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Abstract
This paper is concerned with the fault estimation problem for a class of
Takagi–Sugeno (T-S) fuzzy systems with actuator faults and sensor disturbances.
Premise variables of the T-S fuzzy systems are assumed to be unmeasurable such that
conventional parallel distributed compensation (PDC) methods are not applicable.
A modified adaptive observer is designed to estimate states and fault parameters
simultaneously. Finally, a simulation example is presented which shows the
effectiveness of the proposed method.
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1 Introduction
Due to a sudden disturbance or unnecessary changes, faults are always inevitable in actual
systems. Since faults deteriorate system performance and even lead to instability, fault di-
agnosis has been a hot research topic in the past decades. Fault diagnosis is used to check
whether the system is faulty and tell when and where the faults occur; in [1], different kinds
of fault detection and diagnosis methods have been reviewed, while in [2], recent devel-
opments of diagnosis and prognosis for complicated industrial systems were reviewed.
Recently, a lot of research has been done in fault diagnosis for both linear and nonlin-
ear systems in the presence of event-triggered scheme, Markovian jump phenomena, and
unknown membership functions etc. For example, in [3], the problem of fault detection
for nonlinear discrete-time networked systems under an event-triggered scheme was in-
vestigated, in [4], H2 fault-detection observer for two-dimensional (2-D) discrete-time
Markovian jump systems was proposed, and in [5], a simultaneous fault-detection and
control strategy was proposed for switched linear systems with mode-dependent average
dwell-time. In [6, 7], fuzzy fault-detection observers were designed, particularly, a switch-
ing mechanism that depends on the lower and upper bounds of the unknown member-
ship functions is provided to reduce conservatism in [6], and an integrated observer-based
fault-detection scheme was proposed to meet the real-time fault-detection requirements
from industrial processes in [7]. In [8], a fault-detection and -isolation (FDI) scheme for
a class of Lipschitz nonlinear systems with nonlinear and unstructured modeling uncer-
tainty was presented, and in [9], actuator stuck faults, including outage cases, were de-
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tected for linear state-feedback systems. Evidently, observer plays an important role in
fault diagnosis, in the literature, different kinds of observers for nonlinear systems have
been proposed to deal with fault-diagnosis problems, such as sliding mode observer [10],
adaptive observer [11, 12] and robust observer [13]. In addition, to maintain the desired
performance, a robust fault estimation observer was designed in [14] based on piece-
wise Lyapunov functions. Fault-diagnosis schemes for T-S fuzzy model with unmeasur-
able premise variables were proposed based on a fuzzy PI observer and adaptive observer
in [15] and [16], respectively, where faults are considered as unknown inputs in polyno-
mials form. A multi-constrained reduced-order fault estimation observer is designed in
[17] for T-S systems with actuator faults.

Note that T-S fuzzy models are capable of approximating nonlinear behaviors of smooth
systems, which is achieved by blending a set of local linear models through nonlinear
membership functions [18]. Some remarkable results have been reported dealing with
fault-diagnosis problems of T-S fuzzy systems. For example, through considering the im-
perfect communication links between plant and filter, the authors in [19] designed a fault-
detection filter to ensure stochastic stability of residual systems. For discrete-time T-S
fuzzy system influenced by sensor faults and unknown disturbances, an H–/H∞ robust
fault-detection observer was proposed in [20] by using descriptor approach and non-
quadratic Lyapunov functions, whereas the T-S fuzzy systems with unmeasurable premise
variables were considered in [21]. A fault-detection filter with varying gains was designed
in [6] via a switching mechanism that depends on the membership function information.
In addition, adaptive fuzzy observers have been used to estimate disturbances, faults or
unmodeled dynamics of practical systems, such that practical nonlinear systems can be
better approximated by T-S fuzzy systems. For example, in [14], a fault estimation observer
was designed for discrete-time T-S fuzzy systems via piecewise Lyapunov functions, and in
[16], states and unknown inputs were estimated simultaneously by the adaptive observer
designed for T-S fuzzy systems.

