# RESEARCH

# **Open Access**



# Some results for Laplace-type integral operator in quantum calculus

Shrideh K.Q. Al-Omari<sup>1</sup>, Dumitru Baleanu<sup>2,3</sup> and Sunil D. Purohit<sup>4\*</sup>

\*Correspondence: sunil\_a\_purohit@yahoo.com \*Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India Full list of author information is available at the end of the article

# Abstract

In the present article, we wish to discuss q-analogues of Laplace-type integrals on diverse types of q-special functions involving Fox's  $H_q$ -functions. Some of the discussed functions are the q-Bessel functions of the first kind, the q-Bessel functions of the second kind, the q-Bessel functions of the third kind, and the q-Struve functions as well. Also, we obtain some associated results related to q-analogues of the Laplace-type integral on hyperbolic sine (cosine) functions and some others of exponential order type as an application to the given theory.

**Keywords:**  $J_v(x;q)$  function;  $Y_v(x;q)$  function;  $K_v(x;q)$  function;  $H_v(x;q)$  function; Laplace-type integral

# 1 Introduction and preliminaries

Quantum calculus is a version of calculus where derivatives are differences and antiderivatives are sums, and no further limits are required. The quantum calculus or q-calculus, compared to the differential and integral calculus, has been very recently named. Hence some rules and definitions need to be recalled. For 0 < q < 1, the q-calculus starts with the definition of the q-analogue of the differential and the q-analogue of derivatives as well. The q-analogue of the integer n, the factorial of n, and the binomial coefficient are respectively given as

$$[n]_q = \frac{1 - q^n}{1 - q}, \qquad ([n]_q)! = \left\{ \begin{array}{ll} \prod_1^n [k]_q, & n \in \mathbb{N} \\ 1, & n = 0 \end{array} \right\}, \qquad \begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_1^n \frac{1 - q^{n-k+1}}{1 - q^k}. \tag{1}$$

The *q*-analogue of  $(x + a)^n$   $(n \in \mathbb{N})$  and its *q*-derivative are respectively given as

$$(x+a)_q^n = \prod_{j=0}^{n-1} (x+q^j a), \qquad D_q(x+a)_q^n = [n]_q(x+a)_q^{n-1}, \qquad (x+a)_q^0 = 1.$$
(2)

The *q*-Jackson integrals from 0 to a and from a to b are given as follows (see [1], see also [2]):

$$\int_{0}^{a} f(x) d_{q} x = (1-q)a \sum_{0}^{\infty} f(aq^{k})q^{k}$$
(3)

Springer

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

and

$$\int_{b}^{a} f(x) d_{q}x = \int_{0}^{b} f(x) d_{q}x - \int_{0}^{a} f(x) d_{q}x.$$
(4)

The improper *q*-Jackson integral is given as follows (see [1]):

$$\int_0^{\frac{\infty}{A}} f(x) d_q x = (1-q) \sum_{n \in \mathbb{Z}} \frac{q^k}{A} f\left(\frac{q^k}{A}\right), \quad A \in \mathbb{C}.$$

The *q*-analogues of the gamma function are defined by

$$\Gamma_q(\alpha) = \int_0^{\frac{1}{1-q}} x^{\alpha-1} E_q(q(1-q)x) d_q x$$

and

$${}_{q}\Gamma(\alpha) = K(A;\alpha) \int_{0}^{\frac{\infty}{A(1-q)}} x^{\alpha-1} e_{q}\left(-(1-q)x\right) d_{q}x,$$

where  $\alpha > 0$  and, for every  $t \in \mathbb{R}$ ,

$$K(A;t) = A^{t-1} \frac{(-q/A;q)_{\infty}}{(-q^t/A;q)_{\infty}} \frac{(-A;q)_{\infty}}{(-Aq^{1-t};q)_{\infty}}.$$

Here

$$(a;q)_n = \prod_{0}^{n-1} (1-aq^k), \qquad (a;q)_\infty = n \xrightarrow{\lim} \infty (a;q)_n.$$

The very useful identities used in this article are (cf. [2])

