + 12

(
M2M̃2

1M2
BT�

��
(�)2

)2]
+ 4‖�‖2Bh

+ 12l2
(

MM̃1


(�)

)2[
1 + 4

(
M2M̃2

1M2
BT�

��
(�)2

)2]
×

(
2kf T2�

�2 + cH(2H – 1)N�

)

+ 96l2
(

M2M̃2
1M2

BT�

��
(�)2

)2(
E‖zT‖2 + cH(2H – 1)T2H–1

∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds
)

and MB = ‖B‖.

Proof Define the operator � : B a → B a by

�x(t) =

⎧⎪⎪⎨
⎪⎪⎩

�(t), t ∈ (–∞, 0],

T L(t)(L�(0)) +
∫ t
0 (t – s)�–1S L(t – s)[f (s,xs) + Bu�(s)]ds

+
∫ t
0 (t – s)�–1S L(t – s)� (s)dBH(s), t ∈ (0,T],

for x ∈ B a.
We will show that � has a fixed point which is a mild solution for system (1.1). For

� ∈ B h, define

�̃(t) =

⎧⎨
⎩�(t), t ∈ (–∞, 0],

T L(t)(L�(0)), t ∈ (0,T].

Then �̃(t) ∈ B a. Let x(t) = �̃(t) + y(t), t ∈ (–∞,T]. It is easy to check that x(t) satisfies (1.1)
if and only if y0 = 0 and

y(t) =
∫ t

0
(t – s)�–1S L(t – s)

[
f (s, ys + �̃s) + Bu�(s)

]
ds

+
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s).

Denote B b = {y ∈ B a, y0 = 0 ∈ B h} and let ‖ · ‖b be the seminorm in B b, defined by

‖y‖b = ‖y0‖Bh + sup
s∈[0,T]

(
E
∥∥y(s)

∥∥2)1/2 = sup
s∈[0,T]

(
E
∥∥y(s)

∥∥2)1/2.
For r ≥ 0, we set Br = {y ∈ B b,‖y‖2b ≤ r}. Then Br is a bounded closed convex set in B b for
each r. According to Lemma 3.2, we get

‖yt + �̃t‖2Bh
≤ 2

(‖yt‖2Bh
+ ‖�̃t‖2Bh

)
≤ 4

(
l2 sup

s∈[0,t]
E
∥∥y(s)

∥∥2 + ‖y0‖2Bh
+ l2 sup

s∈[0,t]
E
∥∥�̃(s)

∥∥2 + ‖�̃0‖2Bh

)

≤ 4
(

l2 sup
s∈[0,t]

E
∥∥y(s)

∥∥2 + l2 sup
s∈[0,t]

E
∥∥T L(t)

(
L�(0)

)∥∥2 + ‖�‖2Bh

)

≤ 4
(
l2r + l2M2M2

1M̃2
1E

∥∥�(0)
∥∥2 + ‖�‖2Bh

) ≡ r′ (3.3)
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for y ∈ Br . Define the mapping � : B b → B b by

�y(t) =
∫ t

0
(t – s)�–1S L(t – s)

[
f (s, �̃s + ys) + Bu�(s)

]
ds

+
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s)

for t ∈ [0,T]. It is evident that the operator � has a fixed point if and only if the operator
� has a fixed point. Now, we turn to prove � has a fixed point.

Step I. We claim that � maps bounded sets into bounded sets of B b. This is equivalent
to show that there exists a positive constant � such that, for each y ∈ Br , one has

∥∥�y(t)
∥∥2

a ≤ �.

By (3.2), we obtain

E
∥∥u�(s)

∥∥2 ≤ 4(MBMM̃1)2

�2
(�)2

(
E
∥∥T L(T)

(
L�(0)

)∥∥2 + E
∥∥∥∥EzT +

∫ T

0

̂(s)dBH(s)

∥∥∥∥
2

+ E
∥∥∥∥
∫ T

0
(T – s)�–1S L(T – s)f (s, ys + �̃s)ds

∥∥∥∥
2

+ E
∥∥∥∥
∫ T

0
(T – s)�–1S L(T – s)� (s)dBH(s)

∥∥∥∥
2)

≡ 4(MBMM̃1)2

�2
(�)2

4∑
i=1

Ii.

