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Abstract
In this paper, we consider exponentially practical stability of a discrete time singular
system with disturbance. By using Lyapunov–Krasovskii stability theory, some criteria
for exponentially practical stability of such a system are derived. Moreover, by using a
Razumikhin-type technique, the criteria for exponentially practical stability of a
discrete time singular system with delay and disturbance are also obtained. Some
numerical examples are given to show the success of our theoretical results.
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1 Introduction
Singular systems, which are also called descriptor systems, implicit systems, or general-
ized systems, have been investigated extensively in many areas [1–21]. Generally, the sys-
tems can be described using algebraic and differential equations. Such systems are natural
presentations of several dynamic systems which are better than regular systems, such as
economical systems, chemical systems, robotic systems, etc. [1–10, 12–14, 20–22]. More-
over, singular systems are very complicated because we have to consider the stability of the
systems as well as the regularity and also impulse free (in case of continuous singular sys-
tems) or causality (in case of discrete singular systems) [2, 11, 18]. In addition, a discrete
time system is often represented in the real world systems such as population models and
switched systems. There are several studies on the stability of a discrete time system [2–4,
8–15, 17, 18, 22–24].

In real world systems, the variation of systems’ current status often depends not only
on the current state but also on the past state of the systems; such systems are called time
delay systems. Examples of time delay systems are population dynamic models, mechani-
cal transmissions, and digital control systems [4, 7–10, 12–14]. It is well known that time
delay may cause instability, oscillation, and poor performance of systems. For the above-
mentioned reasons, time delay systems have been extensively discussed in many litera-
ture works [2, 4, 6–10, 13–16, 18, 19, 22, 23]. As is known, most common approaches to
studying stability analysis of a time delay system are Lyapunov–Krasovskii functional ap-
proach and Razumikhin-type technique. In the case of Lyapunov–Krasovskii functional
method, it requires that a candidate Lyapunov–Krasovskii functional is decreasing on the
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whole state space. Meanwhile, the Razumikhin-type technique has an advantage that the
Lyapunov–Krasovskii functional is not required to be decreasing on the whole state space.
In general, disturbance inputs often occur in modeling of phenomena and engineering sys-
tems which may be due to data transformation, unknown disturbances, or measurement
errors [4, 10, 24, 25]. Therefore, it is important to study the stability of a discrete time
singular system with delay and disturbance.

Considering asymptotic stability, it is more desirable to consider exponential stability
criterion for dynamical systems [1, 6–10, 18–21, 24, 25]. For exponential stability, it is re-
quired that all solutions starting near an equilibrium point not only stay nearby, but tend
to the equilibrium point very fast with exponential decay rate. In practice, we may only
need to stabilize a system into the region of a phase space where the system may oscillate
near the state in which the implementation is still acceptable. This concept is called prac-
tical stability [18, 22, 26–29] which is very useful for studying the asymptotic behavior of
the system in which the origin is not necessarily an equilibrium point. In this case, practi-
cal stability is an important concept to analyze the asymptotic behavior of solutions with
respect to a small neighborhood of the origin. Recently, there have been several studies
on practical stability of continuous time systems with delay, see [26–29]. However, there
have been few studies on practical stability of discrete time systems with delay [22, 23].
In [3], the authors studied discrete time singular systems with disturbance and obtained
some stability criteria by using Lyapunov stability theory. In [23], the authors used the
Razumikhin-type technique to derive the exponentially practical stability condition for
impulsive discrete time systems with delay. Motivated by the above discussions, we pro-
pose to study exponentially practical stability of a discrete time singular system with delay
and disturbance. We shall derive a new criterion for exponentially practical stability of the
system, namely the solutions tend to the origin state with exponential decay rate in the
early stage (but eventually oscillate in a neighborhood of the origin), in which the perfor-
mance is still acceptable.

This work is organized as follows. In Sect. 2, some notations and definitions are intro-
duced. In Sect. 3, we present some criteria for exponentially practical stability of a discrete
time system with disturbance, exponentially practical stability of a discrete time singular
system with disturbance, exponentially practical stability of a discrete time system with
delay and disturbance, and exponentially practical stability of a discrete time singular sys-
tem with delay and disturbance; definitions and assumption will be used in the proof our
result. Some numerical examples are given to show the effectiveness of our theoretical
result in Sect. 4. The last section concludes the work.

2 Preliminaries
Consider the following discrete time singular system with delay and disturbance:

⎧
⎨

⎩

Ex(k + 1) = Ax(k) + Bx(k – τ ) + Gw(k),

x(s) = ϕ(s), s ∈Nk0–τ ,
(2.1)

where x(k) ∈ R
n is the state vector, w(k) ∈ � = {w(k) ∈ R

m/‖w(k)‖ ≤ w,∃w > 0,∀k ≥ k0}
is the disturbance, A, B, G, and E are constant matrices with appropriate dimensions
where E is a singular matrix with rank(E) = r < n, τ is constant delay, ϕ ∈ Cτ := {f :
N–τ −→ R

n, f is continuous} is the initial function with ‖ϕ‖ = maxθ∈Nk0–τ
{‖ϕ(θ )‖}, where
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Nk0–τ = {k0 – τ , k0 – τ + 1, . . . , k0 – 1, k0}, and Nk0 = {k0, k0 + 1, k0 + 2, . . .}, k0 ≥ 0. A function
ρ : R+

0 −→R, is called a K-function if it is a nonnegative continuous function where R
+
0 is

the set of nonnegative real numbers. Let floor(r) := 	r
 be the greatest integer that is less
than or equal to r, and let ceil(r) := �r� be the least integer that is greater than or equal
to r.

Definition 2.1 ([18]) System (2.1) is said to be regular if det(zE – A) = 0 for some z ∈ C.
System (2.1) is said to be causal if deg(det(zE – A)) = rank(E).

3 Main results
In this section, we consider exponentially practical stability problems for the following
four cases: a discrete time system with disturbance, a discrete time singular system with
disturbance, a discrete time system with delay and disturbance, and a discrete time singu-
lar system with delay and disturbance.

First, we consider the discrete time system with disturbance as follows:

⎧
⎨

⎩

x(k + 1) = f (k, x(k), w(k)),

x(k0) = x0,
(3.1)

where disturbance w(k) ∈ �, where � is defined as in (2.1), f : R × R
n × � −→ R

n is
continuous and locally Lipschitz in (x, w), uniformly in k with Lipschitz constant L which
satisfies f (k, 0, 0) = 0. Let x(k; k0, x0, w) denote the trajectory of system (3.1) with initial
state x(k0) = x0 and disturbance signal w(k) ∈ �.

Definition 3.1 System (3.1) is exponentially practically stable in the pth-moment for
some p > 0 if for all k ≥ k0 there exist constants 0 < λ < 1,η > 0, r > 0 such that

∥
∥x(k; k0, x0, w)

∥
∥p ≤ η‖x0‖pλk–k0 + r, ∀w(k) ∈ �.

Theorem 3.1 If there exist a Lyapunov function V (k, x(k)), a K-function ρ , and positive
constants c1, c2, c3, a, p; c3 < c2 such that the following conditions hold for all k ≥ k0, x(k) ∈
R

n, w(k) ∈ �:
(i) c1‖x(k)‖p ≤ V (k, x(k)) ≤ c2‖x(k)‖p + a,

(ii) 	V (k, x(k)) = V (k + 1, x(k + 1)) – V (k, x(k)) ≤ –c3‖x(k)‖p + ρ(‖w(k)‖).
Then system (3.1) is exponentially practically stable in the pth-moment with η = c2

c1
,λ =

1 – c3
c2

, and r = a
c1

+ a1
c1(1–σ ) , where a1 = c3a

c2
+ ρ1 and ρ1 = supw(k)∈�{ρ(‖w(k)‖)}.