Note that if premise variables are allowed to be unknown or partially unknown, a wider
class of nonlinear systems can be approximated by T-S fuzzy systems. However, premise
variables are all assumed to be measurable in the literature when designing adaptive fuzzy
observers. In this paper, a kind of loss-of-effectiveness actuator faults are considered for
T-S fuzzy systems, and premise variables are assumed to be unmeasurable. In order to es-
timate states and fault parameters simultaneously, an adaptive observer is designed which
guarantees that the estimation errors of states and fault parameters are uniformly ulti-
mately bounded. The effectiveness of the proposed method is illustrated by a numerical
example. The rest of this paper is organized as follows: In Sect. 2, some background and
the system description are presented. The problem of fault estimation based on adaptive
observer is addressed in Sect. 3. In Sect. 4, a numerical example is studied to illustrate the
effectiveness of the proposed approach. Finally, we conclude this paper in Sect. 5.

Notation: In this paper, let X be a symmetric matrix, the notation X > 0 (< 0) means
that X is a positive-definite(negative-definite) matrix. The superscripts “T” and “–1” stand
for matrix transposition and inverse, respectively. In the symmetric matrix, an asterisk
“∗” is used to denote the transposed elements. For a square matrix A, He(A) denotes the
Hermitian of the matrix A, that is, He(A) � A + AT . “I” denotes the identity matrix with an
appropriate dimension. ‖d(k)‖ denotes the Euclidean norm of the vector d(k). λmax(A) and
λmin(A) represent the maximum and minimum singular value of matrix A, respectively.
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2 Preliminaries and problem statement
2.1 System description
Consider a T-S fuzzy system described by fuzzy IF–THEN rules. The ith rule of the system
is of the following form.

Plant rule i: IF ξ1(t) is Mi
1 and ξ2(t) is Mi

2 and . . . and ξs(t) is Mi
s, THEN

ẋ(t) = Aix(t) + Biu(t) + �i(t)θ ,

y(t) = Cix(t) + Did(t), (1)

where x(t) ∈ R
n is the state space vector, y(t) ∈ R

p is measurement output, and u(t) ∈ R
m

is input vector, d(t) ∈ R
l is an external disturbance satisfying dT (t)d(t) < d̄2, d̄ is a known

positive scalar. Ai, Bi, Ci and Di are known parameter matrices with appropriate dimen-
sions. θ ∈ R

m is a unknown fault parameter vector. The matrix �i(t) ∈ R
n × R

m is the
known signal. ξ (t) = [ξ1(t), ξ2(t), . . . , ξs(t)] are the premise variables which can be measur-
able such as {u(t), y(t)} or unmeasurable as the state x(t) of the system, Mi

j (i = 1, 2, . . . , q,
j = 1, 2, . . . , s) are the fuzzy sets, q is the number of IF-THEN rules, and s is the number of
premise variables. Throughout this paper, it is assumed that the premise variable of the
fuzzy system is unmeasurable.

By using “fuzzy blending” of each individual plant rule (local model), the global dynamics
of T-S fuzzy system (1) can be described as follows:

ẋ(t) =
q∑

i=1

μi
(
x(t)

)(
Aix(t) + Biu(t) + �i(t)θ

)
,

y(t) =
q∑

i=1

μi
(
x(t)

)(
Cix(t) + Did(t)

)
, (2)

where μi(x(t)) = hi(x(t))/
∑q

i=1 hi(x(t)), hi(x(t)) =
∏s

j=1 Mi
j(xj(t)), and Mi

j(xj(t)) is the grade
of the membership function of xj(t) in Mi

j . It is assumed that hi(x(t)) ≥ 0 (i = 1, 2, . . . , q).
Hence, we see that the normalized membership function μi(x(t)) satisfies μi(x(t)) ≥ 0 and
∑q

i=1 μi(x(t)) = 1 for all t.
In this paper, we use �i(t)θ to represent possible actuator faults, i.e., the loss-of-

effectiveness actuator fault as considered in [22, 23]. The actuator fault model is as follows:

uF
d(t) = ρdud(t), d = 1, 2, . . . , m, (3)