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x} \quad \text{and} \quad (a;q)_t = \frac{(a;q)_{\infty}}{(aq^t;q)_{\infty}}, \quad t \in \mathbb{R}.$$

The *q*-hypergeometric functions are represented by

$${}_{r}\phi_{s}\left(\begin{array}{c}a_{1},a_{2},\ldots,a_{r}\\\alpha_{1},\alpha_{2},\ldots,\alpha_{s}\end{array}\right|q,z\right)=\sum_{0}^{\infty}\frac{(a_{1},a_{2},\ldots,a_{r};q)_{n}}{(\alpha_{1},\alpha_{2},\ldots,\alpha_{s};q)_{n}}\frac{z^{n}}{(q;q)_{n}}$$

and

$$\begin{split} \left. a_{m-k} \Phi_{m-1} \begin{pmatrix} a_1, a_2, \dots, a_{m-k} \\ \alpha_1, \alpha_2, \dots, \alpha_{m-1} \end{pmatrix} | q, z \end{pmatrix} &= \sum_{0}^{\infty} \frac{(a_1, \dots, a_{m-k}; q)_n}{(\alpha_1, \dots, \alpha_{m-1}; q)_n} \Big[ (-1)^n q^{\binom{n}{2}} \Big]^k \\ &\times \frac{z^n}{(q; q)_n}, \end{split}$$

where  $(a_1, a_2, \dots, a_p; q)_n = \prod_{k=0}^p (a_k; q)_n$ .

#### 2 H-Function and related functions

The *H*-function, which is an extension of the hypergeometric functions  ${}_{p}F_{q}$ , introduced by Fox [3] (see also [4, 5]), has found various applications in a huge range of problems associated with reaction, reaction diffusion, communication, engineering, fractional differential equations, integral equations, theoretical physics, and statistical distribution theory as well. The *H*-functions have also been recognized to play a fundamental role in fractional calculus with its applications. Fox's *H*-function, admitting to a standard notation, is presented as

$$H_{p,q}^{m,n}(\eta) = \frac{1}{2\pi i} \int_{P} J_{p,q}^{m,n}(w) \eta^{w} dw,$$
(5)

where *P* is a suitable complex path,  $\eta^w = \exp\{w(\log |\eta| + i \arg \eta)\}, J_{p,q}^{m,n}(w) = \frac{A(w)B(w)}{C(s)D(w)}$ , and

$$\begin{split} A(w) &= \prod_{1}^{m} \Gamma(b_j - \beta_j w), \qquad B(w) = \prod_{1}^{n} \Gamma(1 - a_j + \alpha_j w), \\ C(w) &= \prod_{m+1}^{q} \Gamma(1 - b_j - \beta_j w), \qquad D(w) = \prod_{n+1}^{p} \Gamma(a_j + \alpha_j w), \end{split}$$

 $0 \le n \le p$ ,  $1 \le m \le q$ ,  $\{a_j, b_j\} \in \mathbb{C}$ ,  $\{\alpha_j, \beta_j\} \in \mathbb{R}^+$ . Let  $\alpha_j$  and  $\beta_j$  be positive integers and  $0 \le m \le N$ ;  $0 \le n \le M$ . Then the *q*-analogue of Fox's *H*-function is given as (see [6])

$$\begin{aligned} H_{M,N}^{m,n}\left(x;q\left|\begin{array}{l}(a_{1},\alpha_{1}),(a_{2},\alpha_{2}),\ldots,(a_{\mu},\alpha_{M})\\(b_{1},\beta_{1}),(b_{2},\beta_{2}),\ldots,(b_{N},\beta_{N})\end{array}\right)\right.\\ &=\frac{1}{2\pi i}\int_{C}\frac{\prod_{j=1}^{m}G(q^{b_{j}-\beta_{j}s})\prod_{j=1}^{n}G(q^{1-a_{j}+\alpha_{j}s})\pi x^{s}}{\prod_{j=m+1}^{N}G(q^{1-b_{j}+\beta_{j}s})\prod_{j=n+1}^{M}G(q^{a_{j}-\alpha_{j}s})G(q^{1-s})\sin\pi s}\,d_{q}s,\end{aligned}$$

where G is defined in terms of the product

$$G(q^{\alpha}) = \prod_{k=0}^{\infty} (1 - q^{\alpha-k})^{-1} = \frac{1}{(q^{\alpha}; q)_{\infty}}.$$
(6)

