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1 Introduction
The discrete nonlinear Schrödinger (DNLS) equations belong to the most important in-
herently discrete models, playing a crucial role in the modeling of a great variety of
phenomena, ranging from solid-state and condensed-matter physics to biology ([1–3]).
Particularly, they have been successfully applied to the modeling of localized pulse prop-
agation in optical fibers and wave guides, to the study of energy relaxation in solids, to the
behavior of amorphous material, to the modeling of self-trapping of vibrational energy in
proteins or studies related to the denaturation of the DNA double strand (see [4–6] and
the references therein).

Recently, many works in the literature have considered the existence of discrete solitons
of the DNLS equations; see Refs. [7–12]. Results are obtained for such equations with
superlinear nonlinearity [13–19] and saturable nonlinearity [20–23].

Assume that M is a positive integer. We consider the following DNLS equation:

iψ̇n = –�ψn + εnψn – fn(un), n = (n1, n2, . . . , nM) ∈ Z
M, (1.1)

where

�ψn = ψ(n1+1,n2,...,nM) + ψ(n1,n2+1,...,nM) + · · · + ψ(n1,n2,...,nM+1) – 2mψ(n1,n2,...,nM)

+ ψ(n1–1,n2,...,nM) + ψ(n1,n2–1,...,nM) + · · · + ψ(n1,n2,...,nM–1)
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is the discrete Laplacian in M spatial dimension. The given sequence {εn} is assumed to
be real-valued and T-periodic in n, i.e., for n = (n1, n2, . . . , nM) ∈ Z

M ,

ε(n1+T1,n2,...,nM) = ε(n1,n2+T2,...,nM) = · · · = ε(n1,n2,...,nM+TM) = ε(n1,n2,...,nM),

where T = (T1, T2, . . . , TM), Ti is a positive integer, i = 1, 2, . . . , M. We assume that fn(0) = 0
for n ∈ Z

M and the nonlinearity fn(u) is T-periodic in n and gauge invariant in u, i.e.,

fn
(
eiθ u

)
= eiθ fn(u), θ ∈R.

Solitons of (1.1) are spatially localized time-periodic solutions and decay to 0 at infinity,
that is, ψn has the form

ψn = une–iωt and lim|n|→∞ψn = 0,

where |n| = |n1| + |n2| + · · · + |nM| is the length of multi-index n, {un} is a real-valued
sequence and ω ∈R is the temporal frequency. Then (1.1) becomes

–�un + εnun – ωun = fn(un), n ∈ Z
M, (1.2)

with

lim|n|→∞ un = 0. (1.3)

Naturally, if we look for solitons of (1.1), we just need to find the solutions of (1.2) satisfying
(1.3).

Set Fn(s) =
∫ s

0 fn(t) dt, t ∈ R. This paper is organized as follows. In Sect. 2, we will intro-
duce the variational framework associated with problem (1.2), Sect. 3 is devoted to the
proof of the existence of ground state solutions for equation (1.2).

2 Variational framework and main results
Let

lp ≡ lp(
Z

M)
=

{
u = {un}n∈ZM : ∀n ∈ Z

M, un ∈R,‖u‖lp =
( ∑

n∈ZM

|un|p
) 1

p
< ∞

}
.

Then the following embedding between lp spaces holds:

lq ⊂ lp, ‖u‖lp ≤ ‖u‖lq , 1 ≤ q ≤ p ≤ ∞.

Let L = –
 + εn, A = L – ω, the work space E = l2(ZM). It is well known that the spectral
of L in E (denoted by σ (L)) has a band structure, i.e., σ (L) is a union of a finite number
of closed intervals (see [24]), then the complement R \ σ (L) consists of a finite number of
open intervals called spectral gaps and two of them are semi-infinite. We fix one finite gap
and denote it by (α,β). Note that every element of E automatically satisfies (1.3).