where ρd ∈ [0, 1] is the unknown actuator efficiency factor. Note that the system is fault-
free when ρd = 1. The actuator fault model can be denoted as

uF (t) = ρu(t), (4)

where ρ = diag{ρ1,ρ2, . . . ,ρm}. The control input term BiuF (t) becomes Biρu(t). For the
sake of analysis, define Bi = [Bi1 Bi2 . . . Bim], ū(t) = diag{u1(t), u2(t), . . . , um(t)}, �i(t) =
[�i1(t) �i2(t) . . . �in(t)]T , θ = [θ1 θ2 . . . θm]T . Let �i(t) = Biū(t), θk = ρk – 1, k = 1, 2, . . . , m
such that the input term �i(t)θ denotes the loss of effectiveness model of the actuator.
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2.2 Adaptive observer
In this subsection, an adaptive observer is presented to jointly estimate states and fault
parameters of T-S system (2), based on which the estimated states are chosen as premise
variables.

Motivated by [24], a modified adaptive observer is designed to perform fault estimation.
From the previous description, the rules of the distributed observer is shown as follows.

Observer rule i: IF x̂1(t) is Mi
1 and x̂2(t) is Mi

2 and . . . and x̂s(t) is Mi
s, THEN

ϒ̇(t) = (Ai – KCi)ϒ(t) + �i(t),

˙̂x(t) = Aix̂(t) + Biu(t) + �i(t)θ̂ (t) +
(
K + ϒ(t)�ϒ(t)T CT

i
)(

y(t) – Cix̂(t)
)
,

˙̂
θ (t) = �ϒ(t)T CT

i
(
y(t) – Cix̂(t)

)
, (5)

where x̂(t) is the observer state, θ̂ (t) ∈R
n is an estimate of θ . ϒ(t) is generated by linearly

filtering �i(t). � ∈ R
m × R

m is chosen to be a symmetric and positive-definite matrix,
tuned to balance the convergence speeds of the states and fault parameters. K is the gain
matrix to be determined such that Ai – KCi is stable.

Similar to (2), the fuzzy adaptive observer is developed by

ϒ̇(t) =
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)ϒ(t) + �i(t)

)
, (6)

˙̂x(t) =
r∑

i=1

μi
(
x̂(t)

)(
Aix̂(t) + Biu(t) + �i(t)θ̂ (t)

+
(
K + ϒ(t)�ϒ(t)T CT

i
)(

y(t) – Cix̂(t)
))

, (7)

˙̂
θ (t) =

r∑

i=1

μi
(
x̂(t)

)(
�ϒ(t)T CT

i
(
y(t) – Cix̂(t)

))
. (8)

In order to guarantee the convergence of fault estimate error, the following assumption is
required in this paper.

Assumption 1 Assume that �i(t) is persistently exciting, for some positive constants α,
T and for all t ≥ t0, the following inequality holds:

∫ t+T

t
ϒ(τ )T CT

i Ciϒ(τ ) ≥ αI. (9)

Assumption 2 Control input u(t) has been designed to ensure the stability of the T-S
fuzzy system in both fault-free and faulty case.

Assumption 3 The normalized membership functions μi(x(t)) with the unmeasurable
premise variable x(t) are the Lipschitz continuous functions with Lipschitz constants �i

on a compact region D, such that

∣∣μi
(
x(t)

)
– μi

(
x̂(t)

)∣∣ ≤ �i
∥∥x(t) – x̂(t)

∥∥, i = 1, 2, . . . , q. (10)
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Let �(x(t), x̂(t), θ ) = (
∑r

i=1 μi(x(t)) –
∑r

i=1 μi(x̂(t)))(Aix(t) + Biu(t) + �i(t)θ ), applying As-
sumption 3, we have that there exists a positive scalar β such that

�
(
x(t), x̂(t), θ

)T
�

(
x(t), x̂(t), θ

) ≤ β2x̃(t)T x̃(t), (11)

which has been used in [13, 15]. Then we have the following assumption.

