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Abstract
This work predominantly labels the problem of approximation of state variables for
discrete-time stochastic genetic regulatory networks with leakage, distributed, and
probabilistic measurement delays. Here we design a linear estimator in such a way
that the absorption of mRNA and protein can be approximated via known
measurement outputs. By utilizing a Lyapunov–Krasovskii functional and some
stochastic analysis execution, we obtain the stability formula of the estimation error
systems in the structure of linear matrix inequalities under which the estimation error
dynamics is robustly exponentially stable. Further, the obtained conditions (in the
form of LMIs) can be effortlessly solved by some available software packages.
Moreover, the specific expression of the desired estimator is also shown in the main
section. Finally, two mathematical illustrative examples are accorded to show the
advantage of the proposed conceptual results.

Keywords: Genetic regulatory networks (GRNs); Time-varying delays; Distributed
delays; Leakage delays; Probabilistic measurement delays

1 Introduction and system formulation
A gene is a physical structure made up of DNA, and most of the genes hold the data which
is required to make molecules called as proteins. In the modern years, research in genetic
regulatory networks (GRNs) has gained significance in both biological and bio-medical
sciences, and a huge number of tremendous results have been issued. Distinct kinds of
computational models have been applied to propagate the behaviors of GRNs; see, for in-
stance, the Bayesian network models, the Petri net models, the Boolean models, and the
differential equation models. Surrounded by the indicated models, the differential equa-
tion models describe the rate of change in the concentration of gene production, such as
mRNAs and proteins, as constant values, whereas the other models do not have such a
basis.
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As one of the mostly investigated dynamical behaviors, the state estimation for GRNs
has newly stirred increasing research interest (see [1, 2] and the references cited therein
[1, 3–10]). In fact, this is an immense concern since GRNs are complex nonlinear systems.
Due to the complication, it is frequently the case that only partial facts around the states
of the nodes are accessible in the network outputs. In consideration of realizing the GRNs
better, there has been a necessity to estimate the state of the nodes through securable
measurements. In [1], the robust H∞ problem was considered for a discrete-time stochas-
tic GRNs with probabilistic measurement delays. In [2], the robust H∞ state estimation
problem was investigated for a general class of uncertain discrete-time stochastic neu-
ral networks with probabilistic measurement delays. By designing an adaptive controller,
the authors investigated the problem of delayed GRNs stabilization in [7]. Xiao et al. dis-
cussed the stability, periodic oscillation, and bifurcation of two-gene regulatory networks
with time delays [8]. The stability of continuous GRNs and discrete-time GRNs was dis-
cussed, respectively, in [11]. Huang et al. considered the bifurcation of delayed fractional
GRNs by hybrid control [12].

Due to the limited signal communication speed, the measurement among the networks
is always assumed to be a delayed one. So, the network measurement could not include
instruction about the present gene states, while the delayed network measurement could.
The most fashionable mechanism to relate the probabilistic measurement delay or some
other kind of lacking measurement is to grab it as a Bernoulli distributed white classi-
fication [13–20]. The robust stochastic stability of stochastic genetic GRNs was consid-
ered, and some delay-dependent criteria were presented in the form of LMIs [18]. And
the asymptotic stability of delayed stochastic GRNs with impulsive effect was discussed
in [19]. The synchronization problem of dynamical system was also discussed in [21, 22].
The challenging task is how to draft the robust estimators when both uncertainties and
probabilistic appeared in discrete-time GRN models.

More recently, in [23], Liu et al. developed a state estimation problem for a genetic reg-
ulatory network with Markovian jumping parameters and time delays:

ṁ(t) = –A
(
r(t)

)
m(t) + W

(
r(t)

)
g
(
p
(
t – σ (t)

))
,

ṗ(t) = –C
(
r(t)

)
p(t) + D

(
r(t)

)
m

(
t – τ (t)

)
.

Also in [24], Wan et al. proposed the state estimation of discrete-time GRN with random
delays governed by the following equation:

M(k + 1) = AM(k) + Bf
(
P
(
k – d(k)

))
+ V ,

P(k + 1) = CP(k) + DM
(
k – τ (k)

)
.

Considering the above referenced papers, the robustness of approximation of the
stochastic GRNs with leakage delays, distributed delays, and probabilistic measurement
delays has not been tackled. The main contributions of this paper are summarized as
follows:

1. We examine the approximation concern for the discrete-time stochastic GRNs with
the leakage delays, distributed delays, and probabilistic measurement delays into the
problem and model the robust H∞ state estimator for a class of discrete-time
stochastic GRNs. Here, the probabilistic measurement delays, which narrate the
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binary shifting sequence, are satisfied by the conditional probability distribution. So,
the crisis of parameter uncertainties, including errors, stochastic disturbance, leakage
delays, distributed delays, and the activation function of the addressed GRNs, is
identified by sector-bounded nonlinearities.

2. By applying the Lyapunov stability theory and stochastic analysis techniques,
sufficient conditions are first entrenched to assure the presence of the desired
estimators in terms of a linear matrix inequality (LMI). These circumstances are
reliant on both the lower and upper bounds of time-varying delays. Again, the
absolute expression of the desired estimator is demonstrated to assure the estimation
error dynamics to be robustly exponentially stable in the mean square for the
consigned system.

3. Finally, twin mathematical examples beside with simulations are given to view the
capability of the advanced criteria.

In this note, we consider the GRNs with leakage, discrete, and distributed delays de-
scribed as follows:

x(k + 1) = –
(
A + �A(k)

)
x(k – ρ1) +

(
B + �B(k)

)
ĝ
(
y
(
k – δ(k)

))

+
(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)
+ σ

(
k, x(k – ρ1)

)
ω(k) + Lxvx(k),

y(k + 1) = –
(
C + �C(k)

)
y(k – ρ2) +

(
D + �D(k)

)
x
(
k – τ (k)

)

+
(
F + �F(k)

) ∞∑

n=1

ξnx(k – n) + Lyvy(k), (1)

where x(k – ρ1) = [x1(k – ρ1), . . . , xn(k – ρ2)]T ∈ R
n, y(k – ρ2) = [y1(k – ρ2), . . . , yn(k – ρ2)]T ∈

R
n, xi(k – ρ1), and yi(k – ρ2) (i = 1, 2, . . . , n) denote the concentrations of mRNA and pro-

tein of the ith node at time t, respectively; A = diag{a1, a2, . . . , an}, C = diag{c1, c2, . . . , cn},
and D = diag{d1, d2, . . . , dn} are constant matrices; ai > 0, ci > 0, and di > 0 are the
degradation rates of mRNAs, protein, and the translation rate of the ith gene, respec-
tively; the coupling matrix of the genetic regulatory network is defined as B = (bij) ∈
R

n×n ; E = diag{e1, e2, . . . , en}, and F = diag{f1, f2, . . . , fn} are the weight matrices. �A(k),
�B(k), �C(k), �D(k), �E(k), and �F(k) represent the parameter uncertainties; h(y(k)) =
[h1(y(k)), . . . , hn(y(k))]T ∈ R

n denotes the activation function; the exogenous disturbance
signals vx(k), vy(k) ∈R

n satisfy vi(·) ∈ L2[0,∞). Lx and Ly are the known real constant ma-
trices. δ(k) denotes the feedback regulation delay and τ (k) denotes the translation delay,
which satisfy

0 ≤ δm ≤ δ(k) ≤ δM, 0 ≤ τm ≤ τ (k) ≤ τM, (2)

where the lower bound δm, τm and the upper bound δM , τM are known positive integers.
Furthermore, the nonlinear activation function ĝ(y(k – δ(k))) = [ĝ1(y1(k – δ(k))), . . . ,

ĝn(yn(k – δ(k)))]T ∈ R
n represents the feedback regulation of the protein on the transcrip-

tion. It is a monotonic function in the Hill form, that is, ĝi(f ) = f hj

1+f hj
(j = 1, 2, . . . , n), where

hj is the Hill co-efficient and f is a positive constant. The noise intensity function vector



Pandiselvi et al. Advances in Difference Equations  (2018) 2018:123 Page 4 of 27

σ (k, x(k)) : R×R
n →R

n satisfies

σ T(
k, x(k – ρ1)

)
σ
(
k, x(k – ρ1)

) ≤ xT (k – ρ1)Hx(k – ρ1), (3)

where H > 0 is a known matrix. ω(k) is a Brownian motion with E{ω(k)} = 0, E{ω2(k)} = 1
and E{ω(i)ω(j)} = 0 (i �= j).