By Lemma 2.2, it is easy to show that

I1 + I2 ≤ (MM̃1M1)2E
∥∥�(0)

∥∥2 + 2E‖zT‖2

+ 2cH(2H – 1)T2H–1
∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds.

By using the Hölder inequality, the assumption (B1), (3.3) and Lemma 2.3, we have

I3 ≤
∫ T

0
(T – s)�–1

∥∥S L(T – s)
∥∥ds

∫ T

0
(T – s)�–1

∥∥S L(T – s)
∥∥E∥∥f (s, ys + �̃s)

∥∥2 ds

≤ 2
(

MM̃1


(�)

)2 T�

�

∫ T

0
(T – s)�–1

(
Nf ‖ys + �̃s‖2Bh

+ kf
)

ds

≤ 2
(

MM̃1T�

�
(�)

)2(
Nf r′ + kf

) ≡ µf .

For the last part I4, when � > 1 – H , we have

∫ T

0

∫ T

0
(T – s)�–1(T – t)�–1|s – t|2H–2 ds dt =

B(�, 2H – 1)
2(� + H – 1)

T2(�+H–1)
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and

N� := sup
t∈[0,T]

∫ t

0

∫ t

0
(t – s)�–1(t – r)�–1|s – r|2H–2∥∥� (s)

∥∥
L02(W ,U)

∥∥� (r)
∥∥

L02(W ,U) ds dr < ∞,

where B(·, ·) denotes the Beta function, which imply that

I4 = E

∥∥∥∥∥
∞∑

n=1

∫ T

0
(T – s)�–1S L(T – s)� (s)Q

1
2 end�H

n (s)

∥∥∥∥∥
2

=
∞∑

n=1

E
∥∥∥∥
∫ T

0
(T – s)�–1S L(T – s)� (s)Q

1
2 end�H

n (s)
∥∥∥∥
2

=
∞∑

n=1

H(2H – 1)
∫ T

0

∫ T

0

∥∥(T – s)�–1S L(T – s)� (s)Q
1
2 en

∥∥
× ∥∥(T – t)�–1S L(T – t)� (t)Q

1
2 en

∥∥|s – t|2H–2 ds dt

≤ cH(2H – 1)
(

MM̃1


(�)

)2 ∫ T

0

∫ T

0
(T – s)�–1(T – t)�–1|s – t|2H–2

× ∥∥� (s)
∥∥

L02(W ,U)

∥∥� (t)
∥∥

L02(W ,U) ds dt.

Consequently, we get

E
∥∥u�(s)

∥∥2 ≤ 4(MBMM̃1)2

�2
(�)2

{
(MM̃1M1)2E

∥∥�(0)
∥∥2 + 2E‖zT‖2

+ 2cH(2H – 1)T2H–1
∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds +µf

+ cH(2H – 1)
(

MM̃1


(�)

)2

N�

}

≡ 4(MBMM̃1)2

�2
(�)2
Nu.

It follows that

E
∥∥�y(t)

∥∥2 ≤ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)f (s, ys + �̃s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)Bu�(s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s)

∥∥∥∥
2

≤ 3
(

MM̃1


(�)

)2[2T2�

�2

(
Nf r′ + kf

)

+
(

MBT�

�

)2 4(MBMM̃1)2

�2
(�)2
Nu + cH(2H – 1)N�

]
≡ � < ∞.

