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Abstract
In this paper, we propose a multi-nutrient and single microorganism chemostat
model with stochastic effect and impulsive toxicant input. Firstly, for the system
neglecting stochastic effect, we investigate the global dynamics including the
existence and global asymptotic stability of ‘microorganism-extinction’ periodic
solution, as well as the permanence of the system. Then, for the stochastic differential
system with impulsive effect, we discuss the persistence and extinction of
microorganisms with stochastic effect in a polluted environment. Our results indicate
that the stochastic disturbance can lead to microbial extinction. Moreover, the
concentration of toxicant will also affect the survival of microorganisms. Finally,
numerical simulations are carried out to illustrate our theoretical results.
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1 Introduction
The microorganism is a very large population in the biosphere. Due to the fact that the
interaction of the populations in the ecosystem is very complex and lacks strict control,
it is not possible to directly investigate the interrelationships among the various groups.
The chemostat is a laboratory apparatus used for the continuous culture of microorgan-
ism, and it plays an important role in exploring the growth of microorganism in a deter-
ministic environment [1–9]. By controlling the input and output rate of the chemostat,
we can investigate the interaction between microorganisms and the dynamic behavior of
microbial growth in nutrition conditions. Moreover, the chemostat can be used to sim-
ulate the growth of single-cell algal phytoplankton in lakes and oceans, which is also a
common model of waste-treatment and fermentation process [10, 11]. Hence, the analy-
sis of a chemostat model is of vital importance for understanding the evolution of natural
ecosystem. The model was initially proposed by Monod [12, 13] in the 1940s, then further
developed by Novick and Szilard [14] in 1950 and Herbert et al. [15] in 1956.

Modeling and analyzing chemostat systems remain active in recent years. For example,
Hsu et al. [16], Wolkowicz and Lu [17] and Ellermeyer [18] studied the chemostat models
in which two microorganisms feed on a single nutrient. However, some experiments show
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that the growth of a microorganism depends on a variety of nutrition factors such as car-
bon, nitrogen, energy, growth factors, inorganic salts, and water [19]. Recently, the growth
of microorganism species in the chemostat on continuous multi-nutrient has been inves-
tigated by many researchers [20–23]. While the species in nature are subject to short-term
interference (for example, seasonal harvest, natural enemies, spraying pesticides, etc.), this
short-term interference phenomenon can be described as a pulse mathematically [24–34].
Hence the chemostat models with impulsive effect have attracted wide attention [35–38].

It is generally known that species habitat is often affected by the pollutants or toxins,
thus studying the effect of toxins on the species is very important. In 1983, Hallam et al.
[39, 40] first studied the effects of toxic substances on the growth of a single population by
means of dynamic methods, creating a new field for the study of the population pollution
model. Afterwards, Ma et al. [41] considered the persistence and extinction of a population
in a polluted environment. Liu et al. [42] studied the effects of impulsive toxicant input on
a population in a polluted environment. In 1994, Fergola et al. [43] first introduced toxic
substances into the model of the chemostat. Ma et al. [44] explored the effects of toxicants
on a chemostat model with time variable nutrient input and washout. Jiao et al. [45] and
Zhao et al. [46] investigated the effects of pulsed toxic substances on a microorganism.
In [47], Meng et al. proposed a chemostat model with saturated growth rate and pulsed
toxicant input.

Based on the above-mentioned literature, we propose a deterministic chemostat model
of multi-nutrient and single microorganism with saturated growth rate and pulsed toxi-
cant input in a polluted environment as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1(t) = Q(S10 – S1(t)) – μ1S1(t)x(t)
δ1(a1+x(t)) ,

Ṡ2(t) = Q(S20 – S2(t)) – μ2S2(t)x(t)
δ2(a2+x(t)) ,

ẋ(t) = μ1S1(t)x(t)
a1+x(t) + μ2S2(t)x(t)

a2+x(t) – Qx(t)

– rP0(t)x(t),

Ṗ0(t) = kPe(t) – gP0(t) – mP0(t),

Ṗe(t) = –hPe(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT , n ∈ Z+,

�S1(t) = 0, �S2(t) = 0, �x(t) = 0, �P0(t) = 0, �Pe(t) = u,

t = nT , n ∈ Z+,

(1)

where S1(t) and S2(t) denote the concentrations of a nutrient at time t, x(t) denotes the
concentration of the microorganism at time t, P0(t) and Pe(t) represent the concentration
of the toxicant in the organism and in the environment at time t, respectively. S10 and
S20 are positive constants and denote the concentrations of the growth-limiting nutrient,
Q refers to the dilution rate. μ1 and μ2 are the maximum specific growth rates of the
microorganism under two nutrients. δ1 and δ2 represent the yield of the microorganism
x(t) per unit mass of substrate in two nutrients. a1 and a2 are the so-called half-saturation
constants. r > 0 is the rate of decrease of the intrinsic growth rate. kPe(t) is the uptake of
the toxicant of organism’s net from the environment at time t, gP0(t) and mP0(t) represent
the elimination and depuration rates of a toxicant in the organism at time t, respectively.
hPe(t) represents the totality of losses from the system to environment at time t. u is the
amount of pulsed input concentration of the toxicant at each T , and all the coefficients
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are positive. The functions μ1S1(t)x(t)
a1+x(t) and μ2S2(t)x(t)

a2+x(t) represent saturated growth rate of the
microorganism population under two nutrients.