Assumption 4 There exist positive scalars εi, π such that

CT
i Ci >

β2

εi
I, (12)

DiDT
i <

1
π

I, (13)

where β satisfies (11).

Remark 1 Assumption 1 is the persistent excitation condition, which has been presented
in [24–26]. Assumption 2 and Assumption 3 are widely used in the fault-diagnosis litera-
ture [13, 15, 16]. In Assumption 4, Ci needs to be full column rank. Since β is a positive
bounded scalar, it is easy to find a positive scalar ε and π such that conditions (12) and
(13) hold.

The following lemma is essential for later development.

Lemma 1 ([27]) For any matrices X, Y with appropriate dimensions, the following in-
equality holds for any positive scalars ε:

XT Y + Y T X ≤ εXT X +
1
ε

Y T Y . (14)

Now, the main problem studied in this paper is summarized as follows.

Problem For T-S fuzzy system (2) with actuator faults and external disturbances (includ-
ing loss of effectiveness and bias), the main objective of this paper is to design an adaptive
observer such that states and fault parameters can be estimated simultaneously.

3 Fault estimation based on an adaptive observer
In this section, we will analyze the behavior of the proposed adaptive observer (6) for fuzzy
system (2) with the help of Lyapunov–Krasovskii functional approach.

Theorem 1 Consider T-S fuzzy system (2) and adaptive observer (6)–(8), the state estima-
tion errors x̃(t) and fault estimated errors θ̃ (t) are uniformly ultimately bounded if there
exist symmetric positive matrix variables P, Q and positive scalars ςi, εi such that the fol-
lowing LMI (linear matrix inequality) holds for i = 1, 2, . . . , q:

⎡

⎢⎣
He(PAi – QCi) + CT

i Ci QDi P
∗ – 1

ςi
I 0

∗ ∗ – 1
εi

I

⎤

⎥⎦ < 0, (15)

where K = P–1Q.
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Proof Combining (7) and (8), we have

˙̂x(t) =
r∑

i=1

μi
(
x̂(t)

)(
Aix̂(t) + Biu(t) + �i(t)θ̂ (t) + ϒ(t) ˙̂

θ (t)
)

+ K
(
y(t) – Cix̂(t)

)
. (16)

Let

x̃(t) = x(t) – x̂(t), θ̃ (t) = θ – θ̂ (t). (17)

Recall system model (2) and notice that θ̇ = 0, then

˙̃x(t) = ẋ(t) – ˙̂x(t)

=
r∑

i=1

μi
(
x(t)

)(
Aix(t) + Biu(t) + �i(t)θ

)

–
r∑

i=1

μi
(
x̂(t)

)(
Aix̂(t) + Biu(t) + �i(t)θ̂ (t) (18)

+
(
K + ϒ(t)�ϒ(t)T CT

i
)(

y(t) – Cix̂(t)
))

=
r∑

i=1

μi
(
x(t)

)(
Aix(t) + Biu(t) + �i(t)θ

)

–
r∑

i=1

μi
(
x̂(t)

)(
Aix(t) + Biu(t) + �i(t)θ

)
(19)

+
r∑

i=1

μi
(
x̂(t)

)(
Aix(t) + Biu(t) + �i(t)θ

)

–
r∑

i=1

μi
(
x̂(t)

)(
Aix̂(t) + Biu(t) + �i(t)θ̂ (t)

+
(
K + ϒ(t)�ϒ(t)T CT

i
)(

y(t) – Cix̂(t)
))

(20)

=
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)x̃(t) + �i(t)θ̃ (t) + ϒ(t) ˙̃

θ (t)

– KDid(t) + �
(
x(t), x̂(t), θ

))
, (21)

where �(x(t), x̂(t), θ ) = (
∑r

i=1 μi(x(t)) –
∑r

i=1 μi(x̂(t)))(Aix(t) + Biu(t) + �i(t)θ ), and K is
defined in (5).