This shows that the first statement holds, i.e., for each y ∈ Br , ‖�y(t)‖2a ≤ � .
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Step II. We claim that � maps bounded sets into equicontinuous sets of B b. Similar to
the calculation in Step I, for 0 ≤ t1 < t2 ≤ T , we have

E
∥∥�y(t2) –�y(t1)

∥∥2

≤ 3E
∥∥∥∥
∫ t2

0
(t2 – s)�–1S L(t2 – s)f (s, ys + �̃s)ds

–
∫ t1

0
(t1 – s)�–1S L(t1 – s)f (s, ys + �̃s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t2

0
(t2 – s)�–1S L(t2 – s)Bu�(s)ds –

∫ t1

0
(t1 – s)�–1S L(t1 – s)Bu�(s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t2

0
(t2 – s)�–1S L(t2 – s)� (s)dBH(s)

–
∫ t1

0
(t1 – s)�–1S L(t1 – s)� (s)dBH(s)

∥∥∥∥
2

≡
3∑

j=1

Jj.

We estimate J1, J2, J3. Let 0 < � < t < T and � > 0 such that

∥∥S L(s2) –S L(s1)
∥∥ < �

for every s1, s2 ∈ [0,T] with |s1 – s2| < �. Then, for J1 we have

J1 ≤ 3E
∥∥∥∥
∫ t1

0

[
(t2 – s)�–1 – (t1 – s)�–1

]
S L(t2 – s)f (s, ys + �̃s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t1

0
(t1 – s)�–1

[
S L(t2 – s) –S L(t1 – s)

]
f (s, ys + �̃s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t2

t1
(t2 – s)�–1S L(t2 – s)f (s, ys + �̃s)ds

∥∥∥∥
2

≤ 3
(

MM̃1


(�)

)2 ∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
ds

×
∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
E
∥∥f (s, ys + �̃s)

∥∥2 ds

+
3t�

1 �2

�

∫ t1

0
(t1 – s)�–1E

∥∥f (s, ys + �̃s)
∥∥2 ds

+
3(t2 – t1)�

�

(
MM̃1


(�)

)2 ∫ t2

t1
(t2 – s)�–1E

∥∥f (s, ys + �̃s)
∥∥2 ds

≤ 3
(

MM̃1


(�)

)2(
Nf r′ + kf

)(∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
ds

)2

+
3t2�1 �2

�2

(
Nf r′ + kf

)
+
3(t2 – t1)2�

�2

(
MM̃1


(�)

)2(
Nf r′ + kf

)
.
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Analogously, for J2 we also have

J2 ≤ 3E
∥∥∥∥
∫ t1

0

[
(t2 – s)�–1 – (t1 – s)�–1

]
S L(t2 – s)Bu�(s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t1

0
(t1 – s)�–1

[
S L(t2 – s) –S L(t1 – s)

]
Bu�(s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t2

t1
(t2 – s)�–1S L(t2 – s)Bu�(s)ds

∥∥∥∥
2

≤ 3
(

MM̃1MB


(�)

)2 ∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
ds

×
∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
E
∥∥u�(s)

∥∥2 ds

+
3M2

Bt�
1 �2

�

∫ t1

0
(t1 – s)�–1E

∥∥u�(s)
∥∥2 ds

+
3(t2 – t1)�

�

(
MM̃1MB


(�)

)2 ∫ t2

t1
(t2 – s)�–1E

∥∥u�(s)
∥∥2 ds

≤ 3
(

MM̃1MB


(�)

)2 4(MBMM̃1)2

�2
(�)2
Nu

(∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
ds

)2

+
3t2�1 M2

B�2

�2
4(MBMM̃1)2

�2
(�)2
Nu +

3(t2 – t1)2�

�2

(
MM̃1MB


(�)

)2 4(MBMM̃1)2

�2
(�)2
Nu.

