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Abstract
This paper focuses on the state estimation problem for complex-valued memristive
neural networks with time-varying delays. By utilizing Lyapunov stability theory and
some matrix inequality techniques, based on a novel Lyapunov functional, a sufficient
delay-dependent condition which guarantees that the error-state system is global
asymptotically stable is firstly derived for the addressed system, and a suitable state
estimator is also designed. Finally, an example is given to illustrate the present
method.
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1 Introduction
During the past decades, a neural networks model has been studied intensively. Broad
applications have been explored in various areas ranging from signal processing, parallel
computation and engineering optimization to pattern recognition, which rely heavily on
the dynamical behaviors of this kind of model. As a result, many researchers have been
attracted to study it and lots of achievements on various dynamical behaviors have arisen
[1–3]. A weighting delay and space partitioning method was proposed in [1, 2], and the
stability criterion was established by establishing the relation among the connection pa-
rameters, delay parameters and dynamic variables of systems, which are less conservative
than previous results. Moreover, as everyone knows, when studying the dynamical behav-
iors of this model, obtaining the state information for the networks is usually very impor-
tant. Unfortunately, in practice, it is difficult to obtain the exact and complete information
of neural states in the network outputs because of many reasons. Thus, in order to fully
exploit the neural networks, it becomes significant and essential to use a reasonable mea-
surement to estimate the neuron state. Accordingly, many fruitful achievements on state
estimation problems for neural networks have been reported [4–17].

In the early 1970s, Chua [18] presented theoretically the existence of a new basic elec-
trical circuit element, named the memristor, which describes the relationship between
electric charge and flux linkage. A practical memristor device has been realized practi-
cally by the research team of HP Lab in 2008. As a new two-terminal passive device which
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follows resistor, inductor and capacitor, the memristor shares many properties of resis-
tor and the same unit of measurement. Moreover, it is also shown to be similar to the
synapses in the human brain. Based on these features, the memristive neural networks
model established by replacing a resistor with a memristor has attracted more and more
attention, and various dynamical behaviors of this model have been investigated, see [19–
27] and the references therein. However, when it comes to the state estimation problem,
only [28, 29] studied the related content. For instance, the H∞ state estimation problem
of discrete-time memristive neural networks is studied in [29]. Here, the discrete-time
memristive neural networks are recast into a tractable model by defining a series of state-
dependent switched signals and the calculation cost is reduced effectively when dealing
with the connection weights by a robust analysis method.

On the other hand, the dynamical behavior analysis of the complex-valued neural net-
works model has undergone a research upsurge, due to the more extensive applications,
including radar imaging, electromagnetic waves, remote sensing, quantum devices, and so
on [30]. As an extension of the real-valued neural networks, the complex-valued system
with complex-valued states, activation functions and connection weights possesses more
complicated and abundant properties than real-valued one. Moreover, they can be used
to solve many complicated real-life problems that the real-valued model cannot do, such
as the speed and direction in wind profile model [31]. So far, effective achievements on
the dynamical behaviors of complex-valued neural networks have emerged in large num-
bers [32–39]. Moreover, for memristor-based complex-valued neural networks, abundant
relevant results have also been achieved [40–46]. However, there are only a few results fo-
cusing on the state estimation problem for complex-valued networks [47–49]. Moreover,
there is still no information published about the state estimation problem for memristor-
based complex-valued neural networks. This situation prompts our current research.

Considering the inevitability of time delay in many practical projects [50–57] and moti-
vated by the above discussions, the state estimation problem for complex-valued memris-
tive neural networks with time-varying delays is investigated in this paper. The contribu-
tion of this paper is mainly embodied in the following respects: (1) The state estimation
of complex-valued memristive neural networks with time-varying delays is studied for
the first time. (2) Based on the Lyapunov stability theory, differential inclusion theory and
some matrix inequality techniques, and by constructing a novel Lyapunov functional, a
sufficient delay-dependent condition is proposed, under which the error system is glob-
ally asymptotically stable. On the other hand, the LMI-based results consider the sign
difference of the memristive weights. (3) By solving certain matrix inequalities, the state
estimator gain matrix can be determined easily by solving certain matrix inequalities.

2 Preliminaries and problem description
Consider the memristor-based complex-valued neural networks and the network mea-
surements equation described as follows:

{
żp(t) = –dpzp(t) +

∑n
k=1apk(zk(t))fk(zk(t)) +

∑n
k=1 bpk(zk(t))fk(zk(t – τ (t))),

lq(t) =
∑n

k=1cqkzk(t) + gq(t, z(t)),
(1)
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or equivalently

{
ż(t) = –Dz(t) + A(z(t))f (z(t)) + B(z(t))f (z(t – τ (t))),
l(t) = Cz(t) + g(t, z(t)),

(2)

where D = diag{d1, d2, . . . , dn} ∈ Rn×n with dp > 0 (p = 1, 2, . . . , n) is the self-feedback
connection weight matrix, z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ Cn is the neuron state vec-
tor, l(t) = (l1(t), l2(t), . . . , lm(t))T ∈ Cm is the measurement output of the networks, C =
(cqk)m×n ∈ Cm×n is for the output weights, f (z(t)) = (f1(z1(t)), f2(z2(t)), . . . , fn(zn(t)))T ∈ Cn

and f (z(t – τ (t))) = (f1(z1(t – τ (t))), f2(z2(t – τ (t))), . . . , fn(zn(t – τ (t))))T ∈ Cn are the vector-
valued activation functions without and with time delays, g(t, z(t)) : R+ × Cn → Cm de-
notes the neuron-dependent nonlinear disturbances on the network outputs. τ (t) is the
time-varying delay and satisfies τ1 ≤ τ (t) ≤ τ2 and τ̇ (t) ≤ ρ , where τ1, τ2, ρ are scalar con-
stants, A(z(t)) = (apk(zk(t)))n×n ∈ Cn×n and B(z(t)) = (bpk(zk(t)))n×n ∈ Cn×n are the connec-
tion memristive weight matrices, and they are defined as follows:

apk
(
zk(t)