The contour *C* is parallel to  $\operatorname{Re}(ws) = 0$ , such that all poles of  $G(q^{b_j - \beta_j s})$ ,  $1 \le j \le m$ , are its right and those of  $G(q^{1-a_j+\alpha_j s})$ ,  $1 \le j \le n$ , are the left of *C*. The above integral converges if  $\operatorname{Re}(s \log x - \log \sin \pi s) < 0$ , for huge values of |s| on *C*. Hence,

 $\left|\arg(x) - w_2 w_1^{-1} \log |x|\right| < \pi$ , |q| < 1,  $\log q = -w = -w_1 - iw_2$ ,

where  $w_1$  and  $w_2$  are real numbers.

Indeed, for  $\alpha_i = \beta_j = 1$ , for all *i*, *j*, we write the *q*-analogue of Meijer's *G*-function as

$$G_{M,N}^{m,n}\left(x;q \begin{vmatrix} a_{1},a_{1},\ldots,a_{M} \\ b_{1},b_{2},\ldots,b_{N} \end{vmatrix}\right) = \frac{1}{2\pi i} \int_{C} \frac{\prod_{j=1}^{m} G(q^{b_{j}-s}) \prod_{j=1}^{n} G(q^{1-a_{j}+s})\pi x^{2}}{\prod_{j=m+1}^{N} G(q^{1-b_{j}+s}) \prod_{j=n+1}^{M} G(q^{a_{j}-s}) G(q^{1-s}) \sin \pi s} d_{q}s,$$
(7)

where  $0 \le m \le N$ ;  $0 \le n \le M$  and  $\operatorname{Re}(s \log x - \log \sin \pi s) < 0$ .

Additionally, the *q*-analogues of the Bessel function  $J_{\nu}(x)$  of the first kind, the Bessel function of  $Y_{\nu}(x)$ , the Bessel function of the third kind  $K_{\nu}(x)$ , and Struve's function  $H_{\nu}(x)$  are, respectively, defined in terms of Fox's  $H_q$ -function by [7] as follows:

$$J_{\nu}(x;q) = \left\{ G(a) \right\}^{2} H_{0,3}^{1,0} \left( \frac{x^{2}(1-q)^{2}}{4}; q \middle| \left( \frac{\nu}{2}, 1 \right), \left( -\frac{\nu}{2}, 1 \right)(1,1) \right),$$
(8)

 $Y_{\nu}(x;q) = \left\{G(a)\right\}^2$ 

$$\times H_{1,4}^{2,0}\left(\frac{x^2(1-q)^2}{4}; q \left| \frac{(-\frac{\nu-1}{2},1)}{(\frac{\nu}{2},1),(-\frac{\nu}{2},1)(-\frac{\nu-1}{2},1)(1,1)} \right. \right), \tag{9}$$

$$K_{\nu}(x;q) = (1-q)H_{0,3}^{2,0}\left(\frac{x^2(1-q)^2}{4};q \mid (\frac{\nu}{2},1), (-\frac{\nu}{2},1)(1,1)\right),\tag{10}$$

$$H_{\nu}(x;q) = \left(\frac{1-q}{2}\right)^{1-\alpha} \times H_{1,4}^{3,1}\left(\frac{x^2(1-q)^2}{4};q \left| \frac{(\frac{1+\alpha}{2},1)}{(\frac{\nu}{2},1),(-\frac{\nu}{2},1)(\frac{\nu+\alpha}{2},1)(1,1)} \right.\right).$$
(11)