For large-scale complex networks, information around the network nodes is not often
fully attainable from the network outputs (see [25, 26]). We can assume that network mea-
surements are described as follows:

Zx(k) = Mx(k),

Zy(k) = Ny(k), (4)

where M and N are known constant matrices. Zx(k), Zy(k) ∈ R
l are the complete outputs

of the network. The network outputs are subjected to probabilistic delays that can be de-
scribed by

Z̃x(k) = αkZx(k) + (1 – αk)Zx(k – 1),

Z̃y(k) = βkZy(k) + (1 – βk)Zy(k – 1), (5)

where the stochastic variables αk ,βk ∈ R are Bernoulli allocated with sequences directed
by

Prob{αk = 1} = E{αk} = α0, Prob{αk = 0} = 1 – E{αk} = 1 – α0,

Prob{βk = 1} = E{βk} = β0, Prob{βk = 0} = 1 – E{βk} = 1 – β0. (6)

Here α0,β0 > 0 are known constants. Obviously, for αk , βk , the variance σα = α0(1 – α0),
σβ = β0(1 – β0).

The GRN state estimator to be designed is given as follows:

⎧
⎨

⎩
x̂(k + 1) = –Axx̂(k) + BxZ̃x(k),

ŷ(k + 1) = –Ayŷ(k) + ByZ̃y(k),
(7)

where x̂(k), ŷ(k) ∈ R
n are the estimations of x(k) and y(k), and Ax, Ay, Bx, By are the esti-

mator gain matrices to be determined.
Assume that the estimation error vectors are x̃(k) = x(k) – x̂(k) and ỹ(k) = y(k) – ŷ(k); the

estimation error dynamics can be defined as follows from equations (1), (5), and (7):

x̃(k + 1) = –
(
A + �A(k)

)
x(k – ρ1) + (Ax – αkBxM)x(k) +

(
B + �B(k)

)
ĝ
(
y
(
k – δ(k)

))

+
(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)
+ σ

(
k, x(k – ρ1)

)
ω(k) – Axx̃(k)

– (1 – αk)BxMx(k – 1) + Lxvx(k),
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ỹ(k + 1) = –
(
C + �C(k)

)
y(k – ρ2) + (Ay – βkByN)y(k) +

(
D + �D(k)

)
x
(
k – τ (k)

)

+
(
F + �F(k)

) ∞∑

n=1

ξnx
(
(k – n)

)
– Ayỹ(k) – (1 – βk)ByNy(k – 1)

+ Lyvy(k). (8)

For suitability, we denote

x̄(k) =

[
x(k)
x̃(k)

]

, ȳ(k) =

[
y(k)
ỹ(k)

]

,

x̄(j) = ψ(j), j = –τM, –τM+1, . . . , –1, 0,

ȳ(j) = ϕ(j), j = –δM, –δM+1, . . . , –1, 0,

where ψ(j), j = –τM, –τM + 1, . . . , –1, 0 and ϕ(j), j = –δM, –δM + 1, . . . , –1, 0 are the initial
conditions.

2 Preliminaries
Notations: Throughout the paper, naturals+ refers to the position for the set of nonneg-
ative integers; Rn indicates the n-dimensional Euclidean space. The superscript “T” acts
as the matrix transposition. The code X ≥ Y (each X > Y ), where X and Y are symmet-
ric matrices, means that X – Y is positive semi-definitive (respectively positive definite).
I means the identity matrix with consistent dimension. The symbol “∗” denotes the term
symmetry. In addition, E{·} denotes the expectation operator. L2[0,∞) is the amplitude
of square-integrable vector functions over [0,∞). | · | denotes the Euclidean vector norm.
Matrices, if not absolutely specified, are affected to have compatible dimensions.

Assumption 1 The parameter uncertainties �A(k), �B(k), �C(k), �D(k), �E(k), �F(k)
are of the following form.

The admissible parameter uncertainties are assumed to be of the form:

[
�A(k) �B(k) �C(k) �D(k) �E(k) �F(k)

]

= RN(k)[W1 W2 W3 W4 W5 W6 ],

where R, Wi (i = 1, 2, . . . , 6) are the known constant matrices with appropriate dimensions.
The uncertain matrix N(k) satisfies NT (k)N(k) ≤ I , ∀k ∈ naturals+.

Assumption 2 The vector-valued function ĝi(·) is assumed to satisfy the following sector-
bounded condition, namely for ∀x, y ∈R

n:

[
ĝ(x) – ĝ(y) – N1(x – y)

]T[
ĝ(x) – ĝ(y) – N2(x – y)

] ≤ 0,

where N1, N2 are known real constant matrices, and Ñ = N1 – N2 is a symmetric positive
definite matrix.

Definition 2.1 If there exist constants α > 0 and 0 < μ < 1, system (8) with vx(k) = 0 and
vy(k) = 0 is global robust exponential state estimator of GRNs (1) with measurements (5)
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in the mean square sense such that

E
{∣∣x̄(k)

∣∣2 +
∣∣ȳ(k)

∣∣2} ≤ αμk
(

max
–τM≤k≤0

∣∣x̄(k)
∣∣2 + max

–δM≤k≤0

∣∣ȳ(k)
∣∣2

)
.

Definition 2.2 If there exists a scalar γ > 0, system (8) is a robust H∞ state estimator of
GRNs (1) with measurements (5) in the mean square sense with zero initial conditions
such that

E

∞∑

k=0

{∣∣x̄(k)
∣∣2 +

∣∣ȳ(k)
∣∣2} ≤ γ 2

E

∞∑

k=0

(∣∣vx(k)
∣∣2 +

∣∣vy(k)
∣∣2)

for all non-zero vx(k), vy(k) ∈ L2[0,∞).

The following lemmas are crucial in implementing our main results.

Lemma 2.3 (see [2, 26]) Let N and S be real constant matrices; matrix F(k) satisfies
FT (k)F(k) ≤ 1. Then we have:

(i) For any ε > 0, NF(k)S + ST FT (k)NT ≤ ε–1NNT + εST S.
(ii) For any P > 0, ±2xT y ≤ xT P–1x + yT Py.

Lemma 2.4 Given the constant matrices �̂1, �̂2, and �̂3, where �̂T
1 = �̂1 and �̂T

2 = �̂2 > 0,
then �̂1 + �̂T

3 �̂–1
2 �̂3 < 0, if and only if

[
�̂1 �̂T

3

�̂3 –�̂2

]

< 0 or

[
–�̂2 �̂3

�̂T
3 �̂1

]

< 0.

Lemma 2.5 Let M ∈ R
n×n be a positive semi-definite matrix, xi ∈ R

n, and ai ≥ 0
(i = 1, 2, . . .). If the series distressed are convergent, the following inequality holds:

( +∞∑

i=1

aixi

)T

M

( +∞∑

i=1

aixi

)

≤
( +∞∑

i=1

ai

) +∞∑

i=1

aixT
i Mxi.

Remark 2.1 In [1] Wang et al. investigated the robust state estimation for stochastic ge-
netic regulatory networks with probabilistic delays in discrete sense, and Lv et al. [4] devel-
oped the robust distributed state estimation for genetic regulatory networks with Marko-
vian jumping parameters. However, the inclusion of discrete-interval GRNs with leakage
delays, probabilistic measurement delays, noise, and distributed delays has not been taken
into account. So, the prime intention of this work is to elucidate that the state estimation
problem for the improved system (8) with leakage delays is robustly exponentially stable.

3 Exponential stability criterion
In this part, we first introduce a sufficient condition under which the augmented system
(8) is robustly mean-square exponentially stable with the exogenous disturbance signals
vx(k) = 0 and vy(k) = 0.