As � > 1 – H , for J3

J3 ≤ 3E
∥∥∥∥
∫ t1

0

[
(t2 – s)�–1 – (t1 – s)�–1

]
S L(t2 – s)� (s)dBH(s)

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t1

0
(t1 – s)�–1

[
S L(t2 – s) –S L(t1 – s)

]
� (s)dBH(s)

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t2

t1
(t2 – s)�–1S L(t2 – s)� (s)dBH(s)

∥∥∥∥
2

≤ 3cH(2H – 1)
(

MM̃1


(�)

)2 ∫ t1

0

∫ t1

0

[
(t1 – s)�–1 – (t2 – s)�–1

]
× [

(t1 – t)�–1 – (t2 – t)�–1
]

× ∥∥� (s)
∥∥

L02(W ,U)

∥∥� (t)
∥∥

L02(W ,U)|s – t|2H–2 ds dt

+ 3cH(2H – 1)�2N�

+ 3cH(2H – 1)
(

MM̃1


(�)

)2 ∫ t2

t1

∫ t2

t1
(t2 – s)�–1(t2 – t)�–1|s – t|2H–2

× ∥∥� (s)
∥∥

L02(W ,U)

∥∥� (t)
∥∥

L02(W ,U) ds dt.

Thus, we see that Jj (j = 1, 2, 3) tends to zero, as t1 → t2. It follows from the Arzela–Ascoli
theorem that � is completely continuous.

Step III. We show that there exists an open set � ⊆ B b with y �= ��y for � ∈ (0, 1) and
y ∈ ��.
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If y = ��y ∈ B b for some � ∈ (0, 1). We then have

y(t) = �
{∫ t

0
(t – s)�–1S L(t – s)

[
f (s, ys + �̃s) + Bu�(s)

]
ds

+
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s)

}

for every t ∈ [0,T]. It follows that

E
∥∥y(t)

∥∥2 ≤ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)f (s, ys + �̃s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)Bu�(s)ds

∥∥∥∥
2

+ 3E
∥∥∥∥
∫ t

0
(t – s)�–1S L(t – s)� (s)dBH(s)

∥∥∥∥
2

≤ 6
(

MM̃1T�

�
(�)

)2

Nf ‖yt + �̃t‖2Bh
+ 6

(
MM̃1T�

�
(�)

)2

kf

+ 3
(

MM̃1MBT�

�
(�)

)2

E
∥∥u�(t)

∥∥2 + 3
(

MM̃1


(�)

)2

cH(2H – 1)N� ,

which implies that

‖yt + �̃t‖2Bh
≤ 2

(‖yt‖2Bh
+ ‖�̃t‖2Bh

)
≤ 4

(
l2 sup

s∈[0,t]
E
∥∥y(s)

∥∥2 + l2M2M2
1M̃2

1E
∥∥�(0)

∥∥2 + ‖�‖2Bh

)
.

Denote the right side of the above inequality by �(t). There exists t∗ ∈ [0, t] such that

�(t) = 4
(
l2E

∥∥y
(
t∗)∥∥2 + l2M2M2

1M̃2
1E

∥∥�(0)
∥∥2 + ‖�‖2Bh

)
.

Then, for t ∈ [0,T], we have

�(t) ≤ 4
{

l2
[
6
(

MM̃1T�

�
(�)

)2

Nf �(t) + 6
(

MM̃1T�

�
(�)

)2

kf

+ 12
(

M2M̃2
1M2

BT�

��
(�)2

)2

×
(
(MM̃1M1)2E

∥∥�(0)
∥∥2 + 2E‖zT‖2

+ 2cH(2H – 1)T2H–1
∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds + 2
(

MM̃1T�

�
(�)

)2

Nf �(t)

+ 2
(

MM̃1T�

�
(�)

)2

kf + cH(2H – 1)
(

MM̃1


(�)

)2

N�

)

+ 3
(

MM̃1


(�)

)2

cH(2H – 1)N�

]
+ l2M2M2

1M̃2
1E

∥∥�(0)
∥∥2 + ‖�‖2Bh

}
.
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Taking the norm on both sides above, it follows that

∥∥�(t)
∥∥2

a ≤ 4
{

l2
[
6
(

MM̃1T�

�
(�)

)2

Nf
∥∥�(t)

∥∥2
a + 6

(
MM̃1T�

�
(�)