It is well known that in reality the natural growth of many populations is inevitably af-
fected by random disturbances [48–54]. Many population models with random interfer-
ence have been investigated [55–60]. Recently, Zhao et al. [61] and Xu et al. [62] considered
the break-even concentration in a single-species stochastic chemostat model. Sun et al.
[63] investigated the dynamical behavior of a stochastic two-species Monod competition
chemostat model. Wang and Jiang [64] studied the stationary distribution of the stochastic
chemostat model with general response functions. In [65], Xu et al. investigated a stochas-
tic model of turbidostat in which two microorganism species compete for an inhibitory
growth-limiting nutrient. Based on the stochastic sensitivity function technique, they con-
structed the confidence ellipse and then estimated the critical value of the intensity for
noise generating a transition from coexistence to extinction. Zhang et al. [66] and Chen et
al. [67, 68] studied the dynamical behaviors of stochastic models for continuous flow biore-
actors. In [69], Yu et al. studied a nutrient-phytoplankton model with toxin-producing and
environmental fluctuations, in which the noise interference is proportional to the variable
of the system. However, in many cases, environmental noise may only affect some of the
parameters of the model. The literature [70] has only considered the influence of envi-
ronmental noise on the dilution rate. In this article, we consider that the growth rates of
the microorganism are affected by a white noise, i.e., μiSi(t)x(t)

ai+x(t) → μiSi(t)x(t)
ai+x(t) + σiSi(t)x(t)

ai+x(t) Ḃi(t)
(i = 1, 2), where B(t) = (B1(t), B2(t)) is a standard Brownian motion with intensity σ 2

i and
σi > 0 (i = 1, 2) is the environmental noise disturbance coefficient. Hence, the stochastic
model is described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t) = (Q(S10 – S1(t)) – μ1S1(t)x(t)
δ1(a1+x(t)) ) dt

– σ1S1(t)x(t)
δ1(a1+x(t)) dB1(t),

dS2(t) = (Q(S20 – S2(t)) – μ2S2(t)x(t)
δ2(a2+x(t)) ) dt

– σ2S2(t)x(t)
δ2(a2+x(t)) dB2(t),

dx(t) = ( μ1S1(t)x(t)
a1+x(t) + μ2S2(t)x(t)

a2+x(t) – Qx(t)

– rP0(t)x(t)) dt + σ1S1(t)x(t)
a1+x(t) dB1(t)

+ σ2S2(t)x(t)
a2+x(t) dB2(t),

dP0(t) = (kPe(t) – gP0(t) – mP0(t)) dt,

dPe(t) = –hPe(t) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nT , n ∈ Z+,

�S1(t) = 0, �S2(t) = 0, �x(t) = 0, �P0(t) = 0, �Pe(t) = u,

t = nT , n ∈ Z+.

(2)

The rest of this paper is organized as follows. Preliminaries are provided in Sect. 2. In
Sect. 3, we show the existence of a unique globally asymptotically stable ‘microorganism-
extinction’ periodic solution, and establish the conditions for the extinction and perma-
nence of the microorganisms of the deterministic chemostat model (1). In Sect. 4, we in-
vestigate the impulsive stochastic chemostat model (2) and try to give criteria which can
determine the extinction and persistence in mean of the microorganism. In the final sec-
tion, numerical simulations are introduced to support the obtained outcomes.
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2 Preliminaries
In this section, we introduce some notations, definitions, and some lemmas which are
used to analyze our results.

Throughout this paper, we assume that S1(t), S2(t), x(t), and P0(t) are continuous
at t = nT , and Pe(t) is left continuous at t = nT and Pe(nT+) = limt→nT+ Pe(t), and let
(�,F , {F}t≥0,P) be a complete probability space with a filtration {F}t≥0 satisfying the
usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null
sets). Also, let R5

+ = {z = (z1, z2, z3, z4, z5) ∈ R5|zi > 0, i = 1, 2, 3, 4, 5}. For an integrable func-
tion f on [0, +∞), define 〈f (t)〉 = 1

t
∫ t

0 f (θ ) dθ .

Definition 2.1
(i) The microorganism x(t) is said to be extinct if limt→+∞ x(t) = 0.

(ii) The microorganism x(t) is said to be permanent in mean if there exists a positive
constant λ such that lim inft→+∞〈x(t)〉 ≥ λ.