In [8] (see also [9]), some q-analogues of the natural exponential functions, sine functions, cosine functions, hyperbolic sine functions, and hyperbolic cosine functions are, respectively, given in terms of Fox's H-function as follows:

$$e_q(-x) = G(q)H_{0,2}^{1,0}\left(x(1-q);q \middle| (0,1)(1,1)\right),$$
(12)

$$\sin_{q}(x) = \sqrt{\pi} (1-q)^{-\frac{1}{2}} \left\{ G(q) \right\}^{2} \times H_{0,3}^{1,0} \left( \frac{x^{2}(1-q)^{2}}{4}; q \mid (\frac{1}{2}, 1)(0, 1)(1, 1) \right),$$
(13)

$$\cos_{q}(x) = \sqrt{\pi} (1-q)^{-\frac{1}{2}} \left\{ G(q) \right\}^{2} \times H_{0,3}^{1,0} \left( \frac{x^{2}(1-q)^{2}}{4}; q \middle|_{(0,1)(\frac{1}{2},1)(1,1)} \right),$$
(14)

$$\sinh_{q}(x) = \frac{\sqrt{\pi}}{i} (1-q)^{-\frac{1}{2}} \left\{ G(q) \right\}^{2} \times H_{0,3}^{1,0} \left( -\frac{x^{2}(1-q)^{2}}{4}; q \middle|_{(\frac{1}{2},1)(0,1)(1,1)} \right),$$
(15)

$$\cosh_{q}(x) = \sqrt{\pi} (1-q)^{-\frac{1}{2}} \left\{ G(q) \right\}^{2} \times H_{0,3}^{1,0} \left( -\frac{x^{2}(1-q)^{2}}{4}; q \middle|_{(0,1)(\frac{1}{2},1)(1,1)} \right).$$
(16)

On the other hand, some impressive integral transforms also have the corresponding q-analogues in the concept of q-calculus; they include the q-Laplace transforms [10], the q-Sumudu transforms [9, 11–13], the q-Wavelet transform [14], the q-Mellin transform [15], q- $E_{2,1}$ -transform [16], q-Mangontarum transforms [17, 18], q-natural transforms [19], and

so on. Recently, a number of authors have studied various image formulas for these q-integral transforms, associated with a variety of special functions. In this sequel, we aim to investigate the q-analogues of Laplace-type integrals on diverse types of q-special functions involving Fox's  $H_q$ -function.

### 3 *q*-Laplace-type transforms for $H_q$ -function

A Laplace-type integral was introduced in [20, 21]. The *q*-analogues of the Laplace-type integral of the first kind were defined later by [22] as follows:

$${}_{q}L_{2}(f(\xi);y) = \frac{1}{1-q^{2}} \int_{0}^{y^{-1}} \xi E_{q^{2}}(q^{2}y^{2}\xi^{2})f(\xi) d\xi$$
$$= \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}} \sum_{i=0}^{\infty} \frac{q^{2i}}{(q^{2};q^{2})_{i}} f(q^{i}y^{-1}),$$
(17)

whereas the *q*-analogues of the Laplace-type integral of the second kind were defined by

$${}_{q}\ell_{2}(f(\xi);y) = \frac{1}{1-q^{2}} \int_{0}^{\infty} \xi e_{q^{2}}(y^{2}\xi^{2}) d_{q}\xi$$
$$= \frac{1}{[2]_{q}(-y^{2};q^{2})_{\infty}} \sum_{i \in \mathbb{Z}} q^{2i}f(q^{i})(-y^{2};q^{2})_{i}.$$
(18)

For the sake of convenience, we establish some formulas for the  ${}_{q}L_{2}$  operator. A similar argument can give certain corresponding results for the operator  ${}_{q}\ell_{2}$ .