)
=

{
a′

pk , |zk(t)| < δk ,
a′′

pk , |zk(t)| > δk ,
bpk

(
zk(t)

)
=

{
b′

pk , |zk(t)| < δk ,
b′′

pk , |zk(t)| > δk ,

aR
pk

(
zk(t)

)
=

{
aR′

pk , |xk(t)| < δk ,
aR′′

pk , |xk(t)| > δk ,
aI

pk
(
zk(t)

)
=

{
aI′

pk , |yk(t)| < δk ,
aI′′

pk , |yk(t)| > δk ,

bR
pk

(
zk(t)

)
=

{
bR′

pk , |xk(t)| < δk ,
bR′′

pk , |xk(t)| > δk ,
bI

pk
(
zk(t)

)
=

{
bI′

pk , |yk(t)| < δk ,
bI′′

pk , |yk(t)| > δk ,
(3)

where aR
pk(zk(t)) = Re(apk(zk(t))), aI

pk(zk(t)) = Im(apk(zk(t))), bR
pk(zk(t)) = Re(bpk(zk(t))),

bI
pk(zk(t)) = Im(bpk(zk(t))), the switching jumps δk > 0, and a′

pk , a′′
pk , b′

pk , b′′
pk , aR′

pk , aR′′
pk , bR′

pk ,
bR′′

pk , aI′
pk , aI′′

pk , bI′
pk , bI′′

pk are constants.
By applying the differential inclusion feature and the theory of set-valued maps, the

memristor-based complex-valued system (1) can be rewritten as

żp(t) ∈ –dpzp(t) +
m∑

k=1

co
{

a′
pk , a′′

pk
}

fk
(
zk(t)

)
+

m∑
k=1

co
{

b′
pk , b′′

pk
}

fk
(
zk

(
t – τ (t)

))
, (4)

or in the compact form given by

ż(t) ∈ –Dz(t) + co
{

A′, A′′}f
(
z(t)

)
+ co

{
B′, B′′}f

(
z
(
t – τ (t)

))
, (5)

where A′ = (a′
pk)n×n, A′′ = (a′′

pk)n×n, B′ = (b′
pk)n×n, B′′ = (b′′

pk)n×n; or equivalently, there exist
measurable function matrices Ā(t) ∈ co{A′, A′′} and B̄(t) ∈ co{B′, B′′}, such that

ż(t) = –Dz + Ā(t)f
(
z(t)

)
+ B̄(t)f

(
z
(
t – τ (t)

))
. (6)

For system (2), we construct the full-order state estimator as follows:

{ ˙̂z(t) = –Dẑ(t) + Āf (ẑ(t)) + B̄f (ẑ(t – τ (t))) + K(l(t) – l̂(t)),
l̂(t) = Cẑ(t) + g(t, ẑ(t)),

(7)
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where ẑ = (ẑ1, ẑ2, . . . , ẑn)T ∈ Cn is the estimation of the neuron state, and K ∈ Cn×m is the
estimator gain matrix to be designed.

Let e(t) = z(t) – ẑ(t), f (e(t)) = f (z(t)) – f (ẑ(t)), f (e(t – τ (t))) = f (z(t – τ (t))) – f (ẑ(t – τ (t))),
g(e(t)) = g(t, z(t)) – g(t, ẑ(t)), then the error-state system is given by

ė(t) = –(D + KC)e(t) + Āf
(
e(t)

)
+ B̄f

(
e
(
t – τ (t)

))
– Kg

(
e(t)

)
. (8)

In the following, some assumptions and basic lemmas are given, which will be used in
establishing the main results.

Assumption 1 For any z1, z2 ∈ C, the neuron activation functions fk(·) satisfy the follow-
ing Lipschitz conditions:

∣∣fk(z1) – fk(z2)
∣∣ ≤ lk|z1 – z2|, (9)

where lk > 0 (k = 1, 2, . . . , n) are constants, let L = diag{l1, l2, . . . , ln}.

Assumption 2 For any z, z′ ∈ Cn, there exists a real matrix M such that the neuron-
dependent nonlinear disturbances satisfy the following inequality:

∥∥g(t, z) – g
(
t, z′)∥∥ ≤ ∥∥M

(
z – z′)∥∥. (10)

Lemma 1 ([47]) For any constant Hermitian matrix M ∈ Cn×n and M > 0, a vector func-
tion �(s) : [p, q] → Cn with scalars p < q such that the integrations concerned are well
defined, then

(∫ q

p
�(s) ds

)∗
M

(∫ q

p
�(s) ds

)
≤ (q – p)

∫ q

p
�∗(s)M�(s) ds.

Lemma 2 Given a Hermitian matrix �, let �R = Re(�), �I = Im(�), then � < 0 if and
only if

[
�R –�I

�I �R

]
< 0.