Theorem 3.1 Suppose that Assumptions 1 and 2 hold. Let the leakage delays ρ1, ρ2 and the
estimation parameters Ax, Bx, Ay, and By be given and also the acceptable conditions hold.
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Then the estimation error system (8) with vx(k) = 0 and vy(k) = 0 is robustly exponentially
stable in the mean square if there exist positive definite matrices R11, R12, R21, R22, R31, R32,
R41, R42, R51, R52 and three positive constant scalars λ, ε1, and ε2 such that the following
LMI holds:

�1 =

⎡

⎢
⎣

�′
11 ∗ ∗

S1 J1 ∗
0 T̄T

1 –ε1I

⎤

⎥
⎦ < 0, �2 =

⎡

⎢
⎣

�′
22 ∗ ∗

S2 J2 ∗
0 T̄T

2 –ε2I

⎤

⎥
⎦ < 0, (9)

where

�′
11 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

ψ11 0 0 0 0 0 0
0 –R21 0 0 0 0 0
0 0 –R31 0 0 0 0
0 0 0 –R41 + ε1W T

4 W4 0 0 0
0 0 0 0 HR11 0 0
0 0 0 0 0 I(R12 + R22) 0
0 0 0 0 0 0 –ξ̄R52

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

,

�′
22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ12 0 0 0 0 0 0 0 0
0 –R22 0 0 0 0 0 0 0
0 0 –R32 0 0 0 0 0 0
0 0 0 –R42 – λÑ1 + ε2W T

2 W2 –λÑT
2 0 0 0 0

0 0 0 –λÑ2 –λI 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I(R11 + R21) 0 0
0 0 0 0 0 0 0 μ̄R51 0
0 0 0 0 0 0 0 0 –μ̄R51

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S1 =

⎡

⎢
⎢
⎢⎢
⎣

0 0 0 0 �̄15 0 0
�21 –

√
2R21Ax �23 0 0 0 0√

σαR21BxM 0 √
σαR21BxM 0 0 0 0

0 0 0 �̄44 0 0 0
0 0 0 0 0 �̄55 0

⎤

⎥
⎥
⎥⎥
⎦

,

where

�̄15 = –
√

2(R11 + R21)A; �̄44 =
√

2(R12 + R22)D; �̄55 =
√

2(R12 + R22)F ;

�21 =
√

2R21(Ax – α0BxM); �23 = –
√

2R21(1 – α0)BxM;

S2 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 0 �̄16 0 0 0
�21 –

√
2R22Ay �23 0 0 0 0 0 0√

σβR22ByN 0 √
σβR22ByN 0 0 0 0 0 0

0 0 0 0 �̄45 0 0 0 0
0 0 0 0 0 0 �̄57 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

where

�̄16 = –
√

2(R12 + R22)C; �̄45 =
√

2(R11 + R21)B; �̄57 =
√

2(R11 + R21)E;

�21 =
√

2R22(Ay – β0ByN); �23 = –
√

2R22(1 – β0)ByN ,

J1 = diag
{

–(R11 + R21), –R21, –R21, –(R12 + R22), –(R12 + R22)
}

,

J2 = diag
{

–(R12 + R22), –R22, –R22, –(R11 + R21), –(R11 + R21)
}

,
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T̄1 =

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 –
√

2(R11 + R21)T 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

√
2(R12 + R22)T 0 0 0

0 0 0 0 0
√

2(R12 + R22)T 0

⎤

⎥⎥
⎥⎥
⎦

,

T̄2 =

⎡

⎢⎢⎢
⎢
⎣

0 0 0 0 0 –
√

2(R12 + R22)T 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0

√
2(R11 + R21)T 0 0 0 0

0 0 0 0 0 0
√

2(R11 + R21)T 0 0

⎤

⎥⎥⎥
⎥
⎦

,

μ̄ =
∞∑

s=1

μs, ξ̄ =
∞∑

n=1

ξn,

ψ11 = –R11 + R31 + (τM – τm + 1)R41 + ξ̄R52; ψ12 = –R12 + R32 + (δM – δm + 1)R42,

Ñ1 =
(NT

1 N2 + NT
2 N1)

2
; Ñ2 = –

(NT
1 + NT

2 )
2

.

Proof Choose a Lyapunov–Krasovskii functional for the augmented system (8):

V(k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k) + V6(k), (10)

where

V1(k) = xT (k)R11x(k) + yT (k)R12y(k),

V2(k) = x̃T (k)R21x̃(k) + ỹT (k)R22ỹ(k),

V3(k) = xT (k – 1)R31x(k – 1) + yT (k – 1)R32y(k – 1),

V4(k) =
k–1∑

i=k–τ (k)

xT (i)R41x(i) +
k–1∑

i=k–δ(k)

yT (i)R42y(i),

V5(k) =
–τm∑

j=–τM+1

k–1∑

i=k+j

xT (i)R41x(i) +
–δm∑

j=–δM+1

k–1∑

i=k+j

yT (i)R42y(i),

V6(k) =
∞∑

i=1

μi

k–1∑

j=k–i

hT(
y(j)

)
R51h

(
y(j)

)
+

∞∑

i=1

ξi

k–1∑

j=k–i

xT (i)R52x(i).

Calculate the difference of Vi(k) (i = 1, 2, . . . , 6) along the trajectories of model (8) with
vx(k) = 0, vy(k) = 0 and

E
{
�V(k)

}
=

6∑

i=1

E
{
Vi(k)

}
. (11)

Now, we have

E
{
�V1(k)

}
= E

{
V1(k + 1) – V1(k)

}

= E

{[

–
(
A + �A(k)

)
x(k – ρ1) +

(
B + �B(k)

)
ĝ
(
y
(
k – δ(k)

))
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+
(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)
]T

× R11

[

–
(
A + �A(k)

)
x(k – ρ1) +

(
B + �B(k)

)
ĝ(y

(
k – δ(k)

)

+
(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)
]

+ σ T(
k, x(k – ρ1)

)
R11σ

(
k, x(k – ρ1)

)
– xT (k)R11x(k) – yT (k)R12y(k)

+

[

–
(
C + �C(k)

)
y(k – ρ2) +

(
D + �D(k)

)
x
(
k – τ (k)

)

+
(
F + �F(k)

) ∞∑

n=1

ξnx(k – n)

]T

× R12

[

–
(
C + �C(k)

)
y(k – ρ2) +

(
D + �D(k)

)
x
(
k – τ (k)

)

+
(
F + �F(k)

) ∞∑

n=1

ξnx(k – n)

]}

, (12)

E
{
�V2(k)

}
= E

{
V2(k + 1) – V2(k)

}

= E

{[

–
(
A + �A(k)

)
x(k – ρ1) + (Ax – αkBxM)x(k)

+
(
B + �B(k)

)
ĝ
(
y
(
k – δ(k)

))
+

(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)

– Axx̃(k) – (1 – αk)BxMx(k – 1)

]T

× R21

[

–
(
A + �A(k)

)
x(k – ρ1) + (Ax – αkBxM)x(k)

+
(
B + �B(k)

)
ĝ
(
y
(
k – δ(k)

))
+

(
E + �E(k)

) ∞∑

s=1

μsh
(
y(k – s)

)

– Axx̃(k) – (1 – αk)BxMx(k – 1)

]

+ σα

[
BxMx(k) + BxMx(k – 1)

]T R21
[
BxMx(k) + BxMx(k – 1)

]

– x̃T (k)R21x̃(k) +

[

–
(
C + �C(k)

)
y(k – ρ2) + (Ay – βkByN)y(k)

+
(
D + �D(k)

)
x
(
k – τ (k)

)
+

(
F + �F(k)

) ∞∑

n=1

ξnx
(
(k – n)

)

– Ayỹ(k) – (1 – βk)ByNy(k – 1)

]T
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× R22

[

–
(
C + �C(k)

)
y(k – ρ2) + (Ay – βkByN)y(k)

+
(
D + �D(k)

)
x
(
k – τ (k)

)
+

(
F + �F(k)

) ∞∑

n=1

ξnx
(
(k – n)

)

– Ayỹ(k) – (1 – βk)ByNy(k – 1)

]

+ σβ

[
ByNy(k) + ByNy(k – 1)

]T R22
[
ByNy(k) + ByNy(k – 1)

]

– ỹT (k)R22ỹ(k)

}

, (13)

E
{
�V3(k)

}
= E

{
V3(k + 1) – V3(k)

}

= E
{

xT (k)R31x(k) – xT (k – 1)R31x(k – 1)

+ yT (k)R32y(k) – yT (k – 1)R32y(k – 1)
}

, (14)

E
{
�V4(k)

}
= E

{
V4(k + 1) – V4(k)

}

≤ E

{

xT (k)R41x(k) – xT(
k – τ (k)

)
R41x

(
k – τ (k)

)

+
k–τm∑

i=k–τM+1

xT (i)R41x(i)

+ yT (k)R42y(k) – yT(
k – δ(k)

)
R42y

(
k – δ(k)

)

+
k–δm∑

i=k–δM+1

yT (i)R42y(i)

}

, (15)

E
{
�V5(k)

}
= E

{
V5(k + 1) – V5(k)