**Theorem 1** Let  $\beta$  be a positive real number. Then

$${}_{q}L_{2}(\xi^{2\beta-2})(y) = \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}(q^{\beta};q^{2})_{\infty}}.$$

*Proof* By using (17), we have

$$\begin{split} {}_{q}L_{2}\big(\xi^{2\beta-2};y\big) &= \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2\beta}} \sum_{i=0}^{\infty} \frac{q^{2i}}{(q^{2};q^{2})_{i}} \big(q^{i}y^{-1}\big)^{2\beta-2} \\ &= \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2\beta}} \sum_{i=0}^{\infty} \frac{q^{2\beta i}y^{2\beta-2}}{(q^{2};q^{2})_{i}}. \end{split}$$

That is,

$${}_{q}L_{2}(\xi^{2\beta-2}; y) = \frac{(q^{2}; q^{2})_{\infty}}{[2]_{q}y^{2}} \sum_{i=0}^{\infty} \frac{q^{2\beta i}}{(q^{2}; q^{2})_{i}}.$$
(19)

By the fact that

$$e_q(z) = \sum_{i=0}^{\infty} \frac{z^i}{(q;q)_i},$$

we have

$$\begin{split} {}_{q}L_{2}\bigl(\xi^{2\beta-2};y\bigr) &= \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}}e_{q^{2}}\bigl(q^{\beta}\bigr) \\ &= \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}}\frac{1}{(q^{2\beta};q^{2})_{\infty}}. \end{split}$$

This completes the establishment of the belief.

**Theorem 2** Let  $\lambda$  be a complex number. Then

$${}_{q}L_{2}\left(x^{2\lambda}H_{M,N}^{m,n}\left(\gamma x^{2k};q^{2}\left|\binom{(a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})}{(b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N})}\right)\right)(y)$$
  
=  $\frac{(q^{2};q^{2})_{\infty}}{y^{2\lambda+2}[2]_{q}}H_{M+1,N}^{m,n+1}\left(\frac{\gamma}{y^{2k}},q^{2}\left|\binom{(-\lambda,k),(a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})}{(b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N})}\right.\right),$ 

where  $0 \le n \le m$  and  $0 \le m \le N$  and  $\lambda$  is an arbitrary complex number.

*Proof* Let  $\lambda$  be a complex number. Then by (17) we obtain

$${}_{q}L_{2}\left(x^{2\lambda}H_{M,N}^{m,n}\left(\gamma x^{2k};q^{2} \begin{vmatrix} (a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})\\ (b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N}) \end{pmatrix}\right)(y)$$

$$=\frac{1}{2\pi i}\int_{c}\frac{\prod_{j=1}^{m}G(q^{2b_{j}-2\beta_{j}z})\prod_{j=1}^{n}G(q^{2-2a_{j}+2\alpha_{j}z})\pi\gamma^{z}}{\prod_{j=m+1}^{N}G(q^{2-2b_{j}+2\beta_{j}z})\prod_{j=n+1}^{M}G(q^{2a_{j}-2\alpha_{j}z})G(q^{2-2z})\sin\pi z}$$

$$\times_{q}L_{2}(x^{2\lambda+2kz})(y)d_{q}z.$$
(20)

Let  $\beta = \lambda + kz + 1$ , then by Theorem 1 we have

$${}_{q}L_{2}(x^{2(\lambda+kz)})(y) = {}_{q}L_{2}(x^{2B-2})(y) = \frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}(q^{2(\lambda+zk+1)};q^{2})_{\infty}}.$$
(21)

By invoking (21) in (20), we get

$${}_{q}L_{2}\left(x^{2\lambda}H_{M,N}^{m,n}\left(\gamma x^{2k};q^{2}\left|\binom{(a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})}{(b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N})}\right)\right)(y)$$

$$=\frac{1}{2\pi i}\int_{c}\frac{\prod_{j=1}^{m}G(q^{2b_{j}-2\beta_{j}z})\prod_{j=1}^{n}G(q^{2-2a_{j}+2\alpha_{j}z})\pi\gamma^{z}}{\prod_{j=m+1}^{N}G(q^{2-2b_{j}+2\beta_{j}z})\prod_{j=n+1}^{M}G(q^{2a_{j}-2\alpha_{j}z})G(q^{2-2z})\sin\pi z}$$

$$\times\frac{(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}(q^{2(\lambda+zk+1)};q^{2})_{\infty}}d_{q}z.$$
(22)