Consider the following subsystem of system (1) and (2):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dP0(t) = (kPe(t) – gP0(t) – mP0(t)) dt,

dPe(t) = –hPe(t) dt,

⎫
⎬

⎭
t �= nT , n ∈ Z+,

�P0(t) = 0, �Pe(t) = u, t = nT , n ∈ Z+.

(3)

Lemma 2.1 ([47]) System (3) has a unique positive T-periodic solution (P∗
0(t), P∗

e (t))T , and
for each solution (P0(t), Pe(t))T of (3), P0(t) → P∗

0(t), Pe(t) → P∗
e (t) as t → +∞. Moreover,

P0(t) > P∗
0(t), Pe(t) > P∗

e (t) for all t ≥ 0 if P0(0) > P∗
0(0), Pe(0) > P∗

e (0), where
⎧
⎨

⎩

P∗
0(t) = P∗

0(0)e–(g+m)(t–nT) + ku(e–(g+m)(t–nT)–e–h(t–nT))
(h–g–m)(1–e–hT ) ,

P∗
e (t) = ue–h(t–nT)

1–e–hT ,
(4)

for t ∈ (nT , (n + 1)T] and n ∈ Z+.

Lemma 2.2 For any positive solution (S1(t), S2(t), x(t), P0(t), Pe(t)) of system (1) or (2) with
the initial value (S1(0), S2(0), x(0), P0(0), Pe(0+)) ∈ R5

+, we have

lim sup
t→+∞

S1(t) ≤ S10, lim sup
t→+∞

S2(t) ≤ S20, lim sup
t→+∞

x(t) ≤ δ1S10 + δ2S20,

lim
t→+∞

〈
P0(t)

〉
=

ku
h(g + m)T

� P0.

Proof From the first and second equations of system (1) or (2), we have lim supt→+∞ S1(t) ≤
S10, lim supt→+∞ S2(t) ≤ S20. And, by the first three equations, one can get

d(δ1S1(t) + δ2S2(t) + x(t))
dt

≤ Q
[
δ1S10 + δ2S20 –

(
δ1S1(t) + δ2S2(t) + x(t)

)]
.

This implies that limt→+∞(δ1S1(t) + δ2S2(t) + x(t)) ≤ δ1S10 + δ2S20, then lim supt→+∞x(t) ≤
δ1S10 + δ2S20. By Lemma 2.1, we have

lim
t→+∞

1
t

∫ t

0
P0(s) ds = lim

t→+∞
1
t

∫ t

0
P∗

0(s) ds =
1
T

∫ T

0
P∗

0(t) dt =
ku

h(g + m)T
.

This completes the proof of Lemma 2.2. �
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Lemma 2.3 (cf. [71]) Suppose that Y (t) ∈ C[� × [0, +∞), R+ = (0, +∞)].
(1) If there are two positive constants T and λ0 such that

log Y (t) ≤ λt – λ0

∫ t

0
Y (s) ds +

m∑

j=1

σjBj(t)

holds for any t ≥ T and constants σj, j = 1, 2, . . . , m, then

⎧
⎨

⎩

lim supt→+∞
1
t
∫ t

0 Y (s) ds ≤ λ/λ0 a.s., if λ > 0,

limt→+∞ Y (t) = 0 a.s., if λ < 0.

(2) If there are three positive constants T , λ, and λ0 such that

log Y (t) ≥ λt – λ0

∫ t

0
Y (s) ds +

m∑

j=1

σjBj(t)

holds for all t ≥ T , then

lim inf
t→+∞

1
t

∫ t

0
Y (s) ds ≥ λ/λ0 a.s.

3 Dynamics of deterministic system (1)
In this section, we devote our attention to the investigation of the dynamics behavior of the
deterministic model (1), to see whether the microorganism can survive. We will discuss
the property of extinction and persistence.

Let

R1 =
μ1S10

a1(Q + rP0)
+

μ2S20

a2(Q + rP0)
,

R2 =
S10βδ1

a(Q + rP0)
+

S20βδ2

a(Q + rP0)
,

where a = max{a1, a2}, β = min{μ1
δ1

, μ2
δ2

}.
We can prove the following theorem.

Theorem 3.1 For system (1), if R1 < 1, then the microorganism goes extinct and system (1)
has a unique globally asymptotically stable ‘microorganism-extinction’ periodic solution
(S10, S20, 0, P∗

0(t), P∗
e (t)).

Proof According to Lemma 2.1, we can see that system (1) has a unique ‘microorganism-
extinction’ periodic solution (S10, S20, 0, P∗

0(t), P∗
e (t)). The stability of the periodic solution

(S10, S20, 0, P∗
0(t), P∗

e (t)) is determined by the eigenvalues of

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 ∗ 0 0
0 λ2 ∗ 0 0
0 0 λ3 0 0
0 0 0 λ4 exp(kT)
0 0 0 0 λ5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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which are

λ1 = exp(–QT) < 1,

λ2 = exp(–QT) < 1,

λ3 = exp

(∫ T

0

(
μ1S10

a1
+

μ2S20

a2
– Q – rP∗

0(t)
)

dt
)

,

λ4 = exp
(
–(g + m)T

)
< 1,

λ5 = exp(–hT) < 1.