}

= E

{

(τM – τm)xT (k)R41x(k) –
k–τm∑

i=k–τM+1

xT (i)R41x(i)

+ (δM – δm)yT (k)R42y(k) –
k–δm∑

i=k–δM+1

yT (i)R42y(i)

}

, (16)

E
{
�V6(k)

}
= E

{
V6(k + 1) – V6(k)

}

=
∞∑

i=1

μi

k+1–1∑

j=k+1–i

hT(
y(j)

)
R51h

(
y(j)

)
+

∞∑

i=1

ξi

k+1–1∑

j=k+1–i

xT (i)R52x(i)

–
∞∑

i=1

μi

k–1∑

j=k–i

hT(
y(j)

)
R51h

(
y(j)

)
–

∞∑

i=1

ξi

k–1∑

j=k–i

xT (i)R52x(i)

=
∞∑

i=1

μi
[
hT(

y(k)
)
R51h

(
y(k)

)
– hT(

y(k – i)
)
R51h

(
y(k – i)

)]

+
∞∑

i=1

ξi
[
xT (k)R52x(k) – xT (k – i)R52x(k – i)

]
.
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Using Lemma 2.5, we get

E
{
�V6(k)

} ≤ μ̄hT(
y(k)

)
R51h

(
y(k)

)
– μ̄

[
μ̄h

(
y(k – s)

)]T R51
[
μ̄h

(
y(k – s)

)]

+ ξ̄xT (k)R52x(k) – ξ̄
[
ξ̄x(k – n)

]T R52
[
ξ̄x(k – n)

]
. (17)

Substituting equations (12)–(17) into equation (11) results in

E
{
�V(k)

} ≤ E
{
� T

0 (k)
[
�11 + σαŴ T

01R21Ŵ01 + 2ĜT
01(k)(R11 + R21)Ĝ01(k)

+ 2F̂T
01(k)R21F̂01(k) + 2ĜT

11(k)(R12 + R22)Ĝ11(k)

+ 2ŜT
01(k)(R12 + R22)Ŝ01(k)

]
�0(k)

+ �T
0 (k)

[
�12 + σβŴ T

02R22Ŵ02 + 2ĜT
02(k)(R12 + R22)Ĝ02(k)

+ 2F̂T
02(k)R22F̂02(k) + 2ĜT

12(k)(R11 + R21)Ĝ12(k)

+ 2ŜT
02(k)(R11 + R21)Ŝ02(k)

]
�0(k)

}
, (18)

where

�0(k) =
[
xT (k), x̃T (k), xT (k – 1), xT(

k – τ (k)
)
, xT (k – ρ1), xT (k – n),

[
ξ̄x(k – n)

]T]
,

�0(k) =
[
yT (k), ỹT (k), yT (k – 1), yT(

k – δ(k)
)
, gT(

y
(
k – δ(k)

))
, yT (k – ρ2), hT(

y(k – s)
)
,

hT (k),
[
μ̄h

(
y(k – s)

)]T]
,

where

�11 =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ψ11 0 0 0 0 0 0
0 –R21 0 0 0 0 0
0 0 –R31 0 0 0 0
0 0 0 –R41 0 0 0
0 0 0 0 HR11 0 0
0 0 0 0 0 I(R12 + R22) 0
0 0 0 0 0 0 –ξ̄R52

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

�12 =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

ψ12 0 0 0 0 0 0 0 0
0 –R22 0 0 0 0 0 0 0
0 0 –R32 0 0 0 0 0 0
0 0 0 –R42 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I(R11 + R21) 0 0
0 0 0 0 0 0 0 μ̄R51 0
0 0 0 0 0 0 0 0 –μ̄R51

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

,

ψ11 = –R11 + R31 + (τM – τm + 1)R41 + ξ̄R52; ψ12 = –R12 + R32 + (δM – δm + 1)R42,

Ŵ01 = [BxM, 0,BxM, 0, 0, 0, 0]; Ŵ02 = [ByN , 0,ByN , 0, 0, 0, 0, 0, 0],

Ĝ01(k) =
[
0, 0, 0, 0, –

(
A + �A(k)

)
, 0, 0

]
;
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Ĝ02(k) =
[
0, 0, 0, 0, 0, –

(
C + �C(k)

)
, 0, 0, 0

]
,

F̂01(k) =
[
Ax – α0BxM, –Ax, –(1 – α0)BxM, 0, 0, 0, 0

]
;

F̂02(k) =
[
Ay – β0ByN , –Ay, –(1 – β0)ByN , 0, 0, 0, 0, 0, 0

]
,

Ĝ11(k) =
[
0, 0, 0,

(
D + �D(k)

)
, 0, 0, 0

]
; Ĝ12(k) =

[
0, 0, 0, 0,

(
B + �B(k)

)
, 0, 0, 0, 0

]
,

Ŝ01(k) =
[
0, 0, 0, 0, 0,

(
F + �F(k)

)
, 0

]
; Ŝ02(k) =

[
0, 0, 0, 0, 0, 0,

(
E + �E(k)

)
, 0, 0

]
.

From Assumption 2, we have

[
y(k – δ(k))

ĝ(y(k – δ(k)))

]T [
Ñ1 Ñ2

ÑT
2 I

][
y(k – δ(k))

ĝ(y(k – δ(k)))

]

≤ 0, (19)

where

Ñ1 =
(NT

1 N2 + NT
2 N1)

2
; Ñ2 = –

(NT
1 + NT

2 )
2

.

Then, from equations (18) and (19), we have

E
{
�V (k)

} ≤ E
{
�V (k)

}
– E

⎧
⎨

⎩
λ

[
y(k – δ(k))

g(y(k – δ(k)))

]T [
Ñ1 Ñ2

ÑT
2 I

][
y(k – δ(k))

g(y(k – δ(k)))

]⎫
⎬

⎭

= E
{
� T

0 (k)
[
�11 + σαŴ T

01R21Ŵ01 + 2ĜT
01(k)(R11 + R21)Ĝ01(k)

+ 2F̂T
01(k)R21F̂01(k) + 2ĜT

11(k)(R12 + R22)Ĝ11(k)

+ 2ŜT
01(k)(R12 + R22)Ŝ01(k)

]
�0(k)

+ �T
0 (k)

[
�22 + σβŴ T

02R22Ŵ02 + 2ĜT
02(k)(R12 + R22)Ĝ02(k)

+ 2F̂T
02(k)R22F̂02(k) + 2ĜT

12(k)(R11 + R21)Ĝ12(k)

+ 2ŜT
02(k)(R11 + P21)Ŝ02(k)

]
�0(k)

}
, (20)

where

�22 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

ψ12 0 0 0 0 0 0 0 0
0 –R22 0 0 0 0 0 0 0
0 0 –R32 0 0 0 0 0 0
0 0 0 –R42 – λÑ1 –λÑT

2 0 0 0 0
0 0 0 –λÑ2 –λI 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I(R11 + R21) 0 0
0 0 0 0 0 0 0 μ̄R51 0
0 0 0 0 0 0 0 0 –μ̄R51

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.

Notice that, since �1 < 0 and �2 < 0, there are two scalars μ1 > 0 and μ2 > 0 such that

�̂1 = �1 + μ1

[
I2n×2n 0

0 0

]

< 0,

�̂2 = �2 + μ2

[
I2n×2n 0

0 0

]

< 0. (21)
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Equation (21) implies

�11 + μ1

[
I2n×2n 0

0 0

]

+ σαŴ T
01R21Ŵ01 + 2ĜT

01(k)(R11 + R21)Ĝ01(k) + 2F̂T
01(k)R21F̂01(k)

+2ĜT
11(k)(R12 + R22)Ĝ11(k) + 2ŜT

01(k)(R12 + R22)Ŝ01(k) < 0,

�22 + μ2

[
I2n×2n 0

0 0

]

+ σβŴ T
02R22Ŵ02 + 2ĜT

02(k)(R12 + R22)Ĝ02(k) + 2F̂T
02(k)R22F̂02(k)

+2ĜT
12(k)(R11 + R21)Ĝ12(k) + 2ŜT

02(k)(R11 + R21)Ŝ02(k) < 0. (22)

First we satisfy (21) before proving the exponential stability. Using Lemma 2.4, the above
equalities are equivalent to

�3(k) =

[
�̂11 ∗

S1(k) J1

]

< 0, �4(k) =

[
�̂22 ∗

S2(k) J2

]

< 0, (23)

where

�̂11 = �11 + μ1

[
I2n×2n 0

0 0

]