3 Main results
In this section, an effective state estimator for system (1) or (2) will be designed, and a
sufficient condition will be developed to guarantee the global asymptotical stability of
the error-state system. First, for convenience, we denote z(t), ẑ(t), z(t – τ (t)), ẑ(t – τ (t)),
e(t – τ (t)), e(t – τ1) and e(t – τ2) as z, ẑ, zτ , ẑτ , eτ , eτ1 and eτ2 , respectively.

Theorem 1 Suppose that Assumption 1 holds; the error-state system (8) is globally asymp-
totically stable, if there exist positive definite Hermitian matrices P, W1, W2, Q1, Q2, R1,
R2, any complex matrix R, and positive scalars εκ (κ = 1, 2, . . . , 5) such that the following
matrix inequalities hold:

	j =

⎡
⎢⎣

�j τ1S∗
j R1 τ12S∗

j R2

∗ –R1 0
∗ ∗ –R2

⎤
⎥⎦ < 0, j = 1, 2, 3, 4, (11)
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where

�j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 R1 0 0 (RC)∗ 0 �
j
17 �

j
18 –R �

j
1,10 �

j
1,11

∗ �22 R2 0 0 0 0 0 0 0 0
∗ ∗ �33 0 0 0 0 0 0 0 0
∗ ∗ ∗ �44 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 0 0 R �

j
5,10 �

j
5,11

∗ ∗ ∗ ∗ ∗ �66 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –ε1I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε2I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε4I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε5I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�11 = –DP – (RC)∗ – PD – RC + W1 + Q1 + Q2 – R1 + ε1L̄ + ε3M̄,

�15 = (RC)∗, �1
17 = �3

17 = PA′, �2
17 = �4

17 = PA′′, �1
18 = �3

18 = PB′,

�2
18 = �4

18 = PB′′, �1
1,10 = �2

1,10 = 0, �3
1,10 = P

(
A′ – A′′),

�4
1,10 = P

(
A′′ – A′), �22 = –(Q1 + R1 + R2), �1

1,11 = �2
1,11 = 0,

�3
1,11 = P

(
B′ – B′′), �4

1,11 = P
(
B′′ – B′), �33 = –(Q2 + R2),

�44 = –(1 – ρ)W1 + ε2L̄, �55 = –DP – PD + W2 + ε4L, �1
5,10 = �4

5,10 = PA′,

�2
5,10 = �3

5,10 = PA′′, �1
5,11 = �4

5,11 = PB′, �2
5,11 = �3

5,11 = PB′′,

�66 = –(1 – ρ)W2 + ε5L,

A′ =
(
a′

pk
)

n×n, A′′ =
(
a′′

pk
)

n×n, B′ =
(
b′

pk
)

n×n,

S1 =
[
–(D + KC), 0, 0, 0, 0, 0, A′, B′, –K , 0, 0

]
, B′′ =

(
b′′

pk
)

n×n,

S2 =
[
–(D + KC), 0, 0, 0, 0, 0, A′′, B′′, –K , 0, 0

]
,

S3 =
[
–(D + KC), 0, 0, 0, 0, 0, A′, B′, –K , A′ – A′′, B′ – B′′],

S4 =
[
–(D + KC), 0, 0, 0, 0, 0, A′′, B′′, –K , A′′ – A′, B′′ – B′],

ξ (t) =
[
e∗, e∗τ1 , e∗τ2 , e∗τ , z∗, z∗τ , f ∗(e), f ∗(eτ

)
, g∗(e), f ∗(z), f ∗(zτ

)]∗.

Moreover, the estimator gain matrix is given by K = P–1R.

Proof Consider the candidate Lyapunov functional

V (t) = e∗(t)Pe(t) +
∫ t

t–τ (t)
e∗(s)W1e(s) ds + ẑ∗(t)Pẑ(t)

+
∫ t

t–τ (t)
ẑ∗(s)W2ẑ(s) ds +

∫ t

t–τ1

e∗(s)Q1e(s) ds +
∫ t

t–τ2

e∗(s)Q2e(s) ds

+ τ1

∫ 0

–τ1

∫ t

t+θ

ė∗(s)R1ė(s) ds dθ + τ12

∫ –τ1

–τ2

∫ t

t+θ

ė∗(s)R2ė(s) ds dθ . (12)

By the feature of memristors described in (3), the following four cases may exist.
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Case 1: When |zk(t)| < δk , |ẑk(t)| < δk , at time t, systems (6) and (7) can turn into the
following systems, respectively:

ż = –Dz + A′f (z) + B′f
(
zτ

)
(13)

and

˙̂z = –Dẑ + A′f (ẑ) + B′f
(
ẑτ

)
+ K

(
l – Cẑ – g(t, ẑ)

)
. (14)

Then the error-state system can be obtained:

ė = –(D + KC)e + A′f (e) + B′f
(
eτ

)
– Kg(t, e). (15)

Based on Lemma 1 and along the trajectories of systems (14) and (15), the derivative of
V (t) can be estimated as

V̇ (t) = 2ẑ∗P ˙̂z + ẑ∗W2ẑ + 2e∗Pė + e∗(W1 + Q1 + Q2)e – (1 – η)ẑ∗τ W2ẑτ

– (1 – η)e∗τ W1eτ – e∗τ1 Q1eτ1 – e∗τ2 Q2eτ2 + τ 2
1 ė∗R1ė

– τ1

∫ t

t–τ1

ė∗(s)R1ė(s) ds + τ 2
12ė∗R2ė – τ12

∫ t–τ1

t–τ2

ė∗(s)R2ė(s) ds

≤ 2ẑ∗P
(
–Dẑ + A′f (ẑ) + B′f

(
ẑτ

)
+ KCe + Kg(e)