Then, according to Floquet theory, (S10, S20, 0, P∗
0(t), P∗

e (t)) is locally stable if λ3 < 1, i.e.,
R1 < 1.

Next, we will prove the global attraction of the ‘microorganism-extinction’ periodic so-
lution (S10, S20, 0, P∗

0(t), P∗
e (t)) of model (1). Since the condition R1 < 1 is satisfied, we can

choose ε > 0 sufficiently small such that

1
T

∫ T

0
r
(
P∗

0(t) – ε
)

dt >
μ1S10

a1
+

μ2S20

a2
– Q. (5)

In view of Lemma 2.1, we have limt→+∞ P0(t) = P∗
0(t); therefore, there exists t1 > 0 such that

P∗
0(t) – ε < P0(t) < P∗

0(t) + ε for all t > t1. By the third equation of system (1) and Lemma 2.2,
when t > t1, we have

dx(t)
dt

≤
(

μ1S10

a1
+

μ2S20

a2
– Q – r

(
P∗

0(t) – ε
)
)

x(t).

Now we consider the comparison system

⎧
⎪⎪⎨

⎪⎪⎩

dy(t)
dt = ( μ1S10

a1
+ μ2S20

a2
– Q – r(P∗

0(t) – ε))y(t), t �= nT ,

y(t+) = y(t), t = nT ,

y(0+) = x(0).

(6)

Integrating from nT to (n + 1)T on both sides of the first equation of (6) yields

y
(
(n + 1)T

)
= y(nT)e

∫ (n+1)T
nT ( μ1S10

a1
+ μ2S20

a2
–Q–r(P∗

0 (t)–ε)) dt

= y(nT)e
∫ T

0 ( μ1S10
a1

+ μ2S20
a2

–Q–r(P∗
0 (t)–ε)) dt ,

which implies that y(nT) = y(0)en
∫ T

0 ( μ1S10
a1

+ μ2S20
a2

–Q–r(P∗
0 (t)–ε)) dt . By inequality (5), we get

limn→+∞ y(nT) = 0. On the other hand, from the first equations of (6), it follows

y(t) = y(nT)e
∫ t

nT ( μ1S10
a1

+ μ2S20
a2

–Q–r(P∗
0 (t)–ε)) dt , t ∈ (

nT , (n + 1)T
]
.

Since e
∫ t

nT ( μ1S10
a1

+ μ2S20
a2

–Q–r(P∗
0(t)–ε)) dt is bounded on (nT , (n + 1)T], we obtain that

limt→+∞ y(t) = 0. Let (S1(t), S2(t), x(t), P0(t), Pe(t)) be the solution of system (1) with initial
conditions. By the comparison theorem, we have lim supt→+∞x(t) ≤ lim supt→+∞y(t) = 0.
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Incorporating into the positivity of x(t), we know that limt→+∞ x(t) = 0. So, the limit sys-
tem of (1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1(t) = [Q(S10 – S1(t))] dt,

dS2(t) = [Q(S20 – S2(t))] dt,

dP0(t) = (kPe(t) – gP0(t) – mP0(t)) dt,

dPe(t) = –hPe(t) dt,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nT , n ∈ Z+,

�S1(t) = 0, �S2(t) = 0, �P0(t) = 0, �Pe(t) = u,

t = nT , n ∈ Z+.

(7)

By Lemma 2.1, it is clear that limt→+∞ S1(t) = S10, limt→+∞ S2(t) = S20, limt→+∞ P0(t) =
P∗

0(t), limt→+∞ Pe(t) = P∗
e (t). This gives the conclusion. �

Theorem 3.2 If R2 > 1, then the microorganism of system (1) is permanent.

Proof Integrating from 0 to t and dividing by t on both sides of the first three equations
of (1) yields

ε(t) � δ1
S1(t) – S1(0)

t
+ δ2

S2(t) – S2(0)
t

+
x(t) – x(0)

t
≥ Q(δ1S10 + δ2S20) – Q

[
δ1

〈
S1(t)

〉
+ δ2

〈
S2(t)

〉]
–

(
Q + rP∗

0
)〈

x(t)
〉
, (8)

where P∗
0 = max0≤t≤T P∗

0(t). Then we get

δ1
〈
S1(t)

〉
+ δ2

〈
S2(t)

〉 ≥ (δ1S10 + δ2S20) –
Q + rP∗

0
Q

〈
x(t)

〉
–

ε(t)
Q

. (9)

Define V (t) = a ln x(t) + x(t). It is obvious that V (t) is bounded. Then we have