Proof From (i) and (ii), we obtain that

V
(
k + 1, x(k + 1; k0, x0, w)

)
– V

(
k, x(k; k0, x0, w)

)

≤ –c3
∥
∥x(k; k0, x0, w)

∥
∥p + ρ

(∥
∥w(k)

∥
∥
)

≤ –
c3

c2
V

(
k, x(k; k0, x0, w)

)
+

c3a
c2

+ ρ1

= –
c3

c2
V

(
k, x(k; k0, x0, w)

)
+ a1
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for all k ≥ k0, w(k) ∈ �, where ρ1 = supw(k)∈�{ρ(‖w(k)‖)}, a1 = c3a
c2

+ ρ1. Without loss of
generality, we may assume that c3 < c2, and let σ = 1 – c3

c2
. Then 0 < σ < 1, and it follows

that

V
(
k + 1, x(k + 1; k0, x0, w)

)

≤
(

1 –
c3

c2

)

V
(
k, x(k; k0, x0, w)

)
+ a1

= σV
(
k, x(k; k0, x0, w)

)
+ a1

≤ σ
[
σ
(
V

(
k – 1, x(k – 1; k0, x0, w)

)
+ a1

)]
+ a1

≤ σ 2[σ
(
V

(
k – 2, x(k – 2; k0, x0, w)

)
+ a1

)]
+ σa1 + a1

...

≤ σ k+1V (k0, x0, w) + σ ka1 + σ k–1a1 + · · · + a1.

Thus,

V
(
k, x(k; k0, x0, w)

) ≤ σ k–k0 V (k0, x0, w) +
a1

1 – σ
.

From (i), we can see that

c1
∥
∥x(k; k0, x0, w)

∥
∥p ≤ V

(
k, x(k; k0, x0, w)

) ≤ σ k–k0 V (k0, x0, w) +
a1

1 – σ

≤ σ k–k0
(
c2‖x0‖p + a

)
+

a1

1 – σ
.

Thus,

∥
∥x(k; k0, x0, w)

∥
∥p ≤ c2

c1
σ k–k0‖x0‖p +

σ k–k0 a
c1

+
a1

c1(1 – σ )

≤ c2

c1
σ k–k0‖x0‖p +

a
c1

+
a1

c1(1 – σ )

= c4σ
k–k0‖x0‖p + a2,

where c4 = c2
c1

and a2 = a
c1

+ a1
c1(1–σ ) . It follows that

∥
∥x(k; k0, x0, w)

∥
∥p ≤ c4σ

k–k0‖x0‖p + a2 for all k ≥ k0, w(k) ∈ �.

Therefore, system (3.1) is exponentially practically stable in the pth-moment with η =
c4,λ = σ , and r = a2. �

Then, we will consider system (2.1) without delay, namely a discrete time singular system
with disturbance, as follows:

⎧
⎨

⎩

Ex(k + 1) = Ax(k) + Gw(k),

x(k0) = x0.
(3.2)
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Definition 3.2 The singular system (3.2) is said to be exponentially practically stable in
the pth-moment for some p > 0 if, for all k ≥ k0, there exist constants 0 < λ < 1,η > 0, r > 0
for each disturbance w(k) ∈ � such that

∥
∥Ex(k; k0, x0, w)

∥
∥p ≤ η‖x0‖pλk–k0 + r,

where x(k, k0, x0, w) is the state trajectory of a system with initial state x0.

Theorem 3.2 Assume that the singular system (3.2) is regular and causal. Then the singu-
lar system (3.2) is exponentially practically stable in the pth-moment with respect to w(k),
if there exists a Lyapunov function V (k, x(k)) such that

(i) c1‖Ex(k)‖p ≤ V (k, x(k)) ≤ c2‖Ex(k)‖p + a,
(ii) 	V (k, x(k)) = V (k + 1, x(k + 1)) – V (k, x(k)) ≤ –c3‖x(k)‖p + ρ(‖w(k)‖) hold for some

positive constants a, c1, c2, c3, p; c3 < c2 and a K -function ρ .

Proof Assume that system (3.2) is regular and causal. Then, from [30], there exist nonsin-
gular matrices M, N with appropriate dimensions such that

MEN =

(
Ir 0
0 0n–r

)

, MAN =

(
A1 0
0 In–r

)

, MG =

(
G1

G2

)

.

Let y(k) = N–1x(k) =
[ y1(k)

y2(k)
]
, then system (3.2) is transformed to the system

y1(k + 1) = A1y1(k) + G1w(k), (3.3)

y2(k) = –G2w(k) (3.4)

with initial state y0 satisfying
( Ir 0

0 0

)
y0 =

( y10
0

)
. From the Lyapunov function V (k, x(k)) sat-

isfying conditions (i) and (ii), we obtain the following estimations:

c1
∥
∥Ex(k)

∥
∥p ≤ V

(
k, x(k)

) ≤ c2
∥
∥Ex(k)

∥
∥p + a,

c1
∥
∥ENy(k)

∥
∥p ≤ V

(
k, Ny(k)

) ≤ c2
∥
∥ENy(k)

∥
∥p + a,

c1
∥
∥M–1MENy(k)

∥
∥p ≤ V

(
k, Ny(k)

) ≤ c2
∥
∥M–1MENy(k)

∥
∥p + a,

c1

∥
∥
∥
∥
∥

M–1

[
y1(k)

0

]∥
∥
∥
∥
∥

p

≤ V
(
k, Ny(k)

) ≤ c2

∥
∥
∥
∥
∥

M–1

[
y1(k)

0

]∥
∥
∥
∥
∥

p

+ a,

c1

∥
∥
∥
∥
∥

M–1N–1N

[
y1(k)

0

]∥
∥
∥
∥
∥

p

≤ V
(
k, Ny(k)

) ≤ c2

∥
∥
∥
∥
∥

M–1N–1N

[
y1(k)

0

]∥
∥
∥
∥
∥

p

+ a.

Let y(k) = Ny(k), y1(k) = N
[ y1(k)

0

]
. Then we obtain

c1
∥
∥M–1N–1y1(k)

∥
∥p ≤ V

(
k, y(k)

) ≤ c2
∥
∥M–1N–1y1(k)

∥
∥p + a,

which in turn gives

c1
∥
∥M–1N–1y1(k)

∥
∥p ≤ V

(
k, y1(k)

) ≤ c2
∥
∥M–1N–1y1(k)

∥
∥p + a.
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From which it follows that

V
(
k, y1(k)

) ≥ c1
(∥
∥M–1N–1y1(k)

∥
∥2) p

2

= c1
(∥
∥y1

T (k)
(
M–1N–1)T(

M–1N–1)y1(k)
∥
∥
) p

2

≥ c1
(
λmin

((
M–1N–1)T(

M–1N–1)))
p
2
∥
∥y1(k)

∥
∥p.

Similarly, we have

V
(
k, y1(k)

) ≤ c2
∥
∥M–1∥∥p∥∥N–1∥∥p∥∥y1(k)

∥
∥p + a.

Thus,

c1
∥
∥y1(k)

∥
∥p ≤ V

(
k, y1(k)

) ≤ c2
∥
∥y1(k)

∥
∥p + a,

where c1 = c1(λmin((M–1N–1)T (M–1N–1)))
p
2 , and c2 = c2‖M–1‖p‖N–1‖p.