By inserting the identity

$$G(q^{2\lambda+2kz+2}) = \frac{1}{(q^{2\lambda+2kz+2};q^2)_{\infty}}$$

in (22) yields

$$\begin{split} {}_{q}L_{2}\left(x^{2\lambda}H_{M,N}^{m,n}\left(\gamma x^{2k};q^{2}\left| \begin{matrix} (a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})\\ (b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N}) \end{matrix} \right) \right)(y) \\ = \frac{(q^{2};q^{2})_{\infty}}{2\pi i y^{2\lambda+2}[2]_{q}}\int_{c}\frac{\prod_{j=1}^{m}G(q^{2b_{j}-2\beta_{j}z})\prod_{j=1}^{n}G(q^{2-2a_{j}+2\alpha_{j}z})}{\prod_{j=m+1}^{N}G(q^{2-2b_{j}+2\beta_{j}z})\prod_{j=n+1}^{M}G(q^{2a_{j}-2\alpha_{j}z})} \\ &\times \frac{G(q^{1+\lambda+kz})}{G(q^{2(1-z)})\sin\pi z}\pi\left(\frac{\gamma}{y^{2}k}\right)^{z}d_{q}z. \end{split}$$

Now, on account of the definition of  $H_q$ -function, we may establish that

$${}_{q}L_{2}\left(x^{2\lambda}H_{M,N}^{m,n}\left(\gamma x^{2k};q^{2} \left| \begin{matrix} (a_{1},\alpha_{1}),\ldots,(a_{M},\alpha_{M})\\ (b_{1},\beta_{1}),\ldots,(b_{N},\beta_{N}) \end{matrix} \right) \right)(y)$$

$$= \frac{(q^{2};q^{2})_{\infty}}{y^{2\lambda+2}[2]_{q}}H_{N,M+1}^{n+1,m}\left(\gamma x^{2k};q^{2} \left| \begin{matrix} (1-b_{1},\beta_{1}),\ldots,(1-b_{N},\beta_{N})\\ (1+\lambda,k),(1-a,\alpha_{1}),\ldots,(1-a_{M},\alpha_{M}) \end{matrix} \right),$$

provided k < 0.

The proof is completed.

# 

## 4 Applications to trigonometric and hyperbolic functions

In this part, we shall give certain natural relevance to the leading results.

**Theorem 3** Let  $e_q$  be defined in terms of (12). Then

$${}_{q}L_{2}(e_{q^{2}}(-x))(y) = \frac{G(q^{2})(q^{2};q^{2})_{\infty}}{[2]_{q}y^{2}}H_{1,2}^{1,1}\left(\frac{1-q^{2}}{y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (0,1),(1,1) \end{pmatrix}\right).$$

*Proof* By setting  $\lambda = 0$ ,  $\gamma = 1 - q^2$ , and k = 1, Theorem 3 immediately follows from Theorem 2.

The demonstration of this theorem is finished.

**Theorem 4** Let  $sin_q$  be defined in terms of (13). Then we have

$${}_{q}L_{2}(\sin_{q^{2}}(x))(y) = \frac{\sqrt{\pi}(1-q^{2})^{\frac{-1}{2}} \{G(q^{2})\}^{2}}{[2]_{q}y^{4}} (q^{2};q^{2})_{\infty}$$
$$\times H_{1,3}^{1,1} \left( \frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (\frac{1}{2},1)(0,1),(1,1) \end{pmatrix} \right).$$

*Proof* The proof of this theorem indeed follows from substituting the values  $\lambda = 0$ , k = 1, and  $\gamma = \frac{(1-q^2)^2}{4}$  and from multiplying by  $\sqrt{\pi}(1-q^2)^{\frac{-1}{2}} \{G(q^2)\}^2$ . Hence, the proof is completed. **Theorem 5** Let  $\cos_q$  be defined in terms of (14). Then

$${}_{q}L_{2}(\cos_{q^{2}}(x))(y) = \frac{\sqrt{\pi}(1-q^{2})^{\frac{-1}{2}} \{G(q^{2})\}^{2}}{[2]_{q}y^{4}} (q^{2};q^{2})_{\infty}$$
$$\times H_{1,3}^{1,1}\left(\frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (0,1), (\frac{1}{2},1), (1,1) \end{pmatrix}\right).$$

*Proof* Proof follows from Theorem 2 for  $\lambda = 0$ , k = 1,  $\gamma = \frac{(1-q^2)^2}{4}$ . The proof is completed.