In this paper, we impose the following assumptions on ω and fn:
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(V1) ω ∈ (α,β).
(f1) fn ∈ C(R,R) and fn is T-periodic in n, Fn(s) ≥ 0.
(f2) fn(s) = o(s) as |s| → 0 for all n ∈ Z

M .
(f3) fn(s) = Vns+gn(s), where Vn is T-periodic in n, 0 < Vn < ∞, and there exists a u0 ∈ E+

0

such that

∥∥u0∥∥2 – ‖w‖2 –
∑

n∈ZM

Vn
(
u0

n + wn
)2 < 0 ∀w ∈ E–; (2.1)

sgn(s) ≤ 0, fn(s)gn(s) < 0 for 0 < |s| ≤ α0 for some α0 > 0, gn(s) = o(|s|) as |s| → ∞ for
all n ∈ Z

M .
(f4) s �→ fn(s)/|s| is increasing on (–∞, 0) and (0,∞) for all n ∈ Z

M .
Consider the functional 
 defined on E by


(u) =
1
2

(Au, u)E – �(u), �(u) =
∑

n∈ZM

Fn(un). (2.2)

Here (·, ·)E is the usual inner product in E. The corresponding norm is denoted by ‖u‖E .
Then 
,� ∈ C1(E,R) and the derivative of 
 is given by

〈

′(u), v

〉
= (Au, v)E –

〈
� ′(u), v

〉
= (Au, v)E –

∑

n∈ZM

fn(un)vn, ∀u, v ∈ E. (2.3)

Equation (2.3) implies that (1.2) is the corresponding Euler–Lagrange equation for 
.
Therefore, we have reduced the problem of finding a nontrivial solution of (1.2) to that of
seeking a nonzero critical point of the functional 
 in E. By (V1), we have σ (A) ⊂R \ (α –
ω,β – ω). So, E = E+ ⊕ E– corresponds to the spectral decomposition of A with respect to
the positive and negative parts of the spectrum.

Moreover, for any u, v ∈ E, letting u = u+ + u– with u± ∈ E± and v = v+ + v– with v± ∈ E±,
we can define an equivalent inner product (·, ·) and the corresponding norm ‖ · ‖ on E by

(u, v) =
(
Au+, v+)

E –
(
Au–, v–)

E , ‖u‖ = (u, u)
1
2 ,

respectively. Therefore, 
 can be written as


(u) =
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) –
∑

n∈ZM

Fn(un)

and we also have

〈

′(u), u

〉
=

∥∥u+∥∥2 –
∥∥u–∥∥2 –

∑

n∈ZM

fn(un)un.

If u is a nontrivial solution of problem (1.2), then u ∈M, where

M :=
{

u ∈ E \ E– :
〈

′(u), u

〉
=

〈

′(u), v

〉
= 0 for all v ∈ E–}

.

The above set was first introduced in [25]. Set m := infu∈M 
(u). Inspired by previous
work due to Tang [26], we investigate the existence of ground state solutions of (1.2). His



Zhang and Ma Advances in Difference Equations  (2018) 2018:176 Page 4 of 13

main idea is to find a minimizing Cerami sequence for 
 outside M by using the diagonal
method; see Lemma 3.10.

Now, our main result is the following:

Theorem 2.1 Suppose that (V1), (f1)–(f4) are satisfied. Then Eq. (1.2) has at least a non-
trivial ground state solution ū ∈ E such that 
(ū) = infM 
 > 0. Moreover,

∥
∥ū+∥

∥2 –
∥
∥ū–∥

∥2 –
∑

n∈ZM

Vn(ūn)2 < 0.

Remark 2.2 Set L+ = L|E+ , L– = L|E– . Note that if we substitute condition (f3) by (f ′
3):

(f ′
3) fn(s) = Vns + gn(s), where Vn is T-periodic in n, inf Vn > infσ (L+) – ω, gn(s) = o(|s|) as

|s| → ∞ for all n ∈ Z
M , and 0 < sfn(s) < Vns2 for all n ∈ Z

M and s �= 0,
then the conclusions of Theorem 2.1 can also be derived because (f ′

3) implies (f3).