Furthermore, we have the following estimations for 	V (k, x(k)):

	V
(
k, x(k)

)
= V

(
k + 1, x(k + 1)

)
– V

(
k, x(k)

) ≤ –c3
∥
∥x(k)

∥
∥p + ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, Ny(k)

)
= V

(
k + 1, Ny(k + 1)

)
– V

(
k, Ny(k)

) ≤ –c3
∥
∥Ny(k)

∥
∥p + ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, y(k)

)
= V

(
k + 1, y(k + 1)

)
– V

(
k, y(k)

) ≤ –c3
∥
∥y(k)

∥
∥p + ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, y1(k)

)
= V

(
k + 1, y1(k + 1)

)
– V

(
k, y1(k)

) ≤ –c3
∥
∥y1(k)

∥
∥p + ρ

(∥
∥w(k)

∥
∥
)
.

From (3.3) with y1(k) = N
[ y1(k)

0

]
, we have

y1(k + 1) = A1y1(k) + G1w(k), (3.5)

where A1 = N
[ A1 0

0 0

]
N–1, G1 = N

[ G1 0
0 0

]
, and w(k) =

[ w(k)
0

]
. Therefore, we may conclude that

there exists a Lyapunov function V (k, y1(k)) for system (3.5) which satisfies the following
conditions:

(i) c1‖y1(k)‖p ≤ V (k, y1(k)) ≤ c2‖y1(k)‖p + a,
(ii) 	V (k, y1(k)) = V (k + 1, y1(k + 1)) – V (k, y1(k)) ≤ –c3‖y1(k)‖p + ρ(‖w(k)‖).

Hence, from Theorem 3.1, there exist constants 0 < λ < 1,η0 > 0, r0 > 0 such that

∥
∥y1(k)

∥
∥p ≤ η0‖y10‖pλk–k0 + r0, ∀k ≥ k0, (3.6)

where y10 = N
[ y10

0
]
. Thus, we have

∥
∥y1(k)

∥
∥p ≤ η0

∥
∥N–1∥∥p‖N‖p‖y10‖pλk–k0 +

∥
∥N–1∥∥pr0

= η1‖y10‖pλk–k0 + r1, ∀k ≥ k0, (3.7)

where η1 = η0‖N–1‖p‖N‖p, r1 = ‖N–1‖pr0. From (3.4), we have y2(k) = –G2w(k), which in
turn gives

∥
∥y2(k)

∥
∥ ≤ ‖G2‖

∥
∥w(k)

∥
∥. (3.8)
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Thus, it follows from (3.7) and (3.8) that

∥
∥y(k)

∥
∥ ≤ ∥

∥y1(k)
∥
∥ +

∥
∥y2(k)

∥
∥.

Therefore,

∥
∥y(k)

∥
∥ ≤ (

η1‖y10‖pλk–k0 + r1
) 1

p + w‖G2‖. (3.9)

From (3.9), there are four cases to be considered according to the values of p and r1 as
follows:

(Case I). 0 < p < 1, 0 < r1 < 1. Since 0 < λ < 1, we may assume without loss of generality
that

η1‖y10‖pλk–k0 + r1 < 1

for all k ≥ k0. Let 	 1
p
 = n, n ∈ I

+. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖y10‖pλk–k0 + r1
) 1

p + w‖G2‖

≤ (
η1‖y10‖pλk–k0 + r1

)	 1
p 
 + w‖G2‖

=
(
η1‖y10‖pλk–k0 + r1

)n + w‖G2‖

=
(
η1‖y10‖pλk–k0

)n +

(
n
1

)
(
η1‖y10‖pλk–k0

)n–1r1

+

(
n
2

)
(
η1‖y10‖pλk–k0

)n–2r2
1 + · · · + rn

1 + w‖G2‖

≤
(

n
� n

2 �

)

η1‖y10‖pλk–k0 +

(
n

� n
2 �

)

η1‖y10‖pλk–k0 r1

+

(
n

� n
2 �

)

η1‖y10‖pλk–k0 r1 + · · · +

(
n

� n
2 �

)

r1 + w‖G2‖

=

(
n

� n
2 �

)

η1‖y10‖pλk–k0 + (n – 1)

(
n

� n
2 �

)

η1‖y10‖pλk–k0 r1 +

(
n

� n
2 �

)

r1 + w‖G2‖

=

[(
n

� n
2 �

)

+ (n – 1)

(
n

� n
2 �

)

r1

]

η1‖y10‖pλk–k0 +

[(
n

� n
2 �

)

r1 + w‖G2‖
]

= η2‖y10‖pλk–k0 + r2,

where η2 =
[( n

� n
2 �

)
+ (n – 1)

( n
� n

2 �
)
r1

]
η1 and r2 =

( n
� n

2 �
)
r1 + w‖G2‖.

(Case II) 0 < p < 1, r1 ≥ 1. Since 0 < λ < 1, we may assume without loss of generality that

η1‖y10‖pλk–k0 < 1

for all k ≥ k0. Let � 1
p� = n, n ∈ I

+. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖y10‖pλk–k0 + r1
) 1

p + w‖G2‖
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≤ (
η1‖y10‖pλk–k0 + r1

)n + w‖G2‖

=
(
η1‖y10‖pλk–k0

)n +

(
n
1

)
(
η1‖y10‖pλk–k0

)n–1r1

+

(
n
2

)
(
η1‖y10‖pλk–k0

)n–2r2
1 + · · · + rn

1 + w‖G2‖

≤
(

n
� n

2 �

)

η1‖y10‖pλk–k0 rn
1 +

(
n

� n
2 �

)

η1‖y10‖pλk–k0 rn
1

+

(
n

� n
2 �

)

η1‖y10‖pλk–k0 rn
1 + · · · +

(
n

� n
2 �

)

rn
1 + w‖G2‖

= n

(
n

� n
2 �

)

η1‖y10‖pλk–k0 rn
1 +

(
n

� n
2 �

)

rn
1 + w‖G2‖

= η3‖y10‖pλk–k0 + r3,

where η3 = n
( n

� n
2 �

)
η1rn

1 , and r3 =
( n

� n
2 �

)
rn

1 + w‖G2‖.
(Case III) p ≥ 1, 0 < r1 < 1. Since 0 < λ < 1, we may assume without loss of generality that

η1‖y10‖pλk–k0 + r1 < 1

for all k ≥ k0. Let �p� = n, n ∈ I
+. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖y10‖pλk–k0 + r1
) 1

p + w‖G2‖

≤ (
η1‖y10‖pλk–k0 + r1

) 1
n + w‖G2‖

≤ (
η1‖y10‖pλk–k0

) 1
n + r

1
n
1 + w‖G2‖

≤ η
1
n
1 ‖y10‖ p

n λ
k–k0

n + r
1
n
1 + w‖G2‖

≤ η
1
n
1 ‖y10‖ p

n –p‖y10‖p(λ
1
n
)k–k0 + r

1
n
1 + w‖G2‖

= η4‖y10‖pλ
k–k0
1 + r4,

where η4 = η
1
n
1 ‖y10‖ p

n –p, r4 = r
1
n
1 + w‖G2‖, and 0 < λ1 = λ

1
n < 1.

(Case IV) p ≥ 1, r1 ≥ 1. Let 	p
 = n, n ∈ I
+. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖y10‖pλk–k0 + r1
) 1

p + w‖G2‖

≤ (
η1‖y10‖pλk–k0 + r1

) 1
n + w‖G2‖

≤ (
η1‖y10‖pλk–k0

) 1
n + r

1
n
1 + w‖G2‖

≤ η
1
n
1 ‖y10‖ p

n λ
k–k0

n + r1 + w‖G2‖

≤ η
1
n
1 ‖y10‖ p

n –p‖y10‖p(λ
1
n
)k–k0 + r1 + w‖G2‖

= η4‖y10‖pλ
k–k0
1 + r5,
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where η4 = η
1
n
1 ‖y10‖ p

n –p, r5 = r1 + w‖G2‖, and 0 < λ1 = λ
1
n < 1. Therefore, from (Case I) to

(Case IV), we obtain

∥
∥y(k)

∥
∥ ≤ η5‖y10‖pλ

k–k0
2 + r6, (3.10)

where η5 = max{η2,η3,η4}, r6 = max{r2, r3, r4, r5}, and 0 < λ2 = min{λ,λ1} < 1.
From MEx0 = MENy0 =

( Ir 0
0 0

)
y0 and y0 =

( y10
0

)
, it follows that ‖y10‖ ≤ ‖M‖‖E‖‖x0‖.