)
+ ẑ∗W2ẑ

+ 2e∗P
(
–(D + KC)e + A′f (e) + B′f

(
eτ

)
– Kg(e)

)
– (1 – η)ẑ∗τ W2ẑτ

+ e∗(W1 + Q1 + Q2)e – (1 – η)e∗τ W1eτ – e∗τ1 Q1eτ1 – e∗τ2 Q2eτ2

+ τ 2
1
(
–(D + KC)e + A′f (e) + B′f

(
eτ

)
– Kg(e)

)∗

× R1
(
–(D + KC)e + A′f (e) + B′f

(
eτ

)
– Kg(e)

)
–

(
e∗ – e∗τ1

)
R1

(
e – eτ1

)
+ τ 2

12
(
–(D + KC)e + A′f (e) + B′f

(
eτ

)
– Kg(e)

)∗

× R2
(
–(D + KC)e + A′f (e) + B′f

(
eτ

)
– Kg(e)

)
–

(
e∗τ1 – e∗τ2

)
R2

(
eτ1 – eτ2

)
. (16)

Moreover, from (10), it is clear that

ε1
(
e∗L̄e – f ∗(e)f (e)

) ≥ 0,

ε2
(
eτ∗L̄eτ – f ∗(eτ

)
f
(
eτ

)) ≥ 0,

ε3
(
e∗M̄e – g∗(e)g(e)

) ≥ 0,

ε4
(
ẑ∗L̄ẑ – f ∗(ẑ)f (ẑ)

) ≥ 0,

ε5
(
ẑτ∗L̄ẑτ – f ∗(ẑτ

)
f
(
ẑτ

)) ≥ 0 (17)

for ε
 > 0, 
 = 1, 2, . . . , 5, where L̄ = LT L, M̄ = MT M. Then, combining (16) with (17), we
have

V̇ (t) ≤ e∗(–DP – (RC)∗ – PD – RC + W1 + Q1 + Q2 – R1 + ε1L̄ + ε3M̄
)
e

+ 2e∗R1eτ1 – e∗τ1 (Q1 + R1 + R2)eτ1 + 2e∗τ1 R2eτ2 – e∗τ2 (Q2 + R2)eτ2
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+ 2e∗PA′f (e) + 2e∗PB′f
(
eτ

)
– 2e∗Rg(e) – e∗τ

(
(1 – η)W1 – ε2L

)
eτ

– ε1f ∗(e)f (e) – ε2f ∗(eτ
)
f
(
eτ

)
– ε3g∗(e)g(e) – ε4f ∗(ẑ)f (ẑ)

– ε5f ∗(ẑτ
)
f
(
ẑτ

)
+ ẑ∗(–DP – PD + W2 + ε4L̄)ẑ + 2ẑ∗RCe

– ẑ∗τ
(
(1 – η)W2 – ε5L̄

)
ẑτ + 2ẑ∗PA′f (ẑ) + 2ẑ∗PB′f

(
ẑτ

)
+ 2ẑ∗Rg(e)

+ ξ ∗(t)
(
τ 2

1 S∗
1R1S1

)
ξ (t) + ξ ∗(t)

(
τ 2

12S∗
1R2S1

)
ξ (t)

= ξ ∗(t)
[
�1 + τ 2

1 S∗
1R1S1 + τ 2

12S∗
1R2S1

]
ξ (t). (18)

Case 2: When |zk(t)| > δk , |ẑk(t)| > δk , at time t, systems (6) and (7) can turn into the
following systems, respectively:

ż = –Dz + A′′f (z) + B′′f
(
zτ

)
(19)

and

˙̂z = –Dẑ + A′′f (ẑ) + B′′f
(
ẑτ

)
+ K

(
l – Cẑ – g(t, ẑ)

)
. (20)

Then the error-state system can be obtained:

ė = –(D + KC)e + A′′f (e) + B′′f
(
eτ

)
– Kg(e). (21)

By a similar derivation process to Case 1, one has

V̇ (t) ≤ ξ ∗(t)
[
�2 + τ 2

1 S∗
2R1S2 + τ 2

12S∗
2R2S2

]
ξ (t). (22)

Case 3: When |zk(t)| < δk , |ẑk(t)| > δk , at time t, systems (6)and (7) can turn into (14) and
(21), then the error-state system can be written as

ė = –(D + KC)e + A′f (e) + B′f
(
eτ

)
– Kg(t, e) +

(
A′ – A′′)f (ẑ) +

(
B′ – B′′)f

(
ẑτ

)
. (23)

By a similar derivation process to Case 1, we find that

V̇ (t) ≤ ξ ∗(t)
[
�3 + τ 2

1 S∗
3R1S1 + τ 2

12S∗
3R2S3

]
ξ (t). (24)

Case 4: When |zk(t)| > δk , |ẑk(t)| < δk , at time t, systems (6) and (7) can turn into (20) and
(15), then the error-state system can be written as

ė = –(D + KC)e + A′′f (e) + B′′f
(
eτ

)
– Kg(t, e) +

(
A′′ – A′)f (ẑ) +

(
B′′ – B′)f

(
ẑτ

)
. (25)