Here, we mention that, as a result of Theorem 2.1, the least energy value m has a mini-
max characterization given by

m = 
(ū) = min
v∈E+

0 \{0}
max

u∈E–⊕R+v

(u),

where E+
0 is defined in (3.6).

Remark 2.3 In [16], A. Mai and Z. Zhou treated the discrete nonlinear Schrödinger equa-
tion with superquadratic nonlinearity, they required the condition

(f ′
4) s �→ fn(s)/|s| is strictly increasing on (–∞, 0) and (0,∞) for all n ∈ Z,

and obtained ground state solutions by using the generalized Nehari manifold approach
developed by Szulkin and Weth [27]. In [15], they considered the following DNLS equation
in M dimensional lattices:

–�un + εnun – ωun = f (n, un), n ∈ Z
M.

By using S. Liu’s method in [28], they replaced (f ′
4) by (f4), and applied the generalized

linking theorem of Li and Szulkin [29] to obtain the ground state solutions.

Remark 2.4 We point out that when the nonlinear term is asymptotically linear, Chen
and Ma [20] proved (1.2) has at least one ground state solution by employing general-
ized Nehari manifold method if (f ′

4) holds. In our paper, we use (f4) instead of (f ′
4). Sun

and Ma [30] treated the multiplicity of solutions on problem (1.2), where the nonlineari-
ties contains both asymptotically linear nonlinearity and superlinear nonlinearity. When
they considered the asymptotically linear case, they assumed that (V1), (f1), (f2) and the
following two assumptions hold:

(SM1) fn(s) – Vns = o(|s|) as |s| → ∞ with inf Vn > β – ω;
(SM2) F̃n(s) > 0 if s �= 0 and lim inf|s|→∞ F̃n(s) > 0,

where F̃n(s) = 1
2 fn(s)s – Fn(s). Note that (f4) implies that F̃n(s) ≥ 0, which is weaker than

(SM2), and the assumption inf Vn > β – ω in (SM1) is stronger than our assumption that
Vn > 0. Particularly, if (V1), (f1), (f2) and the following two assumptions hold:

(G3) F̃n(s) > 0 if s �= 0;



Zhang and Ma Advances in Difference Equations  (2018) 2018:176 Page 5 of 13

(G4) There is ζ ∈ (0, η

2 ] such that

fn(s)
s

≥ η

2
– ζ ⇒ F̃n(s) ≥ ζ , ∀n ∈ Z.

Then a necessary and sufficient condition for the existence of gap solitons of the DNLS
equations was given by Chen, Ma and Wang [21] when Vn ≡ V0 (n ∈ Z, 0 < V0 ∈R).

In order to complete our proof, let us recall the following linking theorem taken from
[29].

Proposition 2.5 Let E be a real Hilbert space with E = E+ ⊕ E– and E+⊥E– and let I ∈
C1(E,R) be of the form

I(u) =
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) – J(u), u = u+ + u– ∈ E+ ⊕ E–.

Suppose that the following assumptions are satisfied:
(1) J ∈ C1(E,R) is bounded from below and weakly sequentially lower semi-continuous;
(2) J ′ is weakly sequentially continuous;
(3) there exist r > ρ > 0 and e ∈ E+ with ‖e‖ = 1 such that

κ := inf I
(
S+

ρ

)
> sup I(∂Q),

where

S+
ρ =

{
u ∈ E+|‖u‖ = ρ

}
, Q =

{
w + se : w ∈ E–, s ≥ 0,‖w + se‖ ≤ r

}
.

Then, for some c ∈ [κ , sup I(Q)], there exists a sequence {un} ⊂ E satisfying

I(un) → c,
∥
∥I ′(un)

∥
∥(

1 + ‖un‖
) → 0. (2.4)

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.

3 Proof of Theorem 2.1
This section is devoted to a proof of Theorem 2.1, and we begin with an important prop-
erty of � defined in (2.1).