)2

kf

+ 12
(

M2M̃2
1M2

BT�

��
(�)2

)2

×
(
(MM̃1M1)2E

∥∥�(0)
∥∥2 + 2E‖zT‖2

+ 2cH(2H – 1)T2H–1
∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds + 2
(

MM̃1T�

�
(�)

)2

Nf
∥∥�(t)

∥∥2
a

+ 2
(

MM̃1T�

�
(�)

)2

kf + cH(2H – 1)
(

MM̃1


(�)

)2

N�

)

+ 3
(

MM̃1


(�)

)2

cH(2H – 1)N�

]
+ l2M2M2

1M̃2
1E

∥∥�(0)
∥∥2 + ‖�‖2Bh

}
,

which implies that K1‖�(t)‖2a
K2

≤ 1, where

K1 = 1 – 24l2
(

MM̃1T�

�
(�)

)2

Nf

(
1 + 4

(
M2M̃2

1MBT�

��
(�)2

)2)

and

K2 = 4l2(MM1M̃1)2E‖�0‖2
[
1 + 12

(
M2M̃2

1M2
BT�

��
(�)2

)2]
+ 4‖�‖2Bh

+ 12l2
(

MM̃1


(�)

)2[
1 + 4

(
M2M̃2

1M2
BT�

��
(�)2

)2]
×

(
2kf T2�

�2 + cH(2H – 1)N�

)

+ 96l2
(

M2M̃2
1M2

BT�

��
(�)2

)2(
E‖zT‖2 + cH(2H – 1)T2H–1

∫ T

0

∥∥
̂(s)
∥∥2

L02(W ,U) ds
)
.

From the assumption, ‖�‖2a �= K . Set � = {y ∈ B b,‖y‖2a < K + 1}. Then there is no
y ∈ �� such that y = ��y for some � ∈ (0, 1). By Theorem 3.1, we find that � has a fixed
point. Hence � has a fixed point which is a solution to the system (1.1). �

Theorem 3.3 Assume that the conditions of Theorem 3.2 and (H0) hold. In addition, the
functions f is uniformly bounded on its domain. Then the fractional control system (1.1) is
approximately controllable on [0,T].

Proof Let x� be a fixed point of the operator ��. Using the stochastic Fubini theorem, we
can get

x�(T) = zT – �
(
�I + 
T

0
)–1[–T L(T)

(
L�(0)

)
+ EzT +

∫ T

0

̂(s)dBH(s)

]

+ �
∫ T

0

(
�I + 
T

s
)–1(T – s)�–1S L(T – s)f

(
s,x�

s
)

ds

+ �
∫ T

0

(
�I + 
T

s
)–1(T – s)�–1S L(T – s)� (s)dBH(s).

It follows from the property of f that there exists C > 0 such that ‖f (s,x�
s )‖2 ≤ C. Then

there is a subsequence denoted by {f (s,x�
s )} weakly converging to f (s). Thus, from the
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above equation, we obtain

E
∥∥x�(T) – zT

∥∥2

≤ 5
∥∥�

(
�I + 
T

0
)–1[EzT – T L(T)

(
L�(0)

)]∥∥2

+ 5cH(2H – 1)T2H–1E
∫ T

0

∥∥�
(
�I + 
T

0
)–1
̂(s)∥∥2

L02(W ,U) ds

+ 5E
(∫ T

0
(T – s)�–1

∥∥�
(
�I + 
T

s
)–1S L(T – s)

[
f
(
s,x�

s
)
– f (s)

]∥∥ds
)2

+ 5E
(∫ T

0
(T – s)�–1

∥∥�
(
�I + 
T

s
)–1S L(T – s)f (s)

∥∥ds
)2

+ 5cH(2H – 1)
∫ T

0

∫ T

0
(T – s)�–1(T – t)�–1|s – t|2H–2

× ∥∥�
(
�I + 
T

s
)–1S L(T – s)� (s)

∥∥2
L02(W ,U)

× ∥∥�
(
�I + 
T

t
)–1S L(T – t)� (t)

∥∥2
L02(W ,U) ds dt.