**Theorem 6** Let  $\sinh_q$  be defined in terms of (15). Then

$${}_{q}L_{2}(\sinh_{q^{2}}(x))(y) = \frac{\sqrt{\pi}(1-q^{2})^{\frac{-1}{2}}\{G(q^{2})\}^{2}}{i[2]_{q}y^{4}} (q^{2};q^{2})_{\infty}$$
$$\times H_{1,3}^{1,1}\left(\frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (\frac{1}{2},1)(0,1),(1,1) \end{pmatrix}\right).$$

*Proof* By using the special case,  $\lambda = 0$ , k = 1,  $\gamma = \frac{(1-q^2)^2}{4}$ . The proof is completed.

**Theorem 7** Let  $\cosh_q$  be defined in terms of (16). Then

$${}_{q}L_{2}(\cosh_{q^{2}}(x))(y) = \frac{\sqrt{\pi}(1-q^{2})^{\frac{-1}{2}} \{G(q^{2})\}^{2}}{[2]_{q}y^{4}} (q^{2};q^{2})_{\infty}$$
$$\times H_{1,3}^{1,1} \left(\frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (0,1), (\frac{1}{2},1), (1,1) \end{pmatrix} \right)$$

*Proof* The validation of this theorem is identical to that of the previous theorem.  $\Box$ 

**Theorem 8** Let the Bessel function be defined in terms of (8). Then

$$\begin{split} {}_{q}L_{2}\big(J_{\nu}\big(x;q^{2}\big)\big)(y) &= \frac{\{G(q^{2})\}^{2}}{[2]_{q}y^{4}}\big(q^{2};q^{2}\big)_{\infty} \\ &\times H^{1,1}_{1,3}\left(\frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \left| \begin{matrix} (0,1) \\ (\frac{\nu}{2},1), \left(\frac{-\nu}{2},1\right), (1,1) \end{matrix} \right). \end{split}$$

*Proof* By setting  $\lambda = 0$ , k = 1,  $\gamma = \frac{1-q^2}{4}$  and multiplying by  $\{G(q^2)\}^2$ , the result follows.  $\Box$ 

**Theorem 9** Let the q-Bessel function of the second kind be defined in terms of (9)–(11). *Then* 

$${}_{q}L_{2}(Y_{\nu}(x;q^{2}))(y) = \frac{\{G(q^{2})\}^{2}}{[2]_{q}y^{4}} (q^{2};q^{2})_{\infty} \\ \times H_{2,4}^{2,1} \left( \frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \left| \begin{array}{c} (0,1), (\frac{-\nu}{2},1) \\ (\frac{\nu}{2},1), (\frac{-\nu-1}{2},1)(1,1) \end{array} \right),$$

$${}_{q}L_{2}(K_{\nu}(x;q^{2}))(y) = \frac{(1-q^{2})}{[2]_{q}y^{4}} (q^{2};q^{2})_{\infty} \\ \times H_{1,3}^{2,1} \left( \frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1)\\ (\frac{\nu}{2},1), (\frac{-\nu}{2},1), (1,1) \end{pmatrix} \right), \\ {}_{q}L_{2}(H_{\nu}(x;q^{2}))(y) = \frac{(1-q^{2})^{1-\alpha}}{2^{1-\alpha}[2]_{q}y^{4}} (q^{2};q^{2})_{\infty} \\ \times H_{2,4}^{3,2} \left( \frac{(1-q^{2})^{2}}{4y^{2}};q^{2} \middle| \begin{pmatrix} (0,1), (\frac{1-\alpha}{2},1)\\ (\frac{\nu}{2},1), (\frac{-\nu}{2},1), (\frac{1+\alpha}{2},1)(1,1) \end{pmatrix} \right)$$

*Proof* Proof of this theorem follows from (9)-(11) and the technique quite similar to that of Theorems 3–8. We omit the details.