,

�̂22 = �22 + μ2

[
I2n×2n 0

0 0

]

,

S1(k) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

√
2(R11 + R21)Ĝ01(k)√

2R21F̂01(k)√
σαR21Ŵ01√

2(R12 + R22)Ĝ11(k)√
2(R12 + R22)Ŝ01(k)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 �15 0 0
�21 –

√
2R21Ax �23 0 0 0 0√

σαR21BxM 0 √
σαR21BxM 0 0 0 0

0 0 0 �44 0 0 0
0 0 0 0 0 �55 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

where

�15 = –
√

2(R11 + R21)
(
A + �A(k)

)
;

�21 =
√

2R21(Ax – α0BxM);

�23 = –
√

2R21(1 – α0)BxM;

�44 =
√

2(R12 + R22)
(
D + �D(k)

)
;

�55 =
√

2(R12 + R22)
(
F + �F(k)

)
,
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S2(k) =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

√
2(R12 + R22)Ĝ02(k)√

2R22F̂02(k)√
σβR22Ŵ02√

2(R11 + R21)Ĝ12(k)√
2(R11 + R21)Ŝ02(k)

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 �16 0 0 0
�21 –

√
2R22Ay �23 0 0 0 0 0 0√

σβR22ByN 0 √
σβR22ByN 0 0 0 0 0 0

0 0 0 0 �45 0 0 0 0
0 0 0 0 0 0 �57 0 0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,

where

�16 = –
√

2(R12 + R22)
(
C + �C(k)

)
; �21 =

√
2R22(Ay – β0ByN);

�23 = –
√

2R22(1 – β0)ByN ; �45 =
√

2(R11 + R21)
(
B + �B(k)

)
;

�57 =
√

2(R11 + R21)
(
E + �E(k)

)
,

J1 = diag
{

–(R11 + R21), –R21, –R21, –(R12 + R22), –(R12 + R22)
}

,

J2 = diag
{

–(R12 + R22), –R22, –R22, –(R11 + R21), –(R11 + R21)
}

.

Note that S1(k) and S2(k) can be decomposed as

S1(k) = S1 + �S1(k),

S2(k) = S2 + �S2(k), (24)

where

S1 =

⎡

⎢
⎢⎢
⎣

0 0 0 0 �̄15 0 0
�21 –

√
2R21Ax �23 0 0 0 0√

σαR21BxM 0 √
σαR21BxM 0 0 0 0

0 0 0 �̄44 0 0 0
0 0 0 0 0 �̄55 0

⎤

⎥
⎥⎥
⎦

,

�̄15 = –
√

2(R11 + R21)A; �̄44 =
√

2(R12 + R22)D;

�̄55 =
√

2(R12 + R22)F ,

�S1(k) =

⎡

⎢
⎢⎢
⎣

0 0 0 0 –
√

2(R11 + R21)�A(k) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

√
2(R12 + R22)�D(k) 0 0 0

0 0 0 0 0
√

2(R12 + R22)�F(k) 0

⎤

⎥
⎥⎥
⎦

,

S2 =

⎡

⎢
⎢⎢
⎣

0 0 0 0 0 �̄16 0 0 0
�21 –

√
2R22Ay �23 0 0 0 0 0 0√

σβR22ByN 0 √
σβR22ByN 0 0 0 0 0 0

0 0 0 0 �̄45 0 0 0 0
0 0 0 0 0 0 �̄57 0 0

⎤

⎥
⎥⎥
⎦

,
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where

�̄16 = –
√

2(R12 + R22)C; �̄45 =
√

2(R11 + R21)B; �̄57 =
√

2(R11 + R21)E,

�S2(k) =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 κ16 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 κ45 0 0 0 0
0 0 0 0 0 0 κ57 0 0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,

where κ16 = –
√

2(R12 + R22)�C(k), κ45 =
√

2(R11 + R21)�B(k), κ57 =
√

2(R11 + R21)�E(k).
From Assumption 1, it follows readily that

�S1(k) = T̄1N(k)W̄1, �S2(k) = T̄2N(k)W̄2, (25)

where

T̄1 =

⎡

⎢
⎢⎢⎢
⎣

0 0 0 0 –
√

2(R11 + R21)T 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0

√
2(R12 + R22)T 0 0 0

0 0 0 0 0
√

2(R12 + R22)T 0

⎤

⎥
⎥⎥⎥
⎦

,

T̄2 =

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 0 –
√

2(R12 + R22)T 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0

√
2(R11 + R21)T 0 0 0 0

0 0 0 0 0 0
√

2(R11 + R21)T 0 0

⎤

⎥⎥
⎥⎥
⎦

,

W̄1 =

⎡

⎢
⎢⎢
⎢
⎣

0 0 0 0 W1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 W4 0 0 0
0 0 0 0 0 W6 0

⎤

⎥
⎥⎥
⎥
⎦

,

W̄2 =

⎡

⎢
⎢⎢
⎢
⎣

0 0 0 0 0 W3 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 W2 0 0 0 0
0 0 0 0 0 0 W5 0 0

⎤

⎥
⎥⎥
⎥
⎦

.

Note that �3(k) and �4(k) can be decomposed as follows:

�3(k) = �3 + ��3(k), �4(k) = �4 + ��4(k), (26)

where

�3 =

[
�̂11 ∗
S1 J1

]

< 0, ��3(k) =

[
0 ∗

�S1(k) 0

]

,

�4 =

[
�̂22 ∗
S2 J2

]

< 0 and ��4(k) =

[
0 ∗

�S2(k) 0

]

.



Pandiselvi et al. Advances in Difference Equations  (2018) 2018:123 Page 16 of 27

Let

T̃T
1 =

[
0, T̄T

1
]
, W̃1 = [W̄1, 0],

T̃T
2 =

[
0, T̄T

2
]
, W̃2 = [W̄2, 0].

Using Lemma 2.3(i), ��3(k) and ��4(k) can be rewritten as

��3(k) = T̃1N(k)W̃1 + W̃ T
1 NT (k)T̃T

1 ≤ ε–1
1 T̃1T̃T

1 + ε1W̃ T
1 W̃1,

��4(k) = T̃2N(k)W̃2 + W̃ T
2 NT (k)T̃T

2 ≤ ε–1
2 T̃2T̃T

2 + ε2W̃ T
2 W̃2. (27)

It is clear from equations (26) and (27) that

�3(k) ≤ �′
3 + ε–1

1 T̃1T̃T
1 , �4(k) ≤ �′

4 + ε–1
2 T̃2T̃T

2 , (28)

where

�′
3 =

[
�′

11 + μ1
[ I2n×2n 0

0 0

] ∗
S1 J1

]

,

�′
4 =

[
�′

22 + μ2
[ I2n×2n 0

0 0

] ∗
S2 J2

]

.

It follows from Lemma 2.4 that equation (22) is equivalent to the case that the right-hand
side of equation (28) is negative definite. Hence, we come to the conclusion that �3(k) < 0
and �4(k) < 0, and therefore equation (22) holds. Moreover, the combination of equations
(20) and (22) leads to

E
{
�V(k)

} ≤ μ1E
{∣∣x̄(k)

∣∣2} – μ2E
{∣∣ȳ(k)

∣∣2}. (29)

We are in a position to prove the stability of system (8). First, from equation (10), it is easily
verified that

E
{
�V (k)

} ≤ ε11E
{∣∣x̄(k)

∣
∣2} + ε21

k–1∑

i=k–τM

E
{∣∣x̄(i)

∣
∣2}

+ ε12E
{∣∣ȳ(k)

∣
∣2} + ε22

k–1∑

i=k–δM

E
{∣∣ȳ(i)

∣
∣2}, (30)

where

ε11 = max
{
λmax(R11),λmax(R21),λmax(R52)

}
,

ε21 = (τM – τm + 1)
(
λmax(R31) + λmax(R41)

)
,

ε12 = max
{
λmax(R12),λmax(R22),λmax(R51)

}
,

ε22 = (δM – δm + 1)
(
λmax(R32) + λmax(R42)

)
.
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For any scalar ζ > 1, the above inequality, combined with equation (29), indicates that

ζ k+1
E

{
V(k + 1)

}
– ζ k

E
(
V(k)

)
= ζ k+1

E
{
�V(k)

}
+ ζ k(ζ – 1)E

{
V(k)

}

≤ –ζ k+1(μ1E
{∣∣x̄(k)

∣∣2} – μ2E
{∣∣ȳ(k)

∣∣2}) + ζ k(ζ – 1),
(

ε11E
{∣∣x̄(k)

∣∣2} + ε21

k–1∑

i=k–τM

E
{∣∣x̄(i)

∣∣2} + ε12E
{∣∣ȳ(k)

∣∣2} + ε22E
{∣∣ȳ(i)

∣∣2}
)

= ζ kη11(ζ )E
{∣∣x̄(k)

∣∣2} + ζ kη21(ζ )
k–1∑

i=k–τM

E
{∣∣x̄(i)

∣∣2}

+ ζ kη12(ζ )E
{∣∣ȳ(k)

∣∣2} + ζ kη22(ζ )
k–1∑

i=k–δM

E
{∣∣ȳ(i)

∣∣2}, (31)

where

η11(ζ ) = –ζμ1 + (ζ – 1)ε11, η21(ζ ) = (ζ – 1)ε21,

η12(ζ ) = –ζμ2 + (ζ – 1)ε12 and η22(ζ ) = (ζ – 1)ε22.