Since x(k) = Ny(k), it follows from (3.10) that

∥
∥Ex(k)

∥
∥ ≤ ‖E‖‖N‖∥∥y(k)

∥
∥

≤ ‖E‖‖N‖(η5‖y10‖pλ
k–k0
2 + r6

)

≤ η5‖E‖‖N‖‖M‖p‖E‖p‖x0‖pλ
k–k0
2 + ‖E‖‖N‖r6

= η6‖x0‖λk–k0
2 + r7,

where η6 = η5‖E‖p+1‖N‖‖M‖p‖x0‖p–1 and r7 = ‖E‖‖N‖r6.
Therefore, the singular system (3.2) is exponentially practically stable with respect to

w(k) with η = η6,λ = λ2, and r = r7. �

Remark 3.1 In Theorem 3.2, for p = 1, we can show that the singular system (3.2) is ex-
ponentially practically stable in the pth-moment with respect to w(k) by considering the
explicit form of solution of the system. System (3.2) may be reduced to system (3.3) and
(3.4). Moreover, the explicit solution of (3.3) and (3.4) with k0 = 0 is given as follows:

y1(k) = Ak
1y1(0) +

k–1∑

i=0

Ak–1–i
1 G1w(i), (3.11)

y2(k) = –G2w(k). (3.12)

Thus, from (3.11) and (3.12), we have

∥
∥y(k)

∥
∥ ≤ ∥

∥y1(k)
∥
∥ +

∥
∥y2(k)

∥
∥

≤ ‖A1‖k∥∥y1(0)
∥
∥ +

k–1∑

i=0

‖A1‖k–1–i‖G1‖
∥
∥w(i)

∥
∥ + ‖G2‖

∥
∥w(k)

∥
∥.

By assuming that ‖A1‖ < 1, we obtain

∥
∥y(k)

∥
∥ ≤ ‖A1‖k∥∥y1(0)

∥
∥ + w‖G1‖ 1

1 – ‖A1‖ + w‖G2‖

= ‖A1‖k∥∥y1(0)
∥
∥ + r0,

where r0 = w‖G1‖ 1
1–‖A1‖ + w‖G2‖. Since x(k) = Ny(k), we have that

∥
∥Ex(k)

∥
∥ ≤ ‖E‖‖N‖∥∥y(k)

∥
∥

≤ ‖E‖‖N‖(‖A1‖k∥∥y1(0)
∥
∥ + r0

)
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≤ ‖E‖‖N‖(‖A1‖k‖M‖‖E‖∥∥x(0)
∥
∥ + r0

)

= η
∥
∥x(0)

∥
∥‖A1‖k + r,

where η = ‖E‖2‖N‖‖M‖ and r = ‖E‖‖N‖r0. Hence, system (3.2) is exponentially practi-
cally stable.

Next, we consider the discrete time system with delay and disturbance as follows:

⎧
⎨

⎩

x(k + 1) = f (k, xk , w(k)),

x(s) = ϕ(s), s ∈Nk0–τ ,
(3.13)

where xk is defined by xk(s) = x(k + s) for any s ∈ Nk0–τ , disturbance w(k) ∈ �, where � is
defined as in (2.1), f : R×R

n ×� −→R
n is continuous and locally Lipschitz in (x, w), uni-

formly in k with Lipschitz constant L which satisfies f (k, 0, 0) = 0. Let x(k; k0,ϕ, w) denote
the trajectory of system (3.13) with initial condition ϕ and disturbance signal w(k) ∈ �.

Definition 3.3 System (3.13) is exponentially practically stable in the pth-moment with
respect to w(k) for some p > 0 if, for any k ≥ k0, there exist constants 0 < λ < 1,η > 0, r > 0
such that

∥
∥x(k; k0,φ, w)

∥
∥p ≤ η‖ϕ‖pλk–k0 + r, ∀w(k) ∈ �.

Theorem 3.3 If there exist a Lyapunov–Krasovskii functional V (k, x(k)), a K-function ρ ,
and positive constants c1, c2, a, p, q,β , where q > 1, 0 < β < 1,ρ(‖w(k)‖) < βa such that the
following conditions hold for all w(k) ∈ �:

(i) c1‖x(k)‖p ≤ V (k, x(k)) ≤ c2‖x(k)‖p + a,
(ii) If V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)) with s ∈Nk0–τ , then

	V
(
k, x(k)

)
= V

(
k + 1, x(k + 1)

)
– V

(
k, x(k)

) ≤ –βV
(
k, x(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
.

Then system (3.13) is exponentially practically stable in the pth-moment with
η = c2

c1
, q– 1

τ+1 ≤ λ < 1, and r = a
c1

.

Proof For q > 1, there exists 0 < λ < 1 such that q ≥ λ–(τ+1), or equivalently, q– 1
τ+1 ≤ λ < 1.

By employing a similar approach as in the proof of Theorem (3.1) in [23], it follows from
0 < β < 1 and ρ(‖w(k)‖) < βa that

V
(
k, x(k)

) ≤ c2‖ϕ‖pλk–k0 + a

for k ≥ k0, w(k) ∈ �, from which it follows that

∥
∥x(k)

∥
∥p ≤ c2

c1
‖ϕ‖pλk–k0 +

a
c1

, k ≥ k0, w(k) ∈ �.

Therefore, system (3.13) is exponentially practically stable in the pth-moment with η =
c2
c1

, q– 1
τ+1 ≤ λ < 1, and r = a

c1
. �
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Finally, we consider exponentially practical stability for system (2.1) with delay and dis-
turbance.

Definition 3.4 The discrete time singular system (2.1) is said to be exponentially practi-
cally stable in the pth-moment for some p > 0 if there exist constants 0 < λ < 1,η > 0, r > 0
for each disturbance w(k) ∈ � such that

∥
∥Ex(k; k0,ϕ, w)

∥
∥p ≤ η‖ϕ‖pλk–k0 + r

for all k ≥ k0, where x(k; k0,ϕ, w) is the state trajectory of the system with initial condition
ϕ. In particular, when p = 2, the system is said to be exponentially practically stable in the
mean square.

In order to proceed with the main result on exponentially practical stability in the pth-
moment of a singular system with delay and disturbance (2.1), we make the following as-
sumption; an explanation for this assumption is given in Remark 3.2.

Assumption 3.1 There exist nonsingular matrices M, N with appropriate dimensions
such that MEN =

( Ir 0
0 0n–r

)
, MAN =

( A1 0
0 In–r

)
, MBN =

( B1 0
B3 B4

)
, and MG =

( G1
G2

)
, where

‖B4‖ < 1.

Remark 3.2 For a physical meaning of Assumption 3.1, it implies that there is a plant (y1)
in this situation which does not dynamically depend on the other plant (y2). For future
investigation, we propose to study a more general case in which MBN =

( B1 B2
B3 B4

)
, where B2

may not be zero; namely, all plants dynamically interact, and that ‖B4‖ may not be less
than 1.