On the other hand, by assumption (H0) for all 0 ≤ s ≤ T , the operator �(�I + 
T
s )–1 → 0

strongly as � → 0+, and, moreover, ‖�(�I +
T
s )–1‖ < 1. Thus, by the Lebesgue dominated

convergence theorem and the compactness of S L(t), we can get E‖x�(T) – zT‖2 → 0 as
� → 0+. This gives the approximate controllability of (1.1). �

4 Example
In this section, we will show an example to apply our results above. Consider the Sobolev-
type fractional stochastic functional equation with infinite delay of the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cD
3
4
t [x(t, y) – xyy(t, y)] = �2

�y2 x(t, y) + f (t,x(t – h, y))

+ �(t, y) + � (t) dBH (t)
dt , 0≤ t ≤ 1,h > 0, 0≤ y ≤ 1,

x(t, 0) = x(t, 1), 0≤ t ≤ 1,

x(t, y) = �(t, y), 0≤ y ≤ 1,–∞ < t ≤ 0,

(4.1)

BH(t) is a cylindrical fractional Brownian motion with Hurst index H ∈ ( 12 , 1).
Take U = L2([0, 1]). Define the operators A : D(A) ⊂ U → U and L : D(L) ⊂ U → U by

Ax = x′′ and Lx = x – x′′, where D(A) and D(L) are given by

{
x ∈ U ,x and x′ are absolutely continuous,x′′ ∈ U ,x(0) = x(1) = 0

}
.

Furthermore, A and L can be written as

Ax =
∞∑

n=1

n2〈x,xn〉xn, x ∈ D(A),

Lx =
∞∑

n=1

(
1 + n2)〈x,xn〉xn, x ∈ D(L),



Han and Yan Advances in Difference Equations  (2018) 2018:104 Page 17 of 18

where xn(y) =
√

2
� sin(ny), n = 1, 2, . . . , is the orthogonal set of eigenvectors of A. Also, for

x ∈ U ,

L–1x =
∞∑

n=1

1
1 + n2 〈x,xn〉xn, AL–1x =

∞∑
n=1

n2

1 + n2 〈x,xn〉xn,

S(t)x =
∞∑

n=1

e
–n2
1+n2

t〈x,xn〉xn,

S L(t)(x) =
3
4

∞∑
n=1

1
1 + n2

∫ ∞

0
�� 3

4
(� )e

–n2
1+n2

t
3
4 � d�〈x,xn〉xn.

Clearly, L–1 is compact, boundedwith ‖L–1‖ ≤ 1 andAL–1 generates a strongly continuous
semigroup S(t) on U with ‖S(t)‖ ≤ 1.
Let h(s) = e2s, s < 0, then l =

∫ 0
–∞ h(s)ds = 1

2 . Let B h be a phase space endowed with the
norm

‖�‖Bh =
∫ 0

–∞
h(s) sup

s≤�≤0

(
E
∥∥�(� )

∥∥2) 1
2 ds.

Then (B h,‖ · ‖Bh ) is a Banach space. Define an infinite-dimensional space V by V =
{u|u =

∑∞
n=2 unxn,with

∑∞
n=2 u2

n < ∞}. The norm in V is defined by ‖u‖V = (
∑∞

n=2 u2
n)

1
2 .

Then define a continuous linear mapping B from V into U as Bu = 2u2x1 +
∑∞

n=2 unxn

for u =
∑∞

n=2 unxn ∈ V . We assume the operator B : V → U is a bounded linear operator
by Bu(t)(y) = �(t, y). In addition, the linear part corresponding to (4.1) is approximately
controllable. Then the system (4.1) can be written in the abstract form of (1.1). Imposing
all the conditions of corresponding coefficients of Theorem 3.3, we can conclude that the
fractional control system (4.1) is approximately controllable on [0, 1].
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