Lemma 3.1 Suppose that (f1)–(f3) are satisfied, then � is nonnegative, weakly sequentially
lower semi-continuous, and � ′ is weakly sequentially continuous.

Proof The proof is similar to the proof of Lemma 3.1 in [15], we omit it here. �

Lemma 3.2 ([26]) Suppose that h(x, t) is nondecreasing in t ∈ R and h(x, 0) = 0 for any
x ∈R

N . Then

(
1 – θ2

2
τ – θσ

)
h(x, t)|τ | ≥

∫ τ

θτ+σ

h(x, s)|s|ds ∀θ ≥ 0, τ ,σ ∈R. (3.1)
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Lemma 3.3 Assume (V1), (f1)–(f4). Then


(u) ≥ 
(θu + w) +
1
2
‖w‖2 +

1 – θ2

2
〈

′(u), u

〉
– θ

〈

′(u), w

〉

∀θ ≥ 0, u ∈ E, w ∈ E–. (3.2)

Proof It follows from (f4) and Lemma 3.2 that

(
1 – θ2

2
τ – θσ

)
fn(τ ) ≥

∫ τ

θτ+σ

fn(s) ds ∀θ ≥ 0, τ ,σ ∈R. (3.3)

Then, in the same way as Lemma 2.4 in [26], we can show that (3.2) holds. �

Corollary 3.4 Assume (V1), (f1)–(f4). Then, for u ∈M,


(u) ≥ 
(tu + w) ∀t ≥ 0, w ∈ E–.

Especially, we have


(u) ≥ t2

2
(∥∥u+∥

∥2 +
∥
∥u–∥

∥2) –
∑

n∈ZM

Fn
(
tu+

n
)

+
1 – t2

2
〈

′(u), u

〉

+ t2〈
′(u), u–〉 ∀u ∈ E, t ≥ 0.

The following lemma gives an important computation technique to obtain the linking
geometry.

Lemma 3.5 Assume (V1), (f1)–(f3). Then

τ
〈

′(u), τu + 2v

〉 ≥ τ 2∥∥u+∥
∥2 –

∥
∥τu– + v

∥
∥2 + ‖v‖2 –

∑

n∈ZM

Vn(τun + vn)2

+ τ 2
∑

n∈ZM

Vnfn(un)un – [fn(un)]2

Vn
∀u ∈ E, τ ∈R, v ∈ E–. (3.4)

It follows from (3.4) that

∥
∥u+∥

∥2 –
∥
∥u– + v

∥
∥2 –

∑

n∈ZM

Vn(un + vn)2

≤ –‖v‖2 –
∑

n∈ZM

Vnfn(un)un – [fn(un)]2

Vn
∀u ∈M, v ∈ E–. (3.5)

Proof The proof is similar to the proof of Lemma 2.7 in [26], we omit it here. �

Lemma 3.6 Assume (V1), (f1)–(f4). Then
(i) there exists ρ > 0 such that

m = inf
M


 ≥ κ := inf
{

(u) : u ∈ E+,‖u‖ = ρ

}
> 0;

(ii) ‖u+‖ ≥ max{‖u–‖,
√

2m} for all u ∈M.
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Proof (i) By (f2) and (f3), we can see that, for any ε > 0, there exists a constant Cε > 0 such
that

∣∣fn(s)
∣∣ ≤ ε|s| + Cε|s|p–1 and

∣∣Fn(s)
∣∣ ≤ εs2 + Cε|s|p, p ≥ 2.

For u ∈ E+, since ‖ · ‖ is equivalent to the E norm on E+, and recalling that E ⊂ lp for
2 ≤ p ≤ ∞ with ‖u‖lp ≤ ‖u‖E , we have


(u) =
1
2
‖u‖2 –

∑

n∈ZM

Fn(un) = o
(‖u‖2).