Theorem 3.4 Assume that the singular system (2.1) is regular and causal, and that As-
sumption 3.1 holds. Then the singular system (2.1) is exponentially practically stable in
the pth-moment with respect to w(k), if there exists a Lyapunov–Krasovskii functional
V (k, x(k)) such that

(i) c1‖Ex(k)‖p ≤ V (k, x(k)) ≤ c2‖Ex(k)‖p + a,
(ii) If V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)) with s ∈Nk0–τ , then

	V
(
k, x(k)

)
= V

(
k + 1, x(k + 1)

)
– V

(
k, x(k)

) ≤ –βV
(
k, x(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)

hold for some positive constants a, c1, c2, p, q,β , where q > 1, 0 < β < 1, and some
K -function ρ .

Proof Assume that system (2.1) is regular and causal. Then, from [30] and Assumption 3.1,
there exist nonsingular matrices M, N such that

MEN =

(
Ir 0
0 0n–r

)

, MAN =

(
A1 0
0 In–r

)

,

MBN =

(
B1 0
B3 B4

)

, MG =

(
G1

G2

)

,
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where ‖B4‖ < 1. Let y(k) = N–1x(k) =
[ y1(k)

y2(k)
]
, then system (2.1) is transformed to the fol-

lowing system:

y1(k + 1) = A1y1(k) + B1y1(k – τ ) + G1w(k), (3.14)

y2(k) = –B3y1(k – τ ) – B4y2(k – τ ) – G2w(k), (3.15)

y1(s) := φ1(s) = N–1ϕ1(s), s ∈ Nk0–τ ,

y2(s) := φ2(s) = N–1ϕ2(s), s ∈ Nk0–τ .

From the assumption, there exists a Lyapunov–Krasovskii functional V (k, x(k)) which sat-
isfies conditions (i) and (ii). Then we obtain the following estimations:

c1
∥
∥Ex(k)

∥
∥p ≤ V

(
k, x(k)

) ≤ c2
∥
∥Ex(k)

∥
∥p + a,

c1
∥
∥ENy(k)

∥
∥p ≤ V

(
k, Ny(k)

) ≤ c2
∥
∥ENy(k)

∥
∥p + a,

c1
∥
∥M–1MENy(k)

∥
∥p ≤ V

(
k, Ny(k)

) ≤ c2
∥
∥M–1MENy(k)

∥
∥p + a,

c1

∥
∥
∥
∥
∥

M–1

[
y1(k)

0

]∥
∥
∥
∥
∥

p

≤ V
(
k, Ny(k)

) ≤ c2

∥
∥
∥
∥
∥

M–1

[
y1(k)

0

]∥
∥
∥
∥
∥

p

+ a,

c1

∥
∥
∥
∥
∥

M–1N–1N

[
y1(k)

0

]∥
∥
∥
∥
∥

p

≤ V
(
k, Ny(k)

) ≤ c2

∥
∥
∥
∥
∥

M–1N–1N

[
y1(k)

0

]∥
∥
∥
∥
∥

p

+ a.

Let y(k) = Ny(k), y1(k) = N
[ y1(k)

0

]
. Then we obtain

c1
∥
∥M–1N–1y1(k)

∥
∥p ≤ V

(
k, y(k)

) ≤ c2
∥
∥M–1N–1y1(k)

∥
∥p + a,

which gives

c1
∥
∥M–1N–1y1(k)

∥
∥p ≤ V

(
k, y1(k)

) ≤ c2
∥
∥M–1N–1y1(k)

∥
∥p + a.

Thus, we get

V
(
k, y1(k)

) ≥ c1
(∥
∥M–1N–1y1(k)

∥
∥2) p

2

= c1
(∥
∥y1(k)T(

M–1N–1)T(
M–1N–1)y1(k)

∥
∥
) p

2

≥ c1
(
λmin

((
M–1N–1)T(

M–1N–1)))
p
2
∥
∥y1(k)

∥
∥p.

Similarly, we have

V
(
k, y1(k)

) ≤ c2
∥
∥M–1∥∥p∥∥N–1∥∥p∥∥y1(k)

∥
∥p + a.

Thus, we obtain

c1
∥
∥y1(k)

∥
∥p ≤ V

(
k, y1(k)

) ≤ c2
∥
∥y1(k)

∥
∥p + a,

where c1 = c1(λmin((M–1N–1)T (M–1N–1)))
p
2 and c2 = c2‖M–1‖p‖N–1‖p.
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Now, assume that the following inequalities hold:

V
(
k + s, x(k + s)

) ≤ qV
(
k + 1, x(k + 1)

)
with s ∈Nk0–τ ,

V
(
k + s, Ny(k + s)

) ≤ qV
(
k + 1, Ny(k + 1)

)
with s ∈Nk0–τ ,

V
(
k + s, y(k + s)

) ≤ qV
(
k + 1, y(k + 1)

)
with s ∈Nk0–τ ,

V
(
k + s, y1(k + s)

) ≤ qV
(
k + 1, y1(k + 1)

)
with s ∈ Nk0–τ .

Then it follows from (ii) that

	V
(
k, x(k)

)
= V

(
k + 1, x(k + 1)

)
– V

(
k, x(k)

) ≤ –βV
(
k, x(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, Ny(k)

)
= V

(
k + 1, Ny(k + 1)

)
– V

(
k, Ny(k)

) ≤ –βV
(
k, Ny(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, y(k)

)
= V

(
k + 1, y(k + 1)

)
– V

(
k, y(k)

) ≤ –βV
(
k, y(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
,

	V
(
k, y1(k)

)
= V

(
k + 1, y1(k + 1)

)
– V

(
k, y1(k)

) ≤ –βV
(
k, y1(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
.

Since y1(k) = N
[ y1(k)

0

]
, it follows from (3.14) that

y1(k + 1) = A1y1(k) + B1y1(k – τ ) + G1w(k), (3.16)

where A1 = N
[ A1 0

0 0

]
N–1, B1 = N

[ B1 0
0 0

]
N–1, G1 = N

[ G1 0
0 0

]
, and w(k) =

[ w(k)
0

]
. Therefore, we

may conclude that there exists a Lyapunov–Krasovskii functional V (k, y1(k)) for system
(3.16) which satisfies the following conditions:

(i) c̄1‖y1(k)‖p ≤ V (k, y1(k)) ≤ c̄2‖y1(k)‖p + a,
(ii) If V (k + s, y1(k + s)) ≤ qV (k + 1, y1(k + 1)) with s ∈Nk0–τ , then

	V
(
k, y1(k)

)
= V

(
k + 1, y1(k + 1)

)
– V

(
k, y1(k)

) ≤ –βV
(
k, y1(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
.

Thus, from Theorem 3.3, there exist constants 0 < λ < 1,η0 ≥ 0, r0 > 0 such that

∥
∥y1(k)

∥
∥p ≤ η0‖φ1‖pλk–k0 + r0, ∀k ≥ k0, (3.17)

where φ1 = N
[

φ1
0

]
. It follows that

∥
∥y1(k)

∥
∥p ≤ η0

∥
∥N–1∥∥p‖N‖p‖φ1‖pλk–k0 +

∥
∥N–1∥∥pr0

= η1‖φ1‖pλk–k0 + r1, ∀k ≥ k0, (3.18)

where η1 = η0‖N–1‖p‖N‖p, r1 = ‖N–1‖pr0. Therefore, we obtain

∥
∥y1(k)

∥
∥ ≤ (

η1‖φ1‖pλk–k0 + r1
) 1

p . (3.19)

From (3.19), there are four cases to be considered according to the values of p and r1 as
follows.