In addition, for any integer N ≥ max{δM, τM} + 1, summing both sides of equation (31)
from 0 to N – 1 with respect to k, we have

ζ N
E

{
V(N)

}
– E

{
V(0)

}

≤ η11(ζ )
N–1∑

k=0

ζ k
E

{∣∣x̄(k)
∣∣2} + η21(ζ )

N–1∑

k=0

k–1∑

i=k–τM

ζ k
E

{∣∣x̄(i)
∣∣2}

+ η12(ζ )
N–1∑

k=0

ζ k
E

{∣∣ȳ(k)
∣∣2} + η22(ζ )

N–1∑

k=0

k–1∑

i=k–δM

ζ k
E

{∣∣ȳ(i)
∣∣2}. (32)

Note that, for τM, δM ≥ 1,

N–1∑

k=0

k–1∑

i=k–τM

ζ k
E

{∣∣x̄(i)
∣
∣2} ≤ τMζ τM max

–τM≤i≤0
E

{∣∣�(i)
∣
∣2} + τMζ τM

N–1∑

i=0

ζ i
E

{∣∣x̄(k)
∣
∣2},

N–1∑

k=0

k–1∑

i=k–δM

ζ k
E

{∣∣ȳ(i)
∣
∣2} ≤ δMζ δM max

–δM≤i≤0
E

{∣∣�(i)
∣
∣2} + δMζ δM

N–1∑

i=0

ζ i
E

{∣∣ȳ(k)
∣
∣2}. (33)

Then, from equations (32) and (33), one has

ζ N
E

{
V(N)

} ≤ E
{
V(0)

}
+

[
η11(ζ ) + τMζ τMη21(ζ )

] N–1∑

k=0

ζ k
E

{∣∣x̄(k)
∣
∣2}

+ τMζ τMη21(ζ ) max
–τM≤i≤0

E
{∣∣�(i)

∣∣2}

+
[
η12(ζ ) + δMζ δMη22(ζ )

] N–1∑

k=0

ζ k
E

{∣∣ȳ(k)
∣
∣2}

+ δMζ δMη22(ζ ) max
–δM≤i≤0

E
{∣∣�(i)

∣∣2}. (34)
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Let

ε01 = min
{
λmin(R11),λmin(R21),λmin(R52)

}
, ε̃1 = max{ε11, ε21},

ε02 = min
{
λmin(R12),λmin(R22),λmin(R51)

}
, ε̃2 = max{ε12, ε22}.

It is clear that

E
{
V(N)

} ≥ ε01E
{∣∣x̄(N)

∣
∣2} + ε02E

{∣∣ȳ(N)
∣
∣2}. (35)

It follows readily from equation (30) that

E
{
V(0)

} ≤ ε̃1 max
–τM≤i≤0

E
{∣∣�(i)

∣
∣2} + ε̃2 max

–δM≤i≤0
E

{∣∣�(i)
∣
∣2}. (36)

Additionally, it can be verified that there exists a scalar ζ0 > 1 such that

η11(ζ0) + τMζ
τM
0 η21(ζ0) = 0,

η12(ζ0) + δMζ
δM
0 η22(ζ0) = 0. (37)

Substituting equations (35)–(37) into equation (34), we can get

ε01E
{∣∣x̄(N)

∣
∣2} + ε02E

{∣∣ȳ(N)
∣
∣2} ≤ (

ε̃1 + τMζ
τM
0 η21(ζ0)

)
max

–τM≤i≤0
E

{∣∣�(i)
∣
∣2}

+
(
ε̃2 + δMζ

δM
0 η22(ζ0)

)
max

–δM≤i≤0
E

{∣∣�(i)
∣∣2}. (38)

The above equation (38) completes the proof of exponential stability with vx(k) = 0 and
vy(k) = 0. �

Remark 3.1 In this paper, we have considered the time-varying delays δ(k), τ (k) and the
leakage delays ρ1, ρ2 in the negative feedback term of the GRNs which lead to the instabil-
ity of the systems with small amount of leakage delay. This paper is to establish techniques
to accord with the robust H∞ state estimation concern for uncertain discrete stochastic
GRNs (equation (1)) with leakage delays, distributed delays, and probabilistic measure-
ment delays.

Consider that the H∞ attainment of the estimation error system (8) is robustly stochas-
tically stable with non-zero exogenous disturbance signals vx(k), vy(k) ∈ L2[0,∞).

Theorem 3.2 Let Assumptions 1 and 2 hold. Let the leakage delays ρ1, ρ2 and the estima-
tion parameters Ax, Bx, Ay, By, and γ > 0 be given. Then the estimation error system (8) is
robustly stochastically stable with disturbance attenuation γ , if there exist positive definite
matrices R11, R12, R21, R22, R31, R32, R41, R42, R51, R52 and three positive constant scalars λ,
ε1, and ε2 such that the following LMI holds:

�1 =

⎡

⎢⎢
⎢
⎣

�′
11 ∗ ∗ ∗

0 –γ 2I ∗ ∗
S1 0 J1 ∗
0 0 T̄T

1 –ε1I

⎤

⎥⎥
⎥
⎦

< 0, �2 =

⎡

⎢⎢
⎢
⎣

�′
22 ∗ ∗ ∗

0 –γ 2I ∗ ∗
S2 0 J2 ∗
0 0 T̄T

2 –ε2I

⎤

⎥⎥
⎥
⎦

< 0, (39)

and the other variables are described in Theorem 3.1.



Pandiselvi et al. Advances in Difference Equations  (2018) 2018:123 Page 19 of 27

Proof Choose the Lyapunov–Krasovskii function (equation (10)) as in Theorem 3.1. For
given γ > 0, we define

T(n) = E

n∑

k=0

[
x̄T (k)x̄(k) + ȳT (k)ȳ(k) – γ 2vT

x (k)vx(k) – γ 2vT
y (k)vy(k)

]
. (40)

Here, n is a nonnegative integer. Our aim is to show T(n) < 0. Under the zero initial con-
dition, we have

T(n) = E

n∑

k=0

[
x̄T (k)x̄(k) + ȳT (k)ȳ(k) – γ 2vT

x (k)vx(k) – γ 2vT
y (k)vy(k) + �V(k)

]

– EV(n + 1)

≤ T(n) +
n∑

k=0

E
(
�V(k)

)

=
n∑

k=0

E
{
� T (k)

[
�̃11 + σαW̃ T

01R21W̃01 + 2G̃T
01(k)(R11 + R21)G̃01(k)

+ 2F̃T
01(k)R21F̃01(k) + 2G̃T

11(k)(R12 + R22)G̃11(k)

+ 2S̃T
01(k)(R12 + R22)S̃01(k)

]
� (k)

+ �T (k)
[
�̃22 + σβW̃ T

02R22W̃02 + 2G̃T
02(k)(R12 + R22)G̃02(k)

+ 2F̃T
02(k)R22F̃02(k) + 2G̃T

12(k)(R11 + R21)G̃12(k)

+ 2S̃T
02(k)(R11 + R21)S̃02(k)

]
�(k)

}
, (41)

where

� (k) =
[
�0(k), vx(k)

]T , �(k) =
[
�0(k), vy(k)

]T , W̃01 =
[
Ŵ T

01, 0
]
,

G̃01(k) =
[
ĜT

01(k), 0
]
, F̃01(k) =

[
F̂T

01(k), 0
]
, G̃11(k) =

[
ĜT

11(k), 0
]
,

W̃02 =
[
Ŵ T

02, 0
]
, G̃02(k) =

[
ĜT

02(k), 0
]
, F̃02(k) =

[
F̂T

02(k), 0
]
,

G̃12(k) =
[
ĜT

12(k), 0
]
, S̃01(k) =

[
ŜT

01(k), 0
]
, S̃02(k) =

[
ŜT

02(k), 0
]
,

�̃11 =

[
�11 0

0 –γ 2I

]

and �̃22 =

[
�22 0

0 –γ 2I

]

.