By a similar derivation process to Case 1, one has

V̇ (t) ≤ ξ ∗(t)
[
�4 + τ 2

1 S∗
4R1S4 + τ 2

12S∗
4R2S4

]
ξ (t). (26)

Moreover, by the Schur complement, (11) is equivalent to �j + τ 2
1 SjR1S∗

j + τ 2
12SjR2S∗

j < 0.
Then there must be a small positive scalar ε such that (�j + τ 2

1 S∗
j R1Sj + τ 2

12S∗
j R2Sj) +

diag(εI, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ≤ 0, then we have V̇ (t) ≤ –ε‖e(t)‖2 < 0, which implies that
the error-state system (8) is globally asymptotically stable. �
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Corollary 1 Suppose that Assumption 1 holds, the error-state system (8) is globally asymp-
totically stable, if there exist positive definite Hermitian matrices P = P1 + iP2, W1 = W11 +
iW12, W2 = W21 + iW22, Q1 = Q11 + iQ12, Q2 = Q21 + iQ22, R1 = R11 + iR12, R2 = R21 + iR22, any
complex matrix R = R1 + iR2, and positive scalars εκ (κ = 1, 2, . . . , 5), such that the following
LMIs hold:[

	̂R
j –	̂I

j

	̂I
j 	̂R

j

]
< 0, j = 1, 2, 3, 4, (27)

where

	̂R
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�R
11 R11 0 0 (RC)∗R 0 �

jR
17 �

jR
18 –R1 �

jR
1,10 �

jR
1,11 �R

1,12 �R
1,13

∗ �R
22 R21 0 0 0 0 0 0 0 0 0 0

∗ ∗ �R
33 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ �R
44 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ �R
55 0 0 0 R1 �

jR
5,10 �

jR
5,11 0 0

∗ ∗ ∗ ∗ ∗ �R
66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ –ε1I 0 0 0 0 �
jR
7,12 �

jR
7,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε2I 0 0 0 �
jR
8,12 �

jR
8,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε3I 0 0 –R1T –R1T

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε4I 0 �
jR
10,12 �

jR
10,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε5I �
jR
11,12 �

jR
11,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �R
12,12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �R
13,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

	̂I
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�I
11 R12 0 0 (RC)∗I 0 �

jI
17 �

jI
18 –R2 �

jI
1,10 �

jI
1,11 �I

1,12 �I
1,13

–RT
12 �I

22 R22 0 0 0 0 0 0 0 0 0 0
0 –RT

22 �I
33 0 0 0 0 0 0 0 0 0 0

0 0 0 �I
44 0 0 0 0 0 0 0 0 0

�
jI
5,1 0 0 0 �I

55 0 0 0 R2 �
jI
5,10 �

jI
5,11 0 0

0 0 0 0 0 �I
66 0 0 0 0 0 0 0

�
jI
7,1 0 0 0 0 0 0 0 0 0 0 �

jI
7,12 �

jI
7,13

�
jI
8,1 0 0 0 0 0 0 0 0 0 0 �

jI
8,12 �

jI
8,13

R2T 0 0 0 –R2T 0 0 0 0 0 0 R2T R2T

�
jI
10,1 0 0 0 �

jI
10,5 0 0 0 0 0 0 �

jI
10,12 �

jI
10,13

�
jI
11,1 0 0 0 �

jI
11,5 0 0 0 0 0 0 �

jI
11,12 �

jI
11,13

�
jI
12,1 0 0 0 0 0 �

jI
12,7 �

jI
12,8 –R2 �

jI
12,10 �

jI
12,11 �I

12,12 0
�

jI
13,1 0 0 0 0 0 �

jI
13,7 �

jI
13,8 –R2 �

jI
13,10 �

jI
13,11 0 �I

13,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�R
11 = –DP1 – CT

1 R1T + CT
2 R2T – P1D – R1C1 + R2C2

+ W11 + Q11 + Q21 – R11 + ε1L̄ + ε3M̄,

�R
15 = CT

1 R1T – CT
2 R2T , �1R

17 = �3R
17 = �1R

5,10 = �4R
5,10 = P1A′

1 – P2A′
2,

�1R
1,10 = �2R

1,10 = �1R
1,11 = �2R

1,11 = �1R
10,12 = �2R

10,13 = �1R
11,12 = �2R

11,13 = 0,

�2R
17 = �4R

17 = �2R
5,10 = �3R

5,10 = P1A′′
1 – P2A′′

2,

�1R
18 = �3R

18 = �1R
5,11 = �4R

5,11 = P1B′
1 – P2B′

2,

�2R
18 = �4R

18 = �2R
5,11 = �3R

5,11 = P1B′′
1 – P2B′′

2, �3R
1,10 = P1

(
A′

1 – A′′
1
)

– P2
(
A′

2 – A′′
2
)
,

�4R
1,10 = P1

(
A′′

1 – A′
1
)

– P2
(
A′′

2 – A′
2
)
, �3R

1,11 = P1
(
B′

1 – B′′
1
)

– P2
(
B′

2 – B′′
2
)
,
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�4R
1,11 = P1

(
B′′

1 – B′
1
)