Define

η(t) = x̃(t) – ϒ(t)θ̃ (t) (22)

and take the first-order derivative of η(t); we have

η̇(t) =
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)x̃(t) + �i(t)θ̃ (t) + ϒ(t) ˙̃

θ (t) – KDid(t)

+ �
(
x(t), x̂(t), θ

)
– ϒ̇(t)θ̃ (t) – ϒ(t) ˙̃

θ (t)
)
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=
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)x̃(t) + �i(t)θ̃ (t) – KDid(t)

+ �
(
x(t), x̂(t), θ

)
– ϒ̇(t)θ̃ (t)

)
(23)

=
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)η(t) +

(
(Ai – KCi)ϒ(t) + �i(t) – ϒ̇(t)

)
θ̃ (t)

– KDid(t) + �
(
x(t), x̂(t), θ

))
. (24)

Substituting (6) into (24) yields

η̇(t) =
r∑

i=1

μi
(
x̂(t)

)(
(Ai – KCi)η(t) – KDid(t) + �

(
x(t), x̂(t), θ

))
. (25)

Since θ̇ = 0, replacing x̃(t) by η(t) and θ̃ (t) according to (22), we have

˙̃
θ (t) =

r∑

i=1

μi
(
x̂(t)

)(
–�ϒ(t)T CT

i Ciη(t) – �ϒ(t)T CT
i Ciϒ(t)θ̃ (t)

– �ϒ(t)T CT
i Did(t)

)
. (26)

Choose the following Lyapunov function candidate:

V (t) = ηT (t)Pη(t) + θ̃T (t)�–1θ̃ (t), (27)

where P is a symmetric positive-defined matrix, and � is the matrix gain used in (5). Then

V̇ (t) = 2η(t)T Pη̇(t) + 2θ̃ (t)T�–1 ˙̃
θ (t)

=
r∑

i=1

μi
(
x̂(t)

)
(2η(t)T P

(
(Ai – KCi)η(t) – KDid(t) + �

(
x(t), x̂(t), θ

))

– 2θ̃ (t)T�–1(�ϒ(t)T CT
i Ciη(t) + �ϒ(t)T CT

i Ciϒ(t)θ̃ (t)

+ �ϒ(t)T CT
i Did(t)

)

=
r∑

i=1

μi
(
x̂(t)

)(
η(t)T He

(
P(Ai – KCi)

)
η(t) – 2η(t)T PKDid(t)

+ 2η(t)T P�
(
x(t), x̂(t), θ

)
– 2θ̃ (t)Tϒ(t)T CT

i Ciη(t)

– 2θ̃ (t)Tϒ(t)T CT
i Ciϒ(t)θ̃ (t) – 2θ̃ (t)Tϒ(t)T CT

i Did(t)
)
. (28)

From Lemma 1, it can be seen that

–2η(t)T PKDid(t) ≤ ςη(t)T PKDiDT
i KT Pη(t) +

1
ς

dT (t)d(t), (29)

2η(t)T P�
(
x(t), x̂(t), θ

) ≤ εη(t)T PPη(t) +
1
ε
�

(
x(t), x̂(t), θ

)T
�

(
x(t), x̂(t), θ

)
, (30)

–2θ̃ (t)Tϒ(t)T CT
i Did(t) ≤ πθ̃ (t)Tϒ(t)T CT

i DiDT
i Ciϒ(t)θ̃ (t) +

1
π

dT (t)d(t). (31)
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From Assumption 2, we see that both x(t) and u(t) are bounded, then from Assumption 3,
we have

dT (t)d(t) ≤ d̄2, (32)

�
(
x(t), x̂(t), θ

)T
�

(
x(t), x̂(t), θ

) ≤ β2x̃(t)T x̃(t). (33)

Substituting (29)–(31) into the derivative of Lyapunov function (28), we have

V̇ (t) ≤
r∑

i=1

μi
(
x̂(t)

)(
η(t)T(

He
(
P(Ai – KCi)

)
+ εPP + ςPKDiDT

i KT P
)
η(t)

+
β2

ε
x̃(t)T x̃(t) – 2θ̃ (t)Tϒ(t)T CT

i Ciη(t) – 2θ̃ (t)Tϒ(t)T CT
i Ciϒ(t)θ̃ (t)