#### Acknowledgements

The authors are thankful to the referee for his/her valuable remarks and comments for the improvement of the paper.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, Jordan. <sup>2</sup>Department of Mathematics, Cankaya University, Ankara, Turkey. <sup>3</sup>Institute of Space Sciences, Magurele-Bucharest, Romania. <sup>4</sup>Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India.

#### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

#### Received: 13 February 2018 Accepted: 16 March 2018 Published online: 03 April 2018

#### References

- 1. Kac, V.G., Cheung, P.: Quantum Calculus: Universitext. Springer, New York (2002)
- 2. Gasper, G., Rahman, M.: Generalized Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)
- 3. Fox, C.: The G and H-functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395–429 (1961)
- Mathai, A.M., Saxena, R.K.: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Springer, Berlin (1973)
- 5. Mathai, A.M., Saxena, R.K.: The H-Function with Application in Statistics and Other Disciplines. Wiley, New York (1978)
- Saxena, R.K., Modi, G.C., Kalla, S.L.: A basic analogue of Fox's *H*-function. Rev. Téc. Fac. Ing., Univ. Zulia 6, 139–143 (1983)
- 7. Saxena, R.K., Kumar, R.: Recurrence relations for the basic analogue of the *H*-function. J. Nat. Acad. Math. **8**, 48–54 (1990)
- Yadav, R.K., Purohit, S.D., Kalla, S.L.: On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric functions. Fract. Calc. Appl. Anal. 11(2), 129–142 (2008)
- 9. Albayrak, D., Purohit, S.D., Ucar, F.: On q-Sumudu transforms of certain q-polynomials. Filomat 27(2), 413-429 (2013)
- 10. Abdi, W.H.: On q-Laplace transforms. Proc. Natl. Acad. Sci., India 29, 389–408 (1961)
- 11. Albayrak, D., Purohit, S.D., Ucar, F.: On *q*-analogues of Sumudu transform. An. Științ. Univ. 'Ovidius' Constanța, Ser. Mat. **21**(1), 239–260 (2013)
- Albayrak, D., Purohit, S.D., Ucar, F.: Certain inversion and representation formulas for q-Sumudu transforms. Hacet. J. Math. Stat. 43(5), 699–713 (2014)
- Purohit, S.D., Ucar, F.: An application of *q*-Sumudu transform for fractional *q*-kinetic equation. Turk. J. Math. 42(1), 726–734 (2018)
- 14. Fitouhi, A., Bettaibi, N.: Wavelet transforms in quantum calculus. J. Nonlinear Math. Phys. 13(3), 492–506 (2006)
- 15. Fitouhi, A., Bettaibi, N.: Applications of the Mellin transform in quantum calculus. J. Math. Anal. Appl. **328**, 518–534 (2007)
- 16. Salem, A., Ucar, F.: The *q*-analogue of the *E*<sub>2,1</sub>-transform and its applications. Turk. J. Math. **40**(1), 98–107 (2016)
- 17. Mangontarum, M.M.: On a *q*-analogue of the Elzaki transform called Mangontarum *q*-transform. Discrete Dyn. Nat. Soc. **2014**, Article ID 825618 (2014)
- Al-Omari, S.K.Q.: On *q*-analogues of the Mangontarum transform for certain *q*-Bessel functions and some application. J. King Saud Univ., Sci. 28(4), 375–379 (2016)
- Al-Omari, S.K.Q.: On *q*-analogues of the Natural transform of certain *q*-Bessel functions and some application. Filomat 31(9), 2587–2598 (2017)

- 20. Yürekli, O.: Theorems on L<sub>2</sub>-transforms and its applications. Complex Var. Elliptic Equ. 38, 95–107 (1999)
- 21. Yürekli, O.: New identities involving the Laplace and the *L*<sub>2</sub>-transforms and their applications. Appl. Math. Comput. **99**, 141–151 (1999)
- 22. Ucar, F., Albayrak, D.: On *q*-Laplace type integral operators and their applications. J. Differ. Equ. Appl. 18(6), 1001–1014 (2012)

# Submit your manuscript to a SpringerOpen<sup></sup><sup>●</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com