D+V (t) =
aμ1S1(t)
a1 + x(t)

+
aμ2S2(t)
a2 + x(t)

– a
(
Q + rP0(t)

)
+

μ1S1(t)x(t)
a1 + x(t)

+
μ2S2(t)x(t)

a2 + x(t)
–

(
Q + rP0(t)

)
x(t)

≥ μ1S1(t) + μ2S2(t) – a
(
Q + rP0(t)

)
–

(
Q + rP∗

0
)
x(t). (10)

Integrating from 0 to t and dividing by t on both sides of (10) yields

V (t)
t

–
V (0)

t
≥ μ1

〈
S1(t)

〉
+ μ2

〈
S2(t)

〉
– a

(
Q + r

〈
P0(t)

〉)

–
(
Q + rP∗

0
)〈

x(t)
〉

≥ β
(
δ1

〈
S1(t)

〉
+ δ2

〈
S2(t)

〉)
– a

(
Q + r

〈
P0(t)

〉)

–
(
Q + rP∗

0
)〈

x(t)
〉
. (11)

According to Lemma 2.2, we know that 0 < S1(t) ≤ S10, 0 < S2(t) ≤ S20 and 0 < x(t) ≤ δ1S10 +
δ2S20, then we obtain limt→+∞ V (t)

t = 0 and limt→+∞ ε(t) = 0. Finally, taking the inferior
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limit of both sides of (11) leads to

lim
t→+∞ inf

〈
x(t)

〉 ≥ a(Q + rP0)
( β

Q + 1)(Q + rP∗
0)

[
β

a
δ1S10

Q + rP0
+

β

a
δ2S20

Q + rP0
– 1

]

> 0.

The proof is completed. �

From the description above, we can see that if the concentration of a toxicant is large
enough then the microorganisms will be extinct.

4 Dynamics of stochastic system (2)
4.1 Extinction
In this section, we investigate the conditions which lead to the extinction of the microor-
ganism of system (2) under the white noise stochastic disturbance. Let

R∗
1 =

μ1S10

a1(Q + rP0)
+

μ2
2

2σ 2
2 (Q + rP0)

–
σ 2

1 S2
10

2a2
1(Q + rP0)

,

R∗
2 =

μ2S20

a2(Q + rP0)
+

μ2
1

2σ 2
1 (Q + rP0)

–
σ 2

2 S2
20

2a2
2(Q + rP0)

,

R∗
3 =

μ2
1

2σ 2
1 (Q + rP0)

+
μ2

2

2σ 2
2 (Q + rP0)

,

R∗
4 =

μ1S10

a1(Q + rP0)
+

μ2S20

a2(Q + rP0)
–

σ 2
1 S2

10

2a2
1(Q + rP0)

–
σ 2

2 S2
20

2a2
2(Q + rP0)

,

then we have the following theorem.

Theorem 4.1 Let (S1(t), S2(t), x(t), P0(t), Pe(t)) be the solution of system (2) with the initial
value (S1(0), S2(0), x(0), P0(0), Pe(0+)) ∈ R5

+. Then, if one of the following holds:
(i) σ1 <

√
μ1a1
S10

, σ2 >
√

μ2a2
S20

and R∗
1 < 1, or

(ii) σ1 >
√

μ1a1
S10

, σ2 <
√

μ2a2
S20

and R∗
2 < 1, or

(iii) σ1 >
√

μ1a1
S10

, σ2 >
√

μ2a2
S20

and R∗
3 < 1, or

(iv) σ1 <
√

μ1a1
S10

, σ2 <
√

μ2a2
S20

and R∗
4 < 1,

the microorganism goes to extinction almost surely, i.e., limt→+∞ x(t) = 0, a.s.

Proof Applying Itô’s formula to system (2) yields

d ln x(t) =
[

μ1S1(t)
a1 + x(t)

+
μ2S2(t)
a2 + x(t)

– Q – rP0(t) –
σ 2

1 S2
1(t)

2(a1 + x(t))2

–
σ 2

2 S2
2(t)

2(a2 + x(t))2

]

dt +
σ1S1(t)

a1 + x(t)
dB1(t) +

σ2S2(t)
a2 + x(t)

dB2(t). (12)

Integrating from 0 to t and dividing by t on both sides of (12) yields

ln x(t)
t

=
1
t

∫ t

0

[
μ1S1(θ )
a1 + x(θ )

+
μ2S2(θ )
a2 + x(θ )

– Q – rP0(θ ) –
σ 2

1 S2
1(θ )

2(a1 + x(θ ))2

–
σ 2

2 S2
2(θ )

2(a2 + x(θ ))2

]

dθ +
M1(t)

t
+

M2(t)
t

+
ln x(0)

t
, (13)
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where the function Mi(t) =
∫ t

0
σiSi(θ )
ai+x(θ ) dBi(θ ) (i = 1, 2). By the strong law of large numbers

and Lemma 2.2, we get

lim
t→+∞

Mi(t)
t

= 0 (i = 1, 2), a.s.