(Case I) 0 < p < 1, 0 < r1 < 1. Let 	 1
p
 = n, n ∈ I

+. Since 0 < λ < 1, we may assume without
loss of generality that

η1‖φ1‖pλk–k0 + r1 < 1
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for all k ≥ k0. Then, by the binomial theorem, we obtain

∥
∥y1(k)

∥
∥ ≤ (

η1‖φ1‖pλk–k0 + r1
) 1

p

≤ (
η1‖φ1‖pλk–k0 + r1

)	 1
p 


=
(
η1‖φ1‖pλk–k0 + r1

)n

=
(
η1‖φ1‖pλk–k0

)n +

(
n
1

)
(
η1‖φ1‖pλk–k0

)n–1r1

+

(
n
2

)
(
η1‖φ1‖pλk–k0

)n–2r2
1 + · · · + rn

1

≤
(

n
� n

2 �

)

η1‖φ1‖pλk–k0 +

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 r1 +

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 r1

+ · · · +

(
n

� n
2 �

)

r1

=

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 + (n – 1)

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 r1 +

(
n

� n
2 �

)

r1

=

[(
n

� n
2 �

)

+ (n – 1)

(
n

� n
2 �

)

r1

]

η1‖φ1‖pλk–k0 +

[(
n

� n
2 �

)

r1

]

= η2‖φ1‖pλk–k0 + r2,

where η2 =
[( n

� n
2 �

)
+ (n – 1)

( n
� n

2 �
)
r1

]
η1 and r2 =

( n
� n

2 �
)
r1.

(Case II) 0 < p < 1, r1 ≥ 1. Let � 1
p� = n, n ∈ I

+. Since 0 < λ < 1, we may assume without
loss of generality that

η1‖φ1‖pλk–k0 < 1

for all k ≥ k0. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖φ1‖pλk–k0 + r1
) 1

p

≤ (
η1‖φ1‖pλk–k0 + r1

)n

=
(
η1‖φ1‖pλk–k0

)n +

(
n
1

)
(
η1‖φ1‖pλk–k0

)n–1r1

+

(
n
2

)
(
η1‖φ1‖pλk–k0

)n–2r2
1 + · · · + rn

1

≤
(

n
� n

2 �

)

η1‖φ1‖pλk–k0 rn
1 +

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 rn
1

+

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 rn
1 + · · · +

(
n

� n
2 �

)

rn
1
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= n

(
n

� n
2 �

)

η1‖φ1‖pλk–k0 rn
1 +

(
n

� n
2 �

)

rn
1

= η3‖φ1‖pλk–k0 + r3,

where η3 = n
( n

� n
2 �

)
η1rn

1 and r3 =
( n

� n
2 �

)
rn

1 .
(Case III) p ≥ 1, 0 < r1 < 1. Let 	p
 = n, n ∈ I

+. Since 0 < λ < 1, we may assume without
loss of generality that

η1‖φ1‖pλk–k0 + r1 < 1

for all k ≥ k0. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖φ1‖pλk–k0 + r1
) 1

p

≤ (
η1‖φ1‖pλk–k0 + r1

) 1
n

≤ (
η1‖φ1‖pλk–k0

) 1
n + r

1
n
1

≤ η
1
n
1 ‖φ1‖ p

n λ
k–k0

n + r
1
n
1

≤ η
1
n
1 ‖φ1‖ p

n –p‖φ1‖p(λ
1
n
)k–k0 + r

1
n
1

= η4‖φ1‖pλ
k–k0
1 + r4,

where η4 = η
1
n
1 ‖φ1‖ p

n –p, r4 = r
1
n
1 , and λ1 = λ

1
n .

(Case IV) p ≥ 1, r1 ≥ 1. Let 	p
 = n, n ∈ I
+. Since 0 < λ < 1, we may assume without loss

of generality that

η1‖φ1‖pλk–k0 < 1

for all k ≥ k0. Then, by the binomial theorem, we obtain

∥
∥y(k)

∥
∥ ≤ (

η1‖φ1‖pλk–k0 + r1
) 1

p

≤ (
η1‖φ1‖pλk–k0 + r1

) 1
n

≤ (
η1‖φ1‖pλk–k0

) 1
n + r

1
n
1

≤ η
1
n
1 ‖φ1‖ p

n λ
k–k0

n + r1

≤ η
1
n
1 ‖φ1‖ p

n –p‖φ1‖p(λ
1
n
)k–k0 + r1

= η4‖φ1‖pλ
k–k0
1 + r1,

where η4 = η
1
n
1 ‖φ1‖ p

n –p and 0 < λ1 = λ
1
n < 1.

From (Case I)–(Case IV), we obtain that

∥
∥y1(k)

∥
∥ ≤ η5‖φ1‖pλ

k–k0
2 + r5

≤ η5‖φ‖pλ
k–k0
2 + r5, (3.20)
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where η5 = max{η2,η3,η4}, r5 = max{r1, r2, r3, r4},λ2 = min{λ,λ1}, ‖φ‖ = maxs∈Nk0–τ
{‖φ1(s)‖,

‖φ2(s)‖}.
From (3.15), we have

∥
∥y2(k)

∥
∥ ≤ ‖B3‖

∥
∥y1(k – τ )

∥
∥ + ‖B4‖

∥
∥y2(k – τ )

∥
∥ + ‖G2‖

∥
∥w(k)

∥
∥, ∀k ≥ k0. (3.21)

For k ≥ k0, we proceed with the proof as follows:
• For k ∈ [k0, k0 + τ ], we have

∥
∥y2(k)

∥
∥ ≤ ‖B3‖‖φ1‖ + ‖B4‖‖φ2‖ + ‖G2‖

∥
∥w(k)

∥
∥

≤ ‖B3‖‖φ‖ + ‖B4‖‖φ‖ + ‖G2‖
∥
∥w(k)

∥
∥

≤ (‖B3‖ + ‖B4‖
)‖φ‖ + γ ,

where γ = ‖G2‖‖w(k)‖ ≤ ‖G2‖w.
• For k ∈ [k0 + τ , k0 + 2τ ], we have

∥
∥y2(k)

∥
∥ ≤ ‖B3‖

(
η5‖φ‖pλ

k–k0
2 + r5

)
+ ‖B4‖

[(‖B3‖ + ‖B4‖
)‖φ‖ + γ

]
+ γ

= η5‖B3‖‖φ‖pλ
k–k0
2 + ‖B3‖r5 +

(‖B4‖‖B3‖ + ‖B4‖2)‖φ‖ + ‖B4‖γ + γ .

• For k ∈ [k0 + 2τ , k0 + 3τ ], we have

∥
∥y2(k)

∥
∥ ≤ ‖B3‖

(
η5‖φ‖pλ

k–k0
2 + r5

)
+ η5‖B4‖‖B3‖‖φ‖pλ

k–k0
2 + ‖B4‖‖B3‖r5

+
(‖B4‖2‖B3‖ + ‖B4‖3)‖φ‖ + ‖B4‖2γ + ‖B4‖γ + γ .

• For k ∈ [k0 + 3τ , k0 + 4τ ], we have

∥
∥y2(k)

∥
∥ ≤ η5‖B3‖‖φ‖pλ

k–k0
2 + ‖B3‖r5 + η5‖B4‖‖B3‖‖φ‖pλ

k–k0
2

+ ‖B4‖‖B3‖r5 + η5‖B4‖2‖B3‖‖φ‖pλ
k–k0
2 + ‖B4‖2‖B3‖r5

+
(‖B4‖3‖B3‖ + ‖B4‖4)‖φ‖ + ‖B4‖3γ + ‖B4‖2γ + ‖B4‖γ + γ .

• For k ∈ [k0 + 4τ , k0 + 5τ ], we have

∥
∥y2(k)

∥
∥ ≤ η5‖B3‖‖φ‖pλ

k–k0
2 + ‖B3‖r5 + η5‖B4‖‖B3‖‖φ‖pλ

k–k0
2

+ ‖B4‖‖B3‖r5 + η5‖B4‖2‖B3‖‖φ‖pλ
k–k0
2 + ‖B4‖2‖B3‖r5

+ η5‖B4‖3‖B3‖‖φ‖pλ
k–k0
2 + ‖B4‖3‖B3‖r5 +

(‖B4‖4‖B3‖ + ‖B4‖5)‖φ‖
+ ‖B4‖4γ + ‖B4‖3γ + ‖B4‖2γ + ‖B4‖γ + γ .