Hence we can get κ := inf{
(u) : u ∈ E+,‖u‖ = ρ} > 0 if ρ > 0 is small enough. Since for
every u ∈ M there exists t > 0 such that tu+ ∈ Sρ , and by Corollary 3.4, 
(tu+) = 
(tu –
tu–) ≤ 
(u), then it turns out that infM 
 ≥ infSρ 
.

(ii) For u ∈M, we have

m ≤ 1
2
(∥∥u+∥

∥2 –
∥
∥u–∥

∥2) –
∑

n∈ZM

Fn(un) ≤ 1
2
(∥∥u+∥

∥2 –
∥
∥u–∥

∥2),

hence ‖u+‖ ≥ max{√2m,‖u–‖}. �

Now, we define a set E+
0 mentioned above as follows:

E+
0 =

{
u ∈ E+ \ {0} : ‖u‖2 – ‖w‖2 –

∑

n∈ZM

Vn(un + wn)2 < 0 ∀w ∈ E–
}

. (3.6)

It is easy to see that (f3) guarantees that the set E+
0 is not empty.

Lemma 3.7 Suppose that (V1), (f1)–(f3) are satisfied. Then, for any e ∈ E+
0 , sup
(E– ⊕

R
+e) < ∞ and there is Re such that


(u) ≤ 0 ∀u ∈ E– ⊕R
+e,‖u‖ ≥ Re.

Proof Arguing by contradiction, suppose that there exists {wj + sje} ⊂ E– ⊕R
+e with ‖wj +

sje‖ → ∞, such that 
(wj + sje) ≥ 0. Set

vj =
wj + sje

‖wj + sje‖ =
(
vj)– + τje;

then ‖(vj)– + τ je‖ = ‖vj‖ = 1. Then

0 ≤ 
(wj + sje)
‖wj + sje‖2 =

τ 2
j

2
‖e‖2 –

1
2
∥
∥(

vj)–∥
∥2 –

∑

n∈ZM

Fn(wj
n + sjen)

(wj
n + sjen)2

(
vj

n
)2. (3.7)

Hence 1
2 ≤ τ 2

j ‖e‖2 ≤ 1. Passing to a subsequence, we have vj ⇀ v in E, vj
n → vn for all

n ∈ Z
M and τj → τ > 0 as j → ∞. Since e ∈ E+

0 , there exists a finite set A ⊂ Z
M such that

τ 2‖e‖2 –
∥∥v–∥∥2 –

∑

n∈A

Vn
(
τen + v–

n
)2 < 0. (3.8)
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Let Gn(s) =
∫ s

0 gn(t) dt, then Fn(s) = 1
2 Vns2 + Gn(s). From (3.7), we obtain

0 ≤ τ 2
j

2
‖e‖2 –

1
2
∥∥(

vj)–∥∥2 –
∑

n∈A

Fn(wj
n + sjen)

(wj
n + sjen)2

(
vj

n
)2

=
τ 2

j

2
‖e‖2 –

1
2
∥∥(

vj)–∥∥2 –
1
2

∑

n∈A

Vn
(
vj

n
)2 –

∑

n∈A

Gn(wj
n + sjen)

(wj
n + sjen)2

(
vj

n
)2.

By (f2) and (f3), there exists some C1 > 0 such that |Gn(s)| ≤ C1s2, and Gn(s)/s2 → 0 as
|s| → ∞ for all n ∈ Z

M . Since (vj)– ⇀ v– in E and vj
n → vn as j → ∞ for all n ∈ Z

M , we
have

∑

n∈A

Gn(wj
n + sjen)

(wj
n + sjen)2

(
vj

n
)2 = o(1).