Then there are four cases to be discussed.
Case (i): Since σ1 <

√
μ1a1
S10

, σ2 >
√

μ2a2
S20

, then we can easily see from (13) that

ln x(t)
t

≤ μ1S10

a1
–

σ 2
1 S2

10
2a2

1
+

μ2
2

2σ 2
2

–
(
Q + r

〈
P0(t)

〉)
+

M1(t)
t

+
M2(t)

t
+

ln x(0)
t

. (14)

Taking the superior limit on both sides of (14) yields

lim
t→+∞ sup

ln x(t)
t

≤ (Q + rP0)
(
R∗

1 – 1
)

< 0 a.s.,

which implies limt→+∞ x(t) = 0, a.s.
The same discussion can be used in Case (ii), here we omit it.
Case (iii): σ1 >

√
μ1a1
S10

, σ2 >
√

μ2a2
S20

. From (13), we have

ln x(t)
t

≤ μ2
1

2σ 2
1

+
μ2

2
2σ 2

2
–

(
Q + r

〈
P0(t)

〉)
+

M1(t)
t

+
M2(t)

t
+

ln x(0)
t

. (15)

Taking the superior limit on both sides of (15) leads to

lim
t→+∞ sup

ln x(t)
t

≤ (Q + rP0)
(
R∗

3 – 1
)

< 0 a.s.,

which implies limt→+∞ x(t) = 0, a.s.
Case (iv): σ1 <

√
μ1a1
S10

, σ2 <
√

μ2a2
S20

. In this case, we can see from (13) that

ln x(t)
t

≤ μ1S10

a1
+

μ2S20

a2
–

(
Q + r

〈
P0(t)

〉)
–

σ 2
1 S2

10
2a2

1
–

σ 2
2 S2

20
2a2

2

+
M1(t)

t
+

M2(t)
t

+
ln x(0)

t
. (16)

Taking the superior limit on both sides of (16) yields

lim
t→+∞ sup

ln x(t)
t

≤ (Q + rP0)
(
R∗

4 – 1
)

< 0 a.s.,

which implies limt→+∞ x(t) = 0, a.s. �

This completes the proof of Theorem 4.1.
According to the magnitude of white noise intensity σi (i = 1, 2), Theorem 4.1 discusses

the conditions under which microorganisms are extinct under different conditions (i)–
(iv). The size of Ri (i = 1, . . . , 4) depends on both nutrient and contaminant concentrations
as well as on the intensity of random disturbances. Obviously, the greater the white noise



Chi and Zhao Advances in Difference Equations  (2018) 2018:120 Page 10 of 16

intensity is, the higher the concentration of pollutants is, the smaller Ri is, and the more
likely the microbes become extinct.

4.2 Permanence in mean
For system (2), let

R =
βδ1S10

a(Q + rP0)
+

βδ2S20

a(Q + rP0)
–

σ 2
1 S2

10

2a2
1(Q + rP0)

–
σ 2

2 S2
20

2a2
2(Q + rP0)

,

then we have the following theorem.

Theorem 4.2 If R > 1, then for any initial value (S1(0), S2(0), x(0), P0(0), Pe(0+)) ∈ R5
+, sys-

tem (2) is permanent in the mean; moreover, the solution (S1(t), S2(t), x(t), P0(t), Pe(t)) of
system (2) satisfies

lim
t→+∞ inf

〈
x(t)

〉 ≥ Q + rP0
1
a (1 + β

Q )(Q + rP∗
0)

(R – 1) a.s. (17)

Proof Integrating from 0 to t and dividing by t on both sides of the first three equations
of (2) yields

ε(t) � δ1
S1(t) – S1(0)

t
+ δ2

S2(t) – S2(0)
t

+
x(t) – x(0)

t

≥ Q(δ1S10 + δ2S20) – Q
[
δ1

〈
S1(t)

〉
+ δ2

〈
S2(t)

〉]
–

(
Q + rP∗

0
)〈

x(t)
〉
, (18)

then we get

δ1
〈
S1(t)

〉
+ δ2

〈
S2(t)

〉 ≥ (δ1S10 + δ2S20) –
Q + rP∗

0
Q

〈
x(t)

〉
–

ε(t)
Q

. (19)

Applying Itô’s formula gives

d
(
a ln x(t) + x(t)

)
=

[
a + x(t)

x(t)

(
μ1S1(t)x(t)

a1 + x(t)
+

μ2S2(t)x(t)
a2 + x(t)

– Qx(t) – rP0(t)x(t)
)

–
a
2

(
σ 2

1 S2
1(t)

(a1 + x(t))2 +
σ 2

2 S2
2(t)

(a2 + x(t))2

)]

dt

+
a + x(t)

x(t)