By repeating the above process, for all k ∈ [k0 + (h – 1)τ , k0 + hτ ], where h ∈ I
+, we get that

∥
∥y2(k)

∥
∥ ≤ η5

(
1 + ‖B4‖ + ‖B4‖2 + · · · + ‖B4‖h–2)‖B3‖‖φ‖pλ

k–k0
2

+
(
1 + ‖B4‖ + ‖B4‖2 + · · · + ‖B4‖h–2)‖B3‖r5 +

(‖B4‖h–1‖B3‖ + ‖B4‖h)‖φ‖
+

(
1 + ‖B4‖ + ‖B4‖2 + ‖B4‖3 + · · · + ‖B4‖h–1)γ . (3.22)



Wangrat and Niamsup Advances in Difference Equations  (2018) 2018:130 Page 17 of 23

Thus, from (3.21) and (3.22), for k ∈ [k0 + hτ , k0 + (h + 1)τ ], we obtain

∥
∥y2(k)

∥
∥ ≤ η5

(
1 + ‖B4‖ + ‖B4‖2 + · · · + ‖B4‖h–1)‖B3‖‖φ‖pλ

k–k0
2

+
(
1 + ‖B4‖ + ‖B4‖2 + · · · + ‖B4‖h–1)‖B3‖r5 +

(‖B4‖h‖B3‖ + ‖B4‖h+1)‖φ‖
+

(
1 + ‖B4‖ + ‖B4‖2 + ‖B4‖3 + · · · + ‖B4‖h)γ .

Hence, from ‖B4‖ < 1, we obtain by mathematical induction that

∥
∥y2(k)

∥
∥ ≤ η5

(
1 + ‖B4‖ + ‖B4‖2 + · · · )‖B3‖‖φ‖pλ

k–k0
2

+
(
1 + ‖B4‖ + ‖B4‖2 + · · · )‖B3‖r5 +

(‖B3‖ + ‖B4‖
)‖φ‖

+
(
1 + ‖B4‖ + ‖B4‖2 + · · · )γ

≤ η5‖B3‖
1 – ‖B4‖‖φ‖pλ

k–k0
2 +

‖B3‖r5

1 – ‖B4‖ +
(‖B3‖ + ‖B4‖

)‖φ‖ +
γ

1 – ‖B4‖
= η6‖φ‖pλ

k–k0
2 + r6, (3.23)

where η6 = η5‖B3‖
1–‖B4‖ and r6 = ‖B3‖r5+γ

1–‖B4‖ + (‖B3‖ + ‖B4‖)‖φ‖.
Thus, it follows from (3.20) and (3.23) that

∥
∥y(k)

∥
∥ ≤ ∥

∥y1(k)
∥
∥ +

∥
∥y2(k)

∥
∥

≤ η5‖φ‖pλ
k–k0
2 + r5 + η6‖φ‖pλ

k–k0
2 + r6

= (η5 + η6)‖φ‖pλ
k–k0
2 + r5 + r6

= η7‖φ‖pλ
k–k0
2 + r7, (3.24)

where η7 = η5 + η6 and r7 = r5 + r6.
From x(k) = Ny(k) and (3.24), we get

∥
∥Ex(k)

∥
∥ ≤ ‖E‖‖N‖∥∥y(k)

∥
∥

≤ ‖E‖‖N‖(η7‖φ‖pλ
k–k0
2 + r7

)

≤ η7‖E‖‖N‖∥∥N–1∥∥‖ϕ‖pλ
k–k0
2 + ‖E‖‖N‖r7

= η8‖ϕ‖λk–k0
2 + r8,

where η8 = η7‖E‖‖N‖‖N–1‖‖ϕ‖p–1 and r8 = ‖E‖‖N‖r7.
Therefore, the discrete time singular system (2.1) is exponentially practically stable with

respect to w(k) with η = η8,λ = λ2, and r = r8. �

Remark 3.3 From the method of proof of Theorem 3.4, it is clear that this method can be
applied for a discrete time singular system with disturbance and time varying delay τ (k)
with 0 ≤ τ (k) ≤ τ , τ > 0.

Remark 3.4 As is known, Razumikhin techniques only require less restrictive assump-
tions, namely they employ a type of Lyapunov–Krasovskii functional which is required to
decrease only if a certain condition on the past state trajectory and the current state is
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satisfied. However, such Razumikhin-type techniques usually lead to a delay-independent
criterion which is less conservative than a delay-dependent result, especially for constant
delay systems. To deal with this conservativeness, several mathematical approaches have
been considered in recent works, e.g., the LMI approach and the time-dependent Lya-
punov functional method. Recently, in [31, 32], the Razumikhin technique was expressed
by utilizing the LMI approach and the time-invariant Lyapunov functional method which
avoid the conservativeness of the Razumikhin-type techniques. It is our future investi-
gation to apply the above mentioned approaches to obtain less conservative criteria for
exponentially practical stability of discrete time singular systems with delay and distur-
bance.

Remark 3.5 Obviously, exponential stability implies exponentially practical stability but
not conversely. However, in several practical applications, it only needs to stabilize a sys-
tem into the region of a phase space, namely the system may oscillate near the equilib-
rium point, in which the performance is still acceptable. To the best of our knowledge,
the present work is the first result on exponentially practical stability of a discrete time
singular system with delay and disturbance. Moreover, compared to [22] which proposed
asymptotically practical stability criteria for a discrete time system with delay, we derive
an exponentially practical stability condition which is more desirable.

4 Numerical examples
Remark 4.1 We provide an algorithm for the implementation and computational corre-
sponding to Theorem 3.2 and Theorem 3.4 as follows:

1. First, we choose an appropriate Lyapunov functional or Lyapunov–Krasovskii
functional candidate according to the assumptions of Theorem 3.2 or Theorem 3.4,
respectively. Then, we estimate the values of c1, c2, and a which satisfy condition (i)
of the corresponding theorems.

2. From the estimations of c1, c2, and a obtained in 1, we choose appropriate q,β , c3,
and ρ which satisfy condition (ii) of the corresponding theorems.

Example 4.1 Consider system (3.2) with E =
[ 1 0

0 0

]
, A =

[ 0.5 0.5
0 1

]
, G =

[ 1
1

]
, w(k) ∈ R, and

k0 = 0 with the initial condition given by x(0) = [5, –0.04]T . We can see that det(zE – A) =
–z + 0.5 = 0 for some z ∈C and deg(det(zE – A)) = rank(E) = 1. Thus, system (3.2) is regular
and causal. For nonsingular matrices M =

[ 2 –1
0 2

]
, N =

[ 0.5 0
0 0.5

]
, we obtain

MEN =

[
1 0
0 0

]

, MAN =

[
0.5 0
0 1

]

, MG =

[
1
2

]

.