Therefore,

0 ≤ τ 2‖e‖2 –
∥∥v–∥∥2 –

∑

n∈A

Vn
(
τen + v–

n
)2,

which contradicts with (3.8). �

Corollary 3.8 Assume (V1), (f1)–(f3). Let e ∈ E+
0 with ‖e‖ = 1. Then there is a r0 > ρ such

that sup
(∂Q) ≤ 0 for r ≥ r0, where

Q =
{

w + se : w ∈ E–, s ≥ 0,‖w + se‖ ≤ r
}

. (3.9)

Lemma 3.9 Assume (V1), (f1)–(f4). Then,
(i) For any u ∈ E+

0 , M∩ (E– ⊕R
+u) �= ∅, that is, there exist t(u) > 0 and w(u) ∈ E– such

that t(u)u + w(u) ∈M.
(ii) There exists constant c ∈ [κ , sup
(Q)] and a sequence {uj} ⊂ E satisfying



(
uj) → c,

∥
∥
′(uj)∥∥(

1 +
∥
∥uj∥∥) → 0,

where Q is defined by (3.9).

Proof (i) The proof is similar to Lemma 2.12 in [26], we omit it here.
(ii) The conclusion is a directly corollary of Proposition 2.5 and Lemma 3.6(i) and Corol-

lary 3.8. �

The following lemma takes an important part in demonstrating the existence of ground
state solutions for problem (1.2).

Lemma 3.10 Assume (V1), (f1)–(f4). Then there exist a constant c∗ ∈ [κ , m] and a sequence
{uj} ⊂ E satisfying



(
uj) → c∗,

∥
∥
′(uj)∥∥(

1 +
∥
∥uj∥∥) → 0. (3.10)
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Proof First, choosing vk ∈M such that

m ≤ 

(
vk) < m +

1
k

, k ∈N. (3.11)

By Lemma 3.6(ii), ‖(vk)+‖ ≥ √
2m > 0. Since vk ∈ E, then lim|n|→∞ |vk

n| = 0, i.e., there is an
infinite subset of ZM where |vk

n| ≤ α0, k ∈N. Note that (f3) asserts that fn(s)gn(s) ≤ 0 for all
n ∈ Z

M when |s| ≥ 0, then we have

∑

n∈ZM

fn(vk
n)gn(vk

n)
Vn

< 0. (3.12)

Let ek = (vk)+/‖(vk)+‖. Then ek ∈ E+ and ‖ek‖ = 1. According to (3.5) and (3.12),

∥∥ek∥∥2 – ‖w‖2 –
∑

n∈ZM

Vn
(
ek

n + wn
)2

=
‖(vk)+‖2

‖(vk)+‖2 – ‖w‖2 –
∑

n∈ZM

Vn

(
vk

n
‖(vk)+‖ + wn –

(vk
n)–

‖(vk)+‖
)2

≤ –
∥
∥∥
∥w –

(vk)–

‖(vk)+‖
∥
∥∥
∥

2

–
1

‖(vk)+‖2

∑

n∈ZM

vk
nf (n, vk

n)Vn – [f (n, vk
n)]2

Vn

= –
∥
∥∥
∥w –

(vk)–

‖(vk)+‖
∥
∥∥
∥

2

+
1

‖(vk)+‖2

∑

n∈ZM

f (n, vk
n)g(n, vk

n)
Vn

< 0 ∀w ∈ E–.

This shows that ek ∈ E+
0 . By virtue of Corollary 3.8, there exists rk > max{ρ,‖vk‖} such that

sup
(∂Qk) ≤ 0, where

Qk =
{

w + sek : w ∈ E–, s ≥ 0,‖w + sek‖ ≤ rk
}

, k ∈ N. (3.13)

Therefore, applying Lemma 3.9(ii) to the above set Qk , there exist a positive constant ck ∈
[κ , sup
(Qk)] and a sequence {uk,j}j∈N ⊂ E satisfying



(
uk,j) → ck ,

∥
∥
′(uk,j)∥∥(

1 +
∥
∥uk,j∥∥) → 0, k ∈N, (3.14)

where j → ∞. In view of Corollary 3.4, we derive



(
vk) ≥ 


(
w + tvk), ∀t ≥ 0, w ∈ E–. (3.15)

Since vk ∈ Qk , it follows from (3.13) and (3.15) that 
(vk) = sup
(Qk). Hence, by (3.11)
and (3.14),



(
uk,j) → ck < m +

1
k

,
∥∥
′(uk,j)∥∥(

1 +
∥∥uk,j∥∥) → 0, k ∈N.