(
σ1S1(t)x(t)

a1 + x(t)
dB1(t) +

σ2S2(t)x(t)
a2 + x(t)

dB2(t)
)

≥
[

μ1S1(t) + μ2S2(t) – a
(
Q + rP0(t)

)
–

(
Q + rP∗

0
)
x(t)

–
aσ 2

1 S2
10

2a2
1

–
aσ 2

2 S2
20

2a2
2

]

dt + σ1S1(t) dB1(t) + σ2S2(t) dB2(t). (20)

For both sides of (20), integrating from 0 to t first and then dividing by t yields

a(ln x(t) – ln x(0))
t

+
x(t) – x(0)

t

≥ μ1
〈
S1(t)

〉
+ μ2

〈
S2(t)

〉
– a

(
Q + r

〈
P0(t)

〉)
–

(
Q + rP∗

0
)〈

x(t)
〉
–

aσ 2
1 S2

10
2a2

1
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–
aσ 2

2 S2
20

2a2
2

+
M1(t)

t
+

M2(t)
t

≥ β(δ1S10 + δ2S20) – a
(
Q + r

〈
P0(t)

〉)
–

(
Q + rP∗

0
)
(

β

Q
+ 1

)
〈
x(t)

〉

–
aσ 2

1 S2
10

2a2
1

–
aσ 2

2 S2
20

2a2
2

–
β

Q
ε(t) +

M1(t)
t

+
M2(t)

t
, (21)

where Mi(t) =
∫ t

0 σiSi(θ ) dBi(θ ) (i = 1, 2). Inequality (21) can be rewritten as

1
t

ln x(t) ≥ β

a
(δ1S10 + δ2S20) –

σ 2
1 S2

10
2a2

1
–

σ 2
2 S2

20
2a2

2
–

(
Q + r

〈
P0(t)

〉)

–
1
a

(
β

Q
+ 1

)
(
Q + rP∗

0
)〈

x(t)
〉
–

β

aQ
ε(t) –

x(t) – x(0)
at

+
ln x(0)

t
+

M1(t)
at

+
M2(t)

at
. (22)

By the strong law of large numbers and Lemma 2.2, we have limt→+∞ Mi(t)
t = 0 (i = 1, 2),

limt→+∞ x(t)
t = 0 and limt→+∞ ε(t) = 0. Using Lemma 2.3, we can get

lim
t→+∞ inf

〈
x(t)

〉 ≥ Q + rP0
1
a (1 + β

Q )(Q + rP∗
0)

(R – 1) > 0 a.s.

This finishes the proof of Theorem 4.2. �

5 Conclusion and simulations
In this paper, we have investigated the dynamics of a chemostat model with multi-nutrient
and single microorganism in a polluted environment. On the one hand, for the system
neglecting stochastic effect, we discuss the global dynamics including the existence and
global asymptotic stability of ‘microorganism-extinction’ periodic solution and the per-
manence in mean of the system. On the other hand, for the stochastic differential system
with impulsive effect, we discuss the persistence and extinction of microorganism with
stochastic effect in a polluted environment. Our results show that stochastic disturbance
and toxicant will affect the survival of microorganism.

Moreover, the difference between thresholds R∗
i and R1 (i = 1, 2, 3, 4) indicates that

the conditions for the microorganism to go to extinction in the stochastic system (2) are
weaker than those of the corresponding deterministic model (1). At the same time, since
R∗

1 < 1 < R2 and R = R2 – σ 2
1 S2

10
2a2

1(Q+rP0) – σ 2
2 S2

20
2a2

2(Q+rP0) , the persistent microorganism of a deter-
ministic system may be extinct due to the white noise disturbance.

Next, computer simulations employing Euler–Maruyama (EM) method [72, 73] are pre-
sented to support the above mentioned results, illustrating extinction and persistence of
the microorganism.

In our simulations for system (1) and system (2), we set

S10 = 1.5, S20 = 2, Q = 1.45, δ1 = 0.9, δ2 = 1,

a1 = 1.6, a2 = 1.6, μ1 = 0.8, μ2 = 0.8,

r = 0.1, k = 1, g = 0.8, h = 1, m = 0.2, u = 0.1, T = 1.
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Figure 1 Time evolutions of the deterministic system with parameters S10 = 1.5, S20 = 2, Q = 1.45, δ1 = 0.9,
δ2 = 1, a1 = 1.6, a2 = 1.6, μ1 = 0.8, μ2 = 0.8, r = 0.1, k = 1, g = 0.8, h = 1,m = 0.2, T = 1. (a) Time series for S1(t),
S2(t), x(t) with parameters u = 0.1,R2 = 1.1473. (b) Time series for S1(t), S2(t), x(t) with parameters u = 3.1,
R1 = 0.9944. (c) Time series for P0(t) and Pe(t)

Firstly, we start with a deterministic system, direct calculation shows that R2 =
1.1473 > 1. From Theorem 3.2, the microorganism of system (1) is permanent (Fig. 1(a)).
When u is increasing to u = 3.1, we have R1 = 0.9944 < 1. From Theorem 3.1, the microor-
ganism of system (1) is extinct (Fig. 1(b)). This suggests that the increase in pollutants can
cause microbial extinction.