– P2
(
B′′

2 – B′
2
)
, �R

1,12 = τ1
(
–DP1 – CT

1 R1T + CT
2 R2T)

,

�R
1,13 = τ12

(
–DP1 – CT

1 R1T + CT
2 R2T)

, �R
22 = –(Q11 + R11 + R21),

�R
33 = –(Q21 + R21), �R

44 = –(1 – ρ)W11 + ε2L̄, �R
55 = –DP1 – P1D + W21 + ε4L̄,

�R
66 = –(1 – ρ)W21 + ε5L̄, �1R

7,12 = �3R
7,12 = τ1

(
A′T

1 P1 + A′T
2 P2

)
,

�3R
10,12 = τ1

((
A′

1 – A′′
1
)T P1 +

(
A′

2 – A′′
2
)T P2

)
, �2R

7,12 = �4R
7,12 = τ1

(
A′′T

1 P1 + A′′T
2 P2

)
,

�4R
10,12 = τ1

((
A′′

1 – A′
1
)T P1 +

(
A′′

2 – A′
2
)T P2

)
, �1R

7,13 = �3R
7,13 = τ12

(
A′T

1 P1 + A′T
2 P2

)
,

�3R
10,13 = τ12

((
A′

1 – A′′
1
)T P1 +

(
A′

2 – A′′
2
)T P2

)
, �2R

7,13 = �4R
7,13 = τ12

(
A′′T

1 P1 + A′′T
2 P2

)
,

�4R
10,13 = τ12

((
A′′

1 – A′
1
)T P1 +

(
A′′

2 – A′
2
)T P2

)
, �1R

8,12 = �3R
8,12 = τ1

(
B′T

1 P1 + B′T
2 P2

)
,

�3R
11,12 = τ1

((
B′

1 – B′′
1
)T P1 +

(
B′

2 – B′′
2
)T P2

)
, �2R

8,12 = �4R
8,12 = τ1

(
B′′T

1 P1 + B′′T
2 P2

)
,

�4R
11,12 = τ1

((
B′′

1 – B′
1
)T P1 +

(
B′′

2 – B′
2
)T P2

)
, �1R

8,13 = �3R
8,13 = τ12

(
B′T

1 P1 + B′T
2 P2

)
,

�3R
11,13 = τ12

((
B′

1 – B′′
1
)T P1 +

(
B′

2 – B′′
2
)T P2

)
, �2R

8,13 = �4R
8,13 = τ12

(
B′′T

1 P1 + B′′T
2 P2

)
,

�4R
11,13 = τ12

((
B′′

1 – B′
1
)T P1 +

(
B′′

2 – B′
2
)T P2

)
, �R

12,12 = –2P1 + R11,

�R
13,13 = –2P1 + R21, �I

15 = –CT
2 R1T – CT

1 R2T ,

�I
11 = –DP2 + CT

2 R1T + CT
1 R2T – P2D – R1C2 – R2C1 + W12 + Q12 + Q22 – R12,

�1I
1,10 = �2

1,10 = �1I
1,11 = �2I

1,11 = �1I
11,1 = �2I

11,1 = �1I
10,12 = �2I

10,13 = �1I
11,12 = �2I

11,13 = 0,

�1I
18 = �3I

18 = �1I
5,11 = �4I

5,11 = P1B′
2 + P2B′

1,

�1I
17 = �3I

17 = �1I
5,10 = �4I

5,10 = P1A′
2 + P2A′

1, �3I
1,10 = P1

(
A′

2 – A′′
2
)

+ P2
(
A′

1 – A′′
1
)
,

�2I
17 = �4I

17 = �2I
5,10 = �3I

5,10 = P1A′′
2 + P2A′′

1, �4I
1,10 = P1

(
A′′

2 – A′
2
)

+ P2
(
A′′

1 – A′
1
)
,

�2I
18 = �4I

18 = �2I
5,11 = �3I

5,11 = P1B′′
2 + P2B′′

1, �3I
1,11 = P1

(
B′

2 – B′′
2
)

+ P2
(
B′

1 – B′′
1
)
,

�4I
1,11 = P1

(
B′′

2 – B′
2
)