+
d̄2

ς
+ πθ̃ (t)Tϒ(t)T CT

i DiDT
i Ciϒ(t)θ̃ (t) +

1
π

dT (t)d(t)
)

. (34)

Since

x̃(t)T x̃(t) = η(t)Tϒ(t)θ̃ (t) + θ̃ (t)Tϒ(t)Tη(t) + θ̃ (t)Tϒ(t)Tϒ(t)θ̃ (t) + ηT (t)η(t) (35)

we have

V̇ (t) ≤
r∑

i=1

μi
(
x̂(t)

)(
η(t)T

(
He

(
P(Ai – KCi)

)
+ εPP + ςPKDiDT

i KT P +
β2

ε
I
)

η(t)

+
β2

ε
η(t)Tϒ(t)θ̃ (t) +

β2

ε
θ̃ (t)Tϒ(t)Tη(t) +

β2

ε
θ̃ (t)Tϒ(t)Tϒ(t)θ̃ (t)

– 2θ̃ (t)Tϒ(t)T CT
i Ciη(t) – 2θ̃ (t)Tϒ(t)T CT

i Ciϒ(t)θ̃ (t) +
1
ς

dT (t)d(t)

+ πθ̃ (t)Tϒ(t)T CT
i DiDT

i Ciϒ(t)θ̃ (t) +
1
π

dT (t)d(t)
)

≤
r∑

i=1

μi
(
x̂(t)

)
⎛

⎝
[
η(t)
θ̃ (t)

]T

�i

[
η(t)
θ̃ (t)

]⎞

⎠ +
(

1
ς

+
1
π

)
d̄2,

(36)

where

�i =

[
�11 + β2

ε
I β2

ε
ϒ(t) – CT

i Ciϒ(t)
∗ β2

ε
ϒ(t)Tϒ(t) – 2ϒ(t)T CT

i Ciϒ(t) + πϒ(t)T CT
i DiDT

i Ciϒ(t)

]
,

�11 = He
(
P(Ai – KCi)

)
+ εPP + ςPKDiDT

i KT P.

Note that �i = �i1 + �i2, where

�i1 =

[
�11 + CT

i Ci 0
0 –ϒ(t)T CT

i (I – πDiDT
i )Ciϒ(t)

]
,

�i2 =

[
β2

ε
I – CT

i Ci ( β2

ε
I – CT

i Ci)ϒ(t)
∗ ϒ(t)T ( β2

ε
I – CT

i Ci)ϒ(t)

]
=

[
I

ϒT (t)

](
β2

ε
I – CT

i Ci

)[
I ϒ(t)

]
.
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From Assumption 4, we have β2

ε
I – CT

i Ci < 0, thus, �i2 ≤ 0. From Assumption 1 and 4,
we have –ϒ(t)T CT

i (I – πDiDT
i )Ciϒ(t) < 0, then �i1 < 0 if and only if �11 + CT

i Ci < 0 holds
which is equivalent to the following inequality by using the Schur complement lemma:

⎡

⎢⎣
He(P(Ai – KCi)) + CT

i Ci PKDi P
∗ – 1

ς
I 0

∗ ∗ – 1
ε
I

⎤

⎥⎦ < 0. (37)

Summarily, we see that if inequality (37) holds, we have �i1 < 0, since �i2 ≤ 0 holds, we
have �i < 0. Recall (36), we have

V̇ (t) ≤ –λmin(–�i)
(∥∥η(t)

∥∥2 +
∥∥θ̃ (t)

∥∥2) +
(

1
ς

+
1
π

)
d̄2.

Let ϑ(t) = [ηT (t) θ̃T (t)]T , we have

V̇ (t) < 0, ∀∥∥ϑ(t)
∥∥2 >

(ς + π )d̄2

ςπλmin(–�i)
. (38)

Thus, if inequality (37) holds, systems (25) and (26) are uniformly ultimately bounded. Let
Q = PK , (37) becomes (15), this completes the proof. �

Remark 2 Note that if condition (15) holds, the gain matrix K can be obtained by solving
LMI (15) through using MATLAB LMI toolbox, then the state x(t) and fault parameter
θ (t) can be estimated by the adaptive observer (6)–(8).