Next, we consider the influence of stochastic disturbance on the above deterministic
system. Let D = σ 2

1 – μ1a1
S10

and E = σ 2
2 – μ2a2

S20
. We choose different parameters σ1 and σ2 as

follows.
Case I. Choose σ1 = 0.6, σ2 = 0.9, by direct calculation, we have D = –0.4933 < 0, E =

0.1700 > 0, R∗
1 = 0.6759 < 1. Then, by Theorem 4.1, the microorganism eventually tends

to be extinct (Fig. 2(a)).
Case II. Choose σ1 = 1, σ2 = 0.7, by direct calculation, we have D = 0.1467 > 0, E =

–0.1500 < 0, R∗
2 = 0.6419 < 1. Then, by Theorem 4.1, the microorganism eventually tends

to be extinct (Fig. 2(b)).
Case III. Choose σ1 = 1.5, σ2 = 1.6, by direct calculation, we have D = 1.3967 > 0, E =

1.9200 > 0, R∗
3 = 0.1830 < 1. Then, by Theorem 4.1, the microorganism eventually tends

to be extinct (Fig. 2(c)).
Case IV. Choose σ1 = 0.5, σ2 = 0.5, by direct calculation, we have D = –0.6033 < 0, E =

–0.3900 < 0, R∗
4 = 0.9896 < 1. Then, by Theorem 4.1, the microorganism eventually tends

to be extinct (Fig. 2(d)).
Keeping the parameters of the deterministic system constant, by adding white noise dis-

turbance, we can get R∗
2 < 1 < R2, which indicates that the persistent microorganism of a

deterministic system may go to extinction under the white noise stochastic disturbance.
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Figure 2 Time evolutions of the stochastic system with parameters S10 = 1.5, S20 = 2, Q = 1.45, δ1 = 0.9,
δ2 = 1, a1 = 1.6, a2 = 1.6, μ1 = 0.8, μ2 = 0.8, r = 0.1, k = 1, g = 0.8, h = 1,m = 0.2, u = 0.1, T = 1. (a) Time series
for S1(t), S2(t), x(t) with parameters σ1 = 0.6, σ2 = 0.9,R∗

1 = 0.6759. (b) Time series for S1(t), S2(t), x(t) with
parameters σ1 = 1, σ2 = 0.7,R∗

2 = 0.6419. (c) Time series for S1(t), S2(t), x(t) with parameters σ1 = 1.5, σ2 = 1.6,
R∗

3 = 0.1830. (d) Time series for S1(t), S2(t), x(t) with parameters σ1 = 0.5, σ2 = 0.5,R∗
4 = 0.9896

Figure 3 Time evolutions of the stochastic system with parameters S10 = 1.5, S20 = 2, Q = 1.45, δ1 = 0.9,
δ2 = 1, a1 = 1.6, a2 = 1.6, μ1 = 0.8, μ2 = 0.8, σ1 = 0.4, σ2 = 0.4, r = 0.1, k = 1, g = 0.8, h = 1,m = 0.2, T = 1.
(a) Time series for S1(t), S2(t), x(t) with parameters u = 0.1,R = 1.0135. (b) Time series for S1(t), S2(t), x(t) with
parameters u = 1.1,R∗

4 = 0.9966

Thus the simulation is consistent with the theoretical results of Theorem 3.2 and Theo-
rem 4.1. Therefore, the white noise stochastic effect is harmful to the persistence of the
system.

Choose σ1 = 0.4, σ2 = 0.4, and keep all parameters unchanged as in Fig. 2, except u,
the pulsed input concentration of the toxicant. When it is small, say u = 0.1, we have
R = 1.0135 > 1. Thus, the microorganism x is persistent (Fig. 3(a)). Conversely, when it is
large, say u = 1.1, we have R∗

4 = 0.9966 < 1. Thus, the microorganism x goes to extinction
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(Fig. 3(b)). This supports our theoretical results obtained in Theorem 4.1 and Theorem 4.2
as well.

Numerical simulations show that the increase in pollutant emission may lead to the
extinction of microbial population (Fig. 1(b)) for a deterministic chemostat model. For a
persistent system with constant pollutant discharge (Fig. 1(a)), the microbial population
may become extinct if disturbed by white noise (Fig. 2). And the probability of microbial
extinction increases significantly with increasing noise intensity (Fig. 2(a–d)). Figure 3
shows that, for a long-lasting system with constant noise intensity (Fig. 3(a)), an increase
in pollutant emissions also leads to the extinction of the microbial population (Fig. 3(b)).
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