+ P2
(
B′′

1 – B′
1
)
, �I

1,12 = τ1
(
–DP2 + CT

2 R1T + CT
1 R2T)

,

�I
1,13 = τ12

(
–DP2 + CT

2 R1T + CT
1 R2T)

, �I
22 = –(Q12 + R12 + R22),

�I
33 = –(Q22 + R22), �I

44 = –(1 – ρ)W12, �I
51 = R1C2 + R2C1,

�I
55 = –DP2 – P2D + W22, �I

66 = –(1 – ρ)W22,

�1I
71 = �3I

71 = �1I
10,5 = �4I

10,5 = –A′T
2 P1 – A′T

1 PT
2 ,

�2I
71 = �4I

71 = �2I
10,5 = �3I

10,5 = –A′′T
2 P1 – A′′T

1 PT
2 , �1I

7,12 = �3I
7,12 = τ1

(
A′T

1 P2 – A′T
2 P1

)
,

�2I
7,12 = �4I

7,12 = τ1
(
A′′T

1 P2 – A′′T
2 P1

)
, �1I

7,13 = �3I
7,13 = τ12

(
A′T

1 P2 – A′T
2 P1

)
,

�2I
7,13 = �4I

7,13 = τ12
(
A′′T

1 P2 – A′′T
2 P1

)
, �1I

81 = �3I
81 = �1I

11,5 = �4I
11,5 = –B′T

2 P1 – B′T
1 PT

2 ,

�2I
81 = �4I

81 = �2I
11,5 = �3I

11,5 = –B′′T
2 P1 – B′′T

1 PT
2 , �1I

8,12 = �3I
8,12 = τ1

(
B′T

1 P2 – B′T
2 P1

)
,

�2I
8,12 = �4I

8,12 = τ1
(
B′′T

1 P2 – B′′T
2 P1

)
, �1I

8,13 = �3I
8,13 = τ12

(
B′T

1 P2 – B′T
2 P1

)
,

�2I
8,13 = �4I

8,13 = τ12
(
B′′T

1 P2 – B′′T
2 P1

)
, �3I

10,1 = –
(
A′

2 – A′′
2
)T P1 –

(
A′

1 – A′′
1
)T PT

2 ,

�4I
10,1 = –

(
A′′

2 – A′
2
)T P1 –

(
A′′

1 – A′
1
)T PT

2 , �3I
11,1 = –

(
B′

2 – B′′
2
)T P1 –

(
B′

1 – B′′
1
)T PT

2 ,

�4I
11,1 = –

(
B′′

2 – B′
2
)T P1 –

(
B′′

1 – B′
1
)T PT

2 ,

�3I
10,12 = τ1

((
A′

1 – A′′
1
)T P2 –

(
A′

2 – A′′
2
)T P1

)
,
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�I
12,1 = τ1

(
PT

2 D – R1C2 – R2C1
)
, �4I

10,12 = τ1
((

A′′
1 – A′

1
)T P2 –

(
A′′

2 – A′
2
)T P1

)
,

�I
13,1 = τ12

(
PT

2 D – R1C2 – R2C1
)
, �3I

10,13 = τ12
((

A′
1 – A′′

1
)T P2 –

(
A′

2 – A′′
2
)T P1

)
,

�1I
12,7 = �3I

12,7 = τ1
(
P1A′

2 – PT
2 A′

1
)
, �4I

10,13 = τ12
((

A′′
1 – A′

1
)T P2 –

(
A′′

2 – A′
2
)T P1

)
,

�2I
12,7 = �4I

12,7 = τ1
(
P1A′′

2 – PT
2 A′′

1
)
, �3I

11,12 = τ1
((

B′
1 – B′′

1
)T P2 –

(
B′

2 – B′′
2
)T P1

)
,

�1I
12,8 = �3I

12,8 = τ1
(
P1B′

2 – PT
2 B′

1
)
, �4I

11,12 = τ1
((

B′′
1 – B′

1
)T P2 –

(
B′′

2 – B′
2
)T P1

)
,

�2I
12,8 = �4I

12,8 = τ1
(
P1B′′

2 – PT
2 B′′

1
)
, �3I

11,13 = τ12
((

B′
1 – B′′

1
)T P2 –

(
B′

2 – B′′
2
)T P1

)
,

�4I
11,13 = τ12

((
B′′

1 – B′
1
)T P2 –

(
B′′

2 – B′
2
)T P1

)
,

�3I
12,10 = τ1

(
P1

(
A′

2 – A′′
2
)

– PT
2
(
A′

1 – A′′
1
))

,

�4I
12,10 = τ1

(
P1

(
A′′

2 – A′
2
)

– PT
2
(
A′′

1 – A′
1
))

, �I
12,12 = –P2 + PT

2 + R12,

�I
13,13 = –P2 + PT

2 + R22, �3I
12,11 = τ1

(
P1

(
B′

2 – B′′
2
)

– PT
2
(
B′

1 – B′′
1
))

,

�4I
12,11 = τ1

(
P1

(
B′′

2 – B′
2
)

– PT
2
(
B′′

1 – B′
1
))

, �1I
13,7 = �3I

13,7 = τ12
(
P1A′

2 – PT
2 A′

1
)
,

�2I
13,7 = �4I

13,7 = τ12
(
P1A′′

2 – PT
2 A′′

1
)
, �1I

13,8 = �3I
13,8 = τ12

(
P1B′

2 – PT
2 B′

1
)
,

�2I
13,8 = �4I

13,8 = τ12
(
P1B′′

2 – PT
2 B′′

1
)
, �3I

13,10 = τ12
(
P1

(
A′

2 – A′′
2
)

– PT
2
(
A′

1 – A′′
1
))

,

�4I
13,10 = τ12

(
P1

(
A′′

2 – A′
2
)

– PT
2
(
A′′

1 – A′
1
))

,

�3I
13,11 = τ12

(
P1

(
B′

2 – B′′
2
)

– PT
2
(
B′

1 – B′′
1
))

,

�4I
13,11 = τ12

(
P1

(
B′′

2 – B′
2
)

– PT
2
(
B′′

1 – B′
1
))

,

A′
1 = Re

(
A′), A′

2 = Im
(
A′), B′

1 = Re
(
B′), B′

2 = Im
(
B′),

A′′
1 = Re

(
A′′), A′′

2 = Im
(
A′′), B′′

1 = Re
(
B′′), B′′

2 = Im
(
B′′),

C1 = Re(C), C2 = Im(C).