We choose a Lyapunov functional as V (k, x(k)) = xT (k)ET Ex(k) + a with a > 0. Then we
obtain that

(i) ‖Ex(k)‖2 ≤ V (k, x(k)) ≤ ‖Ex(k)‖2 + a,
(ii)

	V
(
k, x(k)

)

= V
(
k + 1, x(k + 1)

)
– V

(
k, x(k)

)

= xT (k + 1)ET Ex(k + 1) + a – xT (k)ET Ex(k) – a



Wangrat and Niamsup Advances in Difference Equations  (2018) 2018:130 Page 19 of 23

Figure 1 The trajectory of solution of system (3.2)

= xT (k)AT Ax(k) + 2xT (k)AT Gw(k) + wT (k)GT Gw(k) – xT (k)ET Ex(k)

=

[
x1(k)
x2(k)

]T [
0.5 0
0.5 1

][
0.5 0.5
0 1

][
x1(k)
x2(k)

]

+ 2

[
x1(k)
x2(k)

]T [
0.5 0
0.5 1

][
1
1

]

w(k)

+ wT (k)
[

1 1
]
[

1
1

]

w(k) –

[
x1(k)
x2(k)

]T [
1 0
0 0

][
1 0
0 0

][
x1(k)
x2(k)

]

= 0.25x2
1(k) + 0.5x1(k)x2(k) + 1.25x2

2(k) + x1(k)w(k) + 3x2(k)w(k)

+ 2w(k)2 – x1(k)2

= –0.75x2
1(k) + 1.25w2(k) + 0.5x1(k)w(k) – w(k)2

≤ –0.75x2
1(k) + 0.25x2

1(k) + 0.25w2(k) + 0.25w(k)2

= –0.75x2
1(k) + 0.25x2

1(k) + 0.25x2
2(k) + 0.25w(k)2

= –0.5x2
1(k) + 0.25x2

2(k) + 0.25w(k)2

= –0.5x2
1(k) – 0.5x2

2(k) + 0.75x2
2(k) + 0.25w(k)2

= –0.5
(
x2

1(k) + x2
2(k)

)
+ 0.75w2

2(k) + 0.25w(k)2

= –0.5
∥
∥x(k)

∥
∥2 + w2(k).

Therefore, by Theorem 3.2, we may show that system (3.2) is exponentially practically
stable in the pth-moment with η = 35.6,λ = 0.5, r = 0.5. For simulation purpose, we let
a = 0.3,‖w(k)‖ ≤ 0.1. Then Theorem 3.2 is satisfied with the parameters c1 = 1, c2 = 1, a =
0.3, c3 = 0.5, p = 2,ρ(‖w(k)‖) = w(k)2 ≤ 0.01. Figure 1 shows the trajectories of solution of
Example 4.1 with disturbance. Figure 2 shows the trajectories of solution of Example 4.1
without disturbance.

Example 4.2 Consider system (2.1) with E =
[ 1 0

0 0

]
, A =

[ –0.05 0
–0.05 –0.05

]
, B =

[ 0.4 0
–0.05 –0.02

]
, G =

[ 0.5
0.5

]
, w(k) ∈ R, τ = 1, and k0 = 0 with the initial conditions given by x(–1) = [5, 5]T , x(0) =

[5, 1.75]T . We can see that det(zE – A) = 0.05z + 0.0025 = 0 for some z ∈C and deg(det(zE –
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Figure 2 The trajectory of solution of system (3.2) without disturbance

A)) = rank(E) = 1. Thus, system (2.1) is regular and causal. For nonsingular matrices M =
[ 2 0

0 2

]
, N =

[ 0.5 0
–0.5 –10

]
, we get

MEN =

[
1 0
0 0

]

, MAN =

[
–0.05 0

0 1

]

,

MBN =

[
0.4 0

–0.03 0.4

]

, MG =

[
1
1

]

.

We choose a Lyapunov–Krasovskii functional as V (k, x(k)) = |x1(k)| + a with a > 0.
From Ex(k) =

[ 1 0
0 0

][ x1(k)
x2(k)

]
=

[ x1(k)
0

]
and

Ex(k + 1) =

[
1 0
0 0

][
x1(k + 1)
x2(k + 1)

]

=

[
–0.05 0
–0.05 –0.05

][
x1(k)
x2(k)

]

+

[
0.4 0

–0.05 –0.02

][
x1(k – τ )
x2(k – τ )

]

+

[
0.5
0.5

]

w(k),

we obtain
[

x1(k + 1)
0

]

=

[
–0.05x1(k) + 0.4x1(k – τ ) + 0.5w(k)

–0.05x1(k) – 0.05x2(k) – 0.05x1(k – τ ) – 0.02x2(k – τ ) + 0.5w(k)

]

.

Thus, we obtain
(i) ‖Ex(k)‖ ≤ V (k, x(k)) = |x1(k)| + a ≤ ‖Ex(k)‖ + a,

(ii) If V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)) with s ∈N–τ , then we have

x1(k + 1) = –0.05x1(k) + 0.4x1(k – τ ) + 0.5w(k),
∣
∣x1(k + 1)

∣
∣ ≤ 0.05

∣
∣x1(k)

∣
∣ + 0.4

∣
∣x1(k – τ )

∣
∣ + 0.5

∣
∣w(k)

∣
∣,

∣
∣x1(k + 1)

∣
∣ + a – a ≤ 0.05

∣
∣x1(k)

∣
∣ + 0.05a – 0.05a + 0.4

∣
∣x1(k – τ )

∣
∣ + 0.4a – 0.4a
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Figure 3 The trajectory of solution of system (2.1)

+ 0.5
∣
∣w(k)

∣
∣,

∣
∣x1(k + 1)

∣
∣ + a ≤ 0.05

(∣
∣x1(k)

∣
∣ + a

)
+ 0.4

(∣
∣x1(k – τ )

∣
∣ + a

)
+ 0.55a + 0.5

∣
∣w(k)

∣
∣,

V
(
k + 1, x(k + 1)

) ≤ 0.05V
(
k, x(k)

)
+ 0.4V

(
k – τ , x(k – τ )

)
+ 0.55a + 0.5

∥
∥w(k)

∥
∥

≤ 0.05V
(
k, x(k)

)
+ 0.4qV

(
k + 1, x(k + 1)

)
+ 0.55a + 0.5

∥
∥w(k)

∥
∥

≤ 0.05
1 – 0.4q

V
(
k, x(k)

)
+

0.55a + 0.5‖w(k)‖
1 – 0.4q

.

Thus,

	V
(
k, x(k)

)
= V

(
k + 1, x(k + 1)

)
– V

(
k, x(k)

)

≤ 0.05
1 – 0.4q

V
(
k, x(k)

)
+

0.55a + 0.5‖w(k)‖
1 – 0.4q

– V
(
k, x(k)

)

= –
(

1 –
0.05

1 – 0.4q

)

V
(
k, x(k)

)
+

0.55a + 0.5‖w(k)‖
1 – 0.4q

= –βV
(
k, x(k)

)
+ ρ

(∥
∥w(k)

∥
∥
)
,

where β ≤ 1 – 0.05
1–0.4q and ρ(‖w(k)‖) = 0.55a+0.5‖w(k)‖

1–0.4q .
Therefore, by Theorem 3.4, system (2.1) is exponentially practically stable in the pth-

moment with η = 82.41,λ = 0.8, and r = 54.58. For simulation purpose, we let a =
0.5,‖w(k)‖ ≤ 0.1. Then Theorem 3.4 is satisfied with c1 = 1, c2 = 1, a = 0.5, q = 1.6,β =
0.8, p = 1,ρ(‖w(k)‖) ≤ 0.9. Figure 3 shows the trajectories of solution of Example 4.2. Fig-
ure 4 shows the trajectories of solution of system (2.1) without disturbance.

5 Conclusion
In this paper, exponentially practical stability of a discrete time singular system with delay
and disturbance has been investigated. For systems with disturbance but without delay,
by using Lyapunov stability theory, we obtained a criterion for exponentially practical sta-
bility of a general discrete time system and a linear discrete time singular system, respec-
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Figure 4 The trajectory of solution of system (2.1) without disturbance

tively. For systems with delay and disturbances, by using the Razumikhin-type technique,
we derived exponentially practical stability criteria for a general discrete time system and a
linear singular system, respectively. Numerical examples were given to show effectiveness
of our theoretical results.
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