4 Numerical example
In this section, a numerical example is used to illustrate the effectiveness of proposed fault
estimation method. Consider system model (1) with the following system of matrices:

A1 =

[
0 2

–1 –10

]
, A2 =

[
0 2

–5 –10

]
, B1 = B2 =

[
1 0
1 2

]
,

C1 = C2 =

[
0 10
8 0

]
, D1 = D2 =

[
10 5
15 10

]
. (39)

The membership functions are assumed to depend on the first component x1 of the un-
measured state vector x, which are

μ1(x) = 1 –
x2

1
25

, μ2(x) = 1 – μ1(x).

The initial states are

x(0) =
[
0.2 0

]T
, x̂(0) =

[
0.2 0

]T
, θ̂ (0) =

[
0.3 0.3

]T
,

ϒ1(0) = ϒ2(0) =

[
0 0
0 0

]T

.
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The adaptive observer parameter � used in this simulation is

� =

[
0.8 0
0 0.5

]
.

In order to ensure that the system is stable for both faulty and fault-free cases, the con-
troller is designed as u(t) =

∑r
i=1 μi(x̂)(Liy(t) + r(t)), where Li is the feedback gain, r(t) is

the reference signal. In this example, the controller parameters are chosen as

L1 =

[
0.0489 –0.0210
–0.203 –0.0191

]
, L2 =

[
–0.0240 0.0008
0.1333 0.0631

]
, r(t) = 3.

By solving LMI (15), the observer gain matrix is computed as

K =

[
–0.5627 0.3505
0.1952 –0.1210

]

and the other parameters are obtained: ε = 127.07, ς = 0.3. To illustrate the effectiveness
of the proposed adaptive observer, consider loss-of-effectiveness fault model, i.e., the sys-
tem operates in the normal case before 30 s, and both u1(t) and u2(t) lose 50% of the
effectiveness at 30 s, which means that parameters θ1 and θ2 become –0.5.

The trajectories of states x1(t) and x2(t) together with their estimations of system (2) are
shown in lower parts of Figs. 1 and 2, respectively. The fault parameters θ1 and θ2 together
with their estimation are shown in lower parts of Figs. 3 and 4, respectively.

Figure 1 State x1(t) and its estimation. The blue line denotes state x1(t) while the red line denotes its
estimation. The lower part is the result obtained using method proposed in this paper, while the upper part is
the result obtained using method proposed in [11]
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Figure 2 State x2(t) and its estimation. The blue line denotes state x2(t) while the red line denotes its
estimation. The lower part is the result obtained using method proposed in this paper, while the upper part is
the result obtained using method proposed in [11]

Figure 3 Actuator fault parameter θ1(t) and its estimation. The red line denotes state θ1(t) while the blue line
denotes its estimation. The lower part is the result obtained using method proposed in this paper, while the
upper part is the result obtained using method proposed in [11]

To make it more convincing, the proposed approach is compared with the adaptive fuzzy
observer proposed in [11] where premise variables are assumed to be measurable. For
the same system and fault models, the simulation results are shown in the upper parts of
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Figure 4 Actuator fault parameter θ2(t) and its estimation. The red line denotes state θ2(t) while the blue line
denotes its estimation. The lower part is the result obtained using method proposed in this paper, while the
upper part is the result obtained using method proposed in [11]

Figs. 1, 2, 3, 4. From Figs. 1, 2, 3, 4, it can be seen that the adaptive fuzzy observer with
unmeasurable premise variables proposed in this paper gets better estimation results.

5 Conclusions
This paper focuses on the fault estimation problem for a class of T-S fuzzy system with
actuator faults and sensor disturbances. Premise variables are assumed to be unmeasur-
able, through designing an adaptive observer, states and actuator fault parameters are es-
timated simultaneously. It has been proved that the state and fault estimation errors are
both uniformly ultimately bounded. Finally, a numerical example is given to illustrate the
effectiveness of the proposed methods.
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