Now, we can choose a sequence {jk} ⊂N such that

κ –
1
k

< 

(
uk,jk

) → ck < m +
1
k

,
∥∥
′(uk,jk

)∥∥(
1 +

∥∥uk,jk
∥∥) → 0, k ∈ N.
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Let uk = uk,jk , k ∈N. Then, passing to a subsequence if necessary, we have



(
uj) → c∗ ∈ [κ , m],

∥∥
′(uj)∥∥(
1 +

∥∥uj∥∥) → 0. �

Lemma 3.11 Assume (V1), (f1)–(f4). Then any sequence {uj} ⊂ E satisfying (3.10) is
bounded in E.

Proof Arguing by contradiction, suppose there exists a sequence {uj} ⊂ E such that
‖uj‖ → ∞. Let vj := ‖uj‖–1uj, then ‖vj‖ = 1. Since ‖ · ‖ is equivalent to the E norm on
E+, there exists a constant C > 0 such that ‖(vj)+‖E ≤ C. After passing to a subsequence,
we have vj ⇀ v in E and vj

n → vn as j → ∞ for all n ∈ Z
M .

We claim that there exist δ > 0 and nj ∈ Z
M satisfy

∣∣(vj
nj

)+∣∣ ≥ δ.

Indeed, if not, then (vj)+ → 0 in l∞ as j → ∞. Since ‖(vj)+‖E is bounded, and note the
simple fact that

∥∥(
vj)+∥∥q

lq ≤ ∥∥(
vj)+∥∥q–2

l∞
∥∥(

vj)+∥∥2
l2 , q > 2. (3.16)

If δ = 0, then by (3.16) we can deduce that (vj)+ → 0 in all lq, q > 2. Fix R > [2(1 + c∗)]1/2, and
p > 2, in view of (f1) and (f3), choose ε = 1

4(RC)2 > 0, there exists Cε > 0 such that |Fn(s)| ≤
ε|s|2 + Cε|s|p. Therefore,

lim sup
j→∞

∑

n∈ZM

Fn
(
R
(
vj

n
)+) ≤

[
ε(RC)2 + RpCε lim

j→∞
∥
∥(

vj)+∥
∥p

lp

]
=

1
4

. (3.17)

Let tj = R/‖uj‖. By Corollary 3.4 and (3.10), (3.17),

c∗ + o(1) = 

(
uj) ≥ t2

j

2
(∥∥(

uj)+∥∥2 +
∥∥(

uj)–∥∥2) –
∑

n∈ZM

Fn
(
tj
(
uj

n
)+)

+
1 – t2

j

2
〈

′(uj), uj〉 + t2

j
〈

′(uj),

(
uj)–〉

=
R2

2
(∥∥(

vj)+∥∥2 +
∥∥(

vj)–∥∥2) –
∑

n∈ZM

F
(
n, R

(
vj

n
)+)

+
(

1
2

–
R2

2‖uj‖2

)
〈

′(uj), uj〉 +

R2

‖uj‖2

〈

′(uj),

(
uj)–〉

=
R2

2
–

∑

n∈ZM

Fn
(
R
(
vj

n
)+)

+ o(1) ≥ R2

2
–

1
4

+ o(1) > c∗ +
3
4

+ o(1),

which implies that δ > 0, i.e., the claim holds. We derive that v+ �= 0 and so v �= 0.
Let n ∈ Z

M be such that vn �= 0, then |uj
n| = |vj

n| · ‖uj‖ → ∞ as j → ∞. It is well known
that l0 denotes the vector space of all finite sequences, i.e., sequences u = {u(n)} such that
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suppu = {n ∈ Z
M : u(n) �= 0} is a finite set. Obviously, l0 is a dense subspace of lp with

1 ≤ p < ∞. For any φ ∈ l0, we have

〈

′(uj),φ

〉
=

((
uj)+ –

(
uj)–,φ

)
–

∑

n∈ZM

Vnuj
nφn –

∑

n∈ZM

gn
(
uj

n
)
φn

=
∥∥uj∥∥

[
((

vj)+ –
(
vj)–,φ

)
–

∑

n∈ZM

Vnvj
nφn –

∑

n∈ZM

gn(uj
n)

uj
n

vj
nφn

]
.