By equation (41), in order to assure T(n) < 0, we just need to show

�̃11 + σαW̃ T
01R21W̃01 + 2G̃T

01(k)(R11 + R21)G̃01(k) + 2F̃T
01(k)R21F̃01(k)

+2G̃T
11(k)(R12 + R22)G̃11(k) + 2S̃T

01(k)(R12 + R22)S̃01(k) < 0,

�̃22 + σβW̃ T
02R22W̃02 + 2G̃T

02(k)(R12 + R22)G̃02(k) + 2F̃T
02(k)R22F̃02(k)

+2G̃T
12(k)(R11 + R21)G̃12(k) + 2S̃T

02(k)(R11 + R21)S̃02(k) < 0, (42)
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which, by Lemma 2.4, is equivalent to

�̃3(k) =

[
�̃11 ∗

S̄1(k) J1

]

< 0 and �̃4(k) =

[
�22 ∗

S̄2(k) J2

]

< 0, (43)

where

S̄1(k) = S̄1 + �S̄1(k) = [S1, 0] +
[
�S1(k), 0

]
,

S̄2(k) = S̄2 + �S̄2(k) = [S2, 0] +
[
�S2(k), 0

]

and J1 and J2 are defined in Theorem 3.1. Note that �̃3(k) and �̃4(k) can be rearranged as
follows:

�̃3(k) = �̃3 + ��̃3(k), �̃4(k) = �̃4 + ��̃4(k), (44)

where

�̃3 =

[
�̃11 ∗
S̄1 J1

]

< 0 and ��̃3(k) =

[
0 ∗

�S̄1(k) 0

]

,

�̃4 =

[
�̃22 ∗
S̄2 J2

]

< 0 and ��̃4(k) =

[
0 ∗

�S̄2(k) 0

]

.

Let

T̆T
1 =

[
0, T̃T

1
]
, W̆1 = [W̃1, 0], T̆T

2 =
[
0, T̃T

2
]
, W̆2 =

[
W̃ T

2 , 0
]
,

T̆T
1 =

[
0, 0, T̄T

1
]
, W̆1 = [W̄1, 0, 0], T̆T

2 =
[
0, 0, T̄T

2
]

and W̆2 = [W̄2, 0, 0].

Using Lemma 2.3(i), ��3(k) and ��4(k) can be rewritten as

��̃3(k) = T̆1N(k)W̆1 + W̆ T
1 NT (k)T̆T

1 ≤ ε–1
1 T̆1T̆T

1 + ε1W̆ T
1 W̆1,

��̃4(k) = T̆2N(k)W̆2 + W̆ T
2 NT (k)T̆T

2 ≤ ε–1
2 T̆2T̆T

2 + ε1W̆ T
2 W̆2. (45)

It is implied from equations (44) and (45) that

�̃3(k) ≤
⎡

⎢
⎣

�′
11 ∗ ∗

0 –γ 2I ∗
S1 0 J1

⎤

⎥
⎦ + ε–1

1 T̆1T̆T
1 ,

�̃4(k) ≤
⎡

⎢
⎣

�′
22 ∗ ∗

0 –γ 2I ∗
S2 0 J2

⎤

⎥
⎦ + ε–1

2 T̆2T̆T
2 .

(46)

Using Lemma 2.4, the above inequality (45) holds if and only if the right-hand side of (45)
is negative definite, which implies T(n) < 0. Letting n → ∞, we have

E

∞∑

k=0

{∣∣x̄(k)
∣∣2 +

∣∣ȳ(k)
∣∣2} ≤ γ 2

E

∞∑

k=0

(∣∣vx(k)
∣∣2 +

∣∣vy(k)
∣∣2).

Hence the proof of Theorem 3.2 is complete. �
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Theorem 3.3 With the help of the assumptions, system (7) becomes a robust H∞ state esti-
mator of GRNs (1) with leakage delays, distributed delays, and probabilistic measurement
delays (5) if there exist positive definite matrices X1, X2, Y1, Y2, R11, R12, R21, R22, R31, R32,
R41, R42, R51, and R52 and three positive constant scalars λ, ε1, and ε2 such that the following
LMIs hold:

�1 =

⎡

⎢
⎢⎢
⎣

�′
11 ∗ ∗ ∗

0 –γ 2I ∗ ∗
S′

1 0 J1 ∗
0 0 T̄T

1 –ε1I

⎤

⎥
⎥⎥
⎦

< 0, �2 =

⎡

⎢
⎢⎢
⎣

�′
22 ∗ ∗ ∗

0 –γ 2I ∗ ∗
S′

2 0 J2 ∗
0 0 T̄T

2 –ε2I

⎤

⎥
⎥⎥
⎦

< 0,

where

S′
1 =

⎡

⎢⎢
⎢
⎣

0 0 0 0 �15 0 0√
2(X1 – α0X2M) –

√
2X1 –

√
2(1 – α0)X2M 0 0 0 0√

σαX2M 0 √
σαX2M 0 0 0 0

0 0 0
√

2(R12 + R22)D 0 0 0
0 0 0 0 0 �56 0

⎤

⎥⎥
⎥
⎦

,

�15 = –
√

2(R11 + R21)A; �56 =
√

2(R12 + R22)F ,

S′
2 =

⎡

⎢⎢
⎢
⎣

0 0 0 0 0 ϒ16 0 0 0√
2(Y1 – β0Y2N) –

√
2Y1 –

√
2(1 – β0)Y2N 0 0 0 0 0 0√

σβY2N 0 √
σβY2N 0 0 0 0 0 0

0 0 0 0
√

2(R11 + R21)B 0 0 0 0
0 0 0 0 0 0 ϒ57 0 0

⎤

⎥⎥
⎥
⎦

,

ϒ16 = –
√

2(R12 + R22)C; ϒ57 =
√

2(R11 + R21)E,

and the other variables are described in Theorem 3.1. Furthermore, the state estimator gain
matrices can be described as follows:

Ax = R–1
21 X1, Bx = R–1

21 X2, Ay = R–1
22 Y1 and By = R–1

22 Y2.

Proof The rest of the proof of this theorem is the same as that of Theorem 3.2. Due to the
limitation of the length of this paper, we omit it here. Then the proof of Theorem 3.3 is
completed. �

Consider the discrete-time genetic regulatory network system:

x(k + 1) = –Ax(k – ρ1) + Bĝ
(
y
(
k – δ(k)

))
+ E

∞∑

s=1

μsh
(
y(k – s)

)

+ σ
(
k, x(k – ρ1)

)
ω(k) + Lxvx(k),

y(k + 1) = –Cy(k – ρ2) + Dx
(
k – τ (k)

)
+ F

∞∑

n=1

ξnx(k – n) + Lyvy(k). (47)

Corollary 3.1 Let the leakage delays ρ1, ρ2 and the estimation parameters Ax, Bx, Ay, and
By be given and also the acceptable conditions hold. Then the estimation error system (8)
with vx(k) = 0 and vy(k) = 0 is robustly exponentially stable in the mean square if there
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exist positive definite matrices R11, R12, R21, R22, R31, R32, R41, R42, R51, R52 and the positive
constant scalar λ such that the following LMI holds:

�1 =

⎡

⎢
⎣

�′
11 ∗ ∗

S1 J1 ∗
0 0 I

⎤

⎥
⎦ < 0, �2 =

⎡

⎢
⎣

�′
22 ∗ ∗

S2 J2 ∗
0 0 I

⎤

⎥
⎦ < 0, (48)

where

�′
11 =

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

ψ11 0 0 0 0 0 0
0 –R21 0 0 0 0 0
0 0 –R31 0 0 0 0
0 0 0 –R41 + ε1W T

4 W4 0 0 0
0 0 0 0 HR11 0 0
0 0 0 0 0 I(R12 + R22) 0
0 0 0 0 0 0 –ξ̄R52

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

,

�′
22 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ψ12 0 0 0 0 0 0 0 0
0 –R22 0 0 0 0 0 0 0
0 0 –R32 0 0 0 0 0 0
0 0 0 –R42 – λÑ1 + ε2W T

2 W2 –λÑT
2 0 0 0 0

0 0 0 –λÑ2 –λI 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I(R11 + R21) 0 0
0 0 0 0 0 0 0 μ̄R51 0
0 0 0 0 0 0 0 0 –μ̄R51

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

S1 =

⎡

⎢
⎢
⎣

0 0 0 0 �̄15 0 0
�21 –

√
2R21Ax �23 0 0 0 0√

σαR21BxM 0 √
σαR21BxM 0 0 0 0

0 0 0 �̄44 0 0 0
0 0 0 0 0 �̄55 0

⎤

⎥
⎥
⎦ ,

where

�̄15 = –
√

2(R11 + R21)A; �̄44 =
√

2(R12 + R22)D; �̄55 =
√

2(R12 + R22)F ;

�21 =
√

2R21(Ax – α0BxM); �23 = –
√

2R21(1 – α0)BxM,

S2 =

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0 �̄16 0 0 0
�21 –

√
2R22Ay �23 0 0 0 0 0 0√

σβR22ByN 0 √
σβR22ByN 0 0 0 0 0 0

0 0 0 0 �̄45 0 0 0 0
0 0 0 0 0 0 �̄57 0 0

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

,

where

�̄16 = –
√

2(R12 + R22)C; �̄45 =
√

2(R11 + R21)B; �̄57 =
√

2(R11 + R21)E;

�21 =
√

2R22(Ay – β0ByN); �23 = –
√

2R22(1 – β0)ByN ,

J1 = diag
{

–(R11 + R21), –R21, –R21, –(R12 + R22), –(R12 + R22)
}

,

J2 = diag
{

–(R12 + R22), –R22, –R22, –(R11 + R21), –(R11 + R21)
}

,

μ̄ =
∞∑

s=1

μs, ξ̄ =
∞∑

n=1

ξn,
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ψ11 = –R11 + R31 + (τM – τm + 1)R41 + ξ̄R52; ψ12 = –R12 + R32 + (δM – δm + 1)R42,

Ñ1 =
(NT

1 N2 + NT
2 N1)

2
; Ñ2 = –

(NT
1 + NT

2 )
2

.

4 Numerical examples
In this part, two mathematical examples with simulations are provided to show the effec-
tiveness of the proposed robust state estimator.

Example 4.1 Consider the discrete-time GRN (1) with parameters given as follows:

A =

(
0.1 0
0 0.2

)

, B =

(
0.08 0

0 0.2

)

,

C = D =

(
0.1 0
0 0.1

)

, E =

(
0.36 0

0 0.1

)

,

d1 =

(
0.1 0
0 0.1

)

, d2 =

(
0.28 0

0 0.135

)

,

Lx =

(
0.2 0
0 0.5

)

, Ly =

(
0.5 0
0 0.2

)

,

W1 = W2 = W3 = W4 = W5 = W6 =

(
0.3 0
0 0.3

)

, μ = ξ = exp(–2),

F = 0.4I, R = 0.2I, G =

(
sin(k) 0

0 cos(k)

)

,

and the leakage delays ρ1 = ρ2 = 1. The regulatory function is taken as g(s) = s2

1+s2 . The time-
varying delays are chosen as δ(k) = 3 + (2 ∗ sin(k ∗ π/2)) and τ (k) = 3 + (2 ∗ cos(k ∗ π/2)),
and the exogenous disturbance inputs are selected as vx(k) = sin(6k) exp(–0.1k) and vy(k) =
cos(2k) exp(–0.2k).

Now consider the estimation error system (8) with parameters given by

A = 0.1I, B =

(
–0.1 0

0 0.2

)

, E = F = 0.3I, C = D = 0.2I,

M =

(
0.6 0
0 0.1

)

, N =

(
0.4 0
0.3 0.5

)

, R =

(
0.1 0
0 0.3

)

,

N(k) =

(
sin(k ∗ π/2) 0

0 cos(k ∗ π/2)

)

, α = 0.001, β = 0.003,

d1 =

(
0.2 × (cos(π/2) – 2) 0

0 0.1 × (sin(π/2) – 1)

)

, d2 =

(
0.28 0

0 0.135

)

,

Lx =

(
0.5 0
0 0.2

)

, Ly =

(
0.1 0
0 0.1

)

,

W1 = W2 = W3 = W4 = W5 = W6 = 0.1I, μ = ξ = exp(–1),
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and the leakage delays ρ1 = ρ2 = 1. The exogenous disturbance inputs are selected as

vx(k) = (sin 6k) exp(–0.1k), vy(k) = (cos 2k) exp(–0.1k).

The regulatory function is taken as g(s) = s2

1+s2 . The time-varying delays are chosen as
δ(k) = 3 + (2 ∗ sin(k ∗ π/2)) and τ (k) = 3 + (2 ∗ cos(k ∗ π/2)). By using the Matlab LMI
toolbox, LMIs (40) and (41) are solved and a set of feasible solutions is obtained as fol-
lows:

X1 =

(
0.4338 –0.0041

–0.0041 0.2852

)

, X2 =

(
0.0210 –0.0260

–0.0260 0.0533

)

,

R11 =

(
9.3434 0.0025
0.0025 6.9265

)

, R21 =

(
0.2169 –0.4861

–0.4861 0.9363

)

,

Y1 =

(
1.1918 –0.0128

–0.0128 0.5832

)

, Y2 =

(
1.0836 –0.2279

–0.2279 0.1073

)

.

The state estimator gain matrices can be determined as follows:

Ax =

(
1.2173 0.4060
0.6324 0.1804

)

, Ay =

(
0.2203 0.0032
0.0063 0.2096

)

,

Bx =

(
2.1102 0.4831
1.3729 0.3185

)

, By =

(
0.2005 0.4226
0.8342 0.3887

)

.

The concentration of mRNA and protein and their estimation error are illustrated in
Figs. 1 and 2 with the initial conditions φ1(k) = {1, 0.1}, ψ1(k) = {0.9, 0.7}, φ2(k) = {0.9, 0.8},
and ψ2(k) = {0.15, 0.9}.

Example 4.2 Consider the discrete-time GRN (47) with parameters given by

A =

(
0.3 0
0 0.2

)

, B =

(
–0.5 0
2.5 0

)

, C =

(
0.1 0
0 0.2

)

, D =

(
0.08 0

0 0.2

)

,

Figure 1 mRNA and protein concentration
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Figure 2 Estimation error for mRNA and protein concentration

Figure 3 The state response x(t), y(t) of equation (47) with the mRNA and protein concentrations

E =

(
0.36 0

0 0.1

)

, F =

(
0.4 0
0 0.4

)

,

d1 =

(
0.6 0
0 0.1

)

, d2 =

(
0.28 0

0 0.135

)

,

Lx =

(
0.3 0
0 0.4

)

, Ly =

(
0.5 0
0 0.2

)

,

and the leakage delays ρ1 = ρ2 = 1. The regulatory function is taken as g(s) = s2

1+s2 . The
time-varying delays are chosen as δ(k) = 2 and τ (k) = 1, and the exogenous disturbance
inputs are selected as vx(k) = sin(6k) exp(–0.1k) and vy(k) = cos(2k) exp(–0.2k). The the
state responses x(t) and y(t) are shown in Fig. 3.

5 Conclusions
In this paper, we have studied the approximation concern for the discrete-time stochastic
GRNs with the leakage delays, distributed delays, and probabilistic measurement delays
into the problem and modeled the robust H∞ state estimator for a class of discrete-time
stochastic GRNs. Here, the probabilistic measurement delays, which narrate the binary
shifting sequence, are satisfied by the conditional probability distribution. So, the crisis
of parameter uncertainties, including errors, stochastic disturbance, leakage delays, dis-
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tributed delays, and the activation function of the addressed GRNs, is identified by sector-
bounded nonlinearities. By applying the Lyapunov stability theory and stochastic analysis
techniques, sufficient conditions are first entrenched to assure the presence of the desired
estimators in terms of a linear matrix inequality (LMI). These circumstances are reliant on
both the lower and upper bounds of time-varying delays. Again, the absolute expression
of the desired estimator is demonstrated to assure the estimation error dynamics to be ro-
bustly exponentially stable in the mean square for the consigned system. Lastly, numerical
simulations have been utilized to illustrate the suitability and usefulness of our advanced
theoretical results.
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