From (3.10), we derive

((
vj)+ –

(
vj)–,φ

)
–

∑

n∈ZM

Vnvj
nφn –

∑

n∈ZM

gn(uj
n)

uj
n

vj
nφn = o(1).

Note that

∣
∣∣
∣
∑

n∈ZM

gn(uj
n)

uj
n

vj
nφn

∣
∣∣
∣ ≤

∑

n∈ZM

χn

∣
∣∣
∣
gn(uj

n)
uj

n

∣
∣∣
∣
∣∣vj

n – vn
∣∣|φn| +

∑

n∈ZM

∣
∣∣
∣
gn(uj

n)
uj

n

∣
∣∣
∣|vn||φn|

≤ C
∑

n∈suppφ

∣∣vj
n – vn

∣∣|φn| +
∑

{n∈ZM :vn �=0}

∣
∣∣
∣
gn(uj

n)
uj

n

∣
∣∣
∣|vn||φn| = o(1).

Therefore,

(
v+ – v–,φ

)
–

∑

n∈ZM

Vnvnφn = 0,

i.e.,

(
(L – ω)v,φ

)
E =

∑

n∈ZM

Vnvnφn.

This gives a contradiction since it is well known that the operator L – V has no eigenvalue
in E, where the operator V is defined as follows:

V : E → E, (Vu)n = Vnun.

Thus, {uj} is bounded and so the lemma is proved. �

Proof of Theorem 2.1 Lemmas 3.10 and 3.11 imply that there exists a bounded (C)c∗ se-
quence {uj} ⊂ E. A standard argument shows that uj ⇀ u �= 0 ∈ E as j → ∞ after passing
to a subsequence, and 
′(u) = 0. This shows that u ∈ M and so 
(u) ≥ m. Note that (f2)
and (f4) imply that 1

2 fn(uj
n)uj

n – Fn(uj
n) ≥ 0, it follows from (3.10) and Fatou’s lemma that

m ≥ c∗ = lim
j→∞

[



(
uj) –

1
2
〈

′(uj), uj〉

]

= lim
j→∞

∑

n∈ZM

[
1
2

fn
(
uj

n
)
uj

n – Fn
(
uj

n
)]
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≥
∑

n∈ZM

[
1
2

fn(un)un – Fn(un)
]

= 
(u) –
1
2
〈

′(u), u

〉
= 
(u).

Hence, we derive that m = 
(u) = infM 
. �

Remark 3.12 It seems possible to generalize the results of Theorem 2.1 to the following
DNLS equation:

Lun – ωun = σ fn(un), n ∈ Z
M, ((*))

where L is a Jacobi operator [24] given by

Lun = a1(n1,n2,...,nM)u(n1+1,n2,...,nM) + a1(n1–1,n2,...,nM)u(n1–1,n2+1,...,nM)

+ a2(n1,n2,...,nM)u(n1,n2+1,...,nM) + a2(n1,n2–1,...,nM)u(n1,n2–1,...,nM)

+ · · · + aM(n1,n2,...,nM)u(n1,n2,...,nM+1) + aM(n1,n2,...,nM–1)u(n1,n2,...,nM–1)

+ b(n1,n2,...,nM)u(n1,n2,...,nM),

where {akn} (k = 1, 2, . . . , M) and {bn} are real-valued T-periodic sequences, σ = ±1. In-
deed, (1.2) is a special case of equation (*) when akn ≡ –1 (k = 1, 2, . . . , M) and bn = 2M +εn,
σ = 1.
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