Proof We multiply (11) from the left and right by diag(I, (R–1
1 P)∗, (R–1

2 P)∗) and its transpose
diag(I, R–1

1 P, R–1
2 P). Further, noting that P∗R–1

1 P ≥ 2P – R1 and P∗R–1
2 P ≥ 2P – R2, one easily

derives that

	̂j =

⎡
⎢⎣

�j τ1S∗
j P τ12S∗

j P
∗ –2P + R1 0
∗ ∗ –2P + R2

⎤
⎥⎦ < 0, j = 1, 2, 3, 4. (28)

By means of Lemma 2, complex-valued LMIs (28) can be transformed into real-valued
ones described in (27). Obviously, (27) can guarantee that (11) holds. The proof is com-
pleted. �

Remark 1 Up to now, unlike the abundant research results about the state estimation
problem for the real-valued neural networks [4–12, 14–17], there have been few relevant
results for the complex-valued neural networks [47–49]. Further, for real-valued memris-
tive neural networks, only [28, 29] touches on the same problem. Moreover, when it comes
to complex-valued memristive systems, there is no achievement established on the state
estimation problem. In this paper, a sufficient condition is proposed to devise the desired
state estimator based on the Lyapunov functional method and the linear matrix inequality
techniques. Thus, our work can fill in this gap.
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Remark 2 Considering the special structure of complex-valued neural networks with
memristors, the improved Lyapunov functional on those in [4–12, 14–17, 28, 29, 47–49]
is constructed. Then a LMI-based result with lower computational burden is obtained,
which considers the sign difference of the memristive weights and overcomes the short-
comings of the results based on M-matrix and algebraic inequality. The gain matrix K can
be determined easily by solving the certain matrix inequalities (27). Besides, if system (1)
is reduced to real-valued memristive neural networks, a similar result can also be derived.

Remark 3 Stability analysis is the basis of the design of state estimator, and many effective
methods have been proposed. In [2], a weighting-delay-based method is developed by
dividing the delay interval [0, d(t)] into some variable subintervals by employing weighting
delays, and less conservative criteria are obtained. Meanwhile, the adjustable parameters
will be increased accordingly along with the increase of the subinterval. Noted that the
results in this paper are very different from those in [1, 2]. The main reason lies in that the
core idea in this paper is to design an effective state estimator for system (1), which belongs
to the state-dependent switched systems. The parameters of such systems are uncertain.
To design an effective state estimator, the improved Lyapunov functional containing the
time-varying delays and the estimated states is constructed. Considering the weighting-
delay-based method in [2] has inherent flexibility in dealing with the time-varying delay;
it is a meaningful topic to apply the novel method to the state estimation issue and we will
regard it as our target for further research.

4 Simulation example
In this section, an example is given to illustrate the effectiveness of our proposed results
for the state estimator design of complex-valued memristive neural networks with time-
varying delays.

Example 1 Consider system (1) with the following parameters:

D =

[
5 0
0 6

]
, C =

[
2 – 2i –i
3 + 3i –1 – i

]
, aR

11(t) =

{
3, |x1| < 1,
1, |x1| > 1,

aR
12(t) =

{
1, |x2| < 1,
2, |x2| > 1,

aR
21(t) =

{
–1, |x1| < 1,
–1.5, |x1| > 1,

aR
22(t) =

{
2, |x2| < 1,
1.5, |x2| > 1,

aI
11(t) =

{
2, |y1| < 1,
1, |y1| > 1,

aI
12(t) =

{
–4, |y2| < 1,
–3, |y2| > 1,

aI
21(t) =

{
–1, |y1| < 1,
–2, |y1| > 1,

aI
22(t) =

{
1, |y2| < 1,
0.5, |y2| > 1,

bR
11(t) =

{
1, |x1| < 1,
2, |x1| > 1,

bR
12(t) =

{
–3, |x2| < 1,
–4, |x2| > 1,

bR
21(t) =

{
3, |x1| < 1,
2, |x1| > 1,

bR
22(t) =

{
1, |x2| < 1,
2, |x2| > 1,

bI
11(t) =

{
–2, |y1| < 1,
–2.5, |y1| > 1,

bI
12(t) =

{
4, |y2| < 1,
2, |y2| > 1,

bI
21(t) =

{
–1, |y1| < 1,
–2, |y1| > 1,

bI
22(t) =

{
3, |y2| < 1,
1.5, |y2| > 1.
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For this system, the activation functions and the nonlinear disturbance are taken as f (z) =
1–e– Re(z)

1+e– Re(z) + i 1
1+e– Im(z) , g(z) = 0.1 cos(Re(z)) + 0.1i sin(Im(z)), respectively. The time-varying

delay is given as τ (t) = 0.4| cos(t)| with τ1 = 0, τ2 = 0.4.
From the above parameters, we obtain

A′ =

[
3 + 2i 1 – 4i
–1 – i 2 + i

]
, A′′ =

[
1 + i 2 – 3i

–1.5 – 2i 1.5 + 0.5i

]
,

B′ =

[
1 – 2i –3 + 4i
3 – i 1 + 3i

]
, B′′ =

[
2 – 2.5i –4 + 2i
2 – 2i 2 + 1.5i

]
,

L̄ =

[
0.25 0

0 0.25

]
, M̄ =

[
0.02 0

0 0.02

]
.

By employing the Matlab LMI Toolbox, the feasible solutions to the LMIs (27) are

P =

[
3.1132 –0.3403 – 0.0547i

–0.3403 + 0.0547i 5.3179

]
,

Q1 =

[
4.0807 –0.8747 – 0.0303i

–0.8747 + 0.0303i 11.0915

]
,

Q2 =

[
5.0515 –1.0052 – 0.0420i

–1.0052 + 0.0420i 12.9334

]
,

W1 =

[
57.8416 –0.8040i
+0.8040i 57.8416

]
,

W2 =

[
1.6820 –2.9051 + 0.2216i

–2.9051 – 0.2216i 17.7818

]
,

R1 =

[
2.5652 –0.1721 – 0.0130i

–0.1721 + 0.0130i 3.4262

]
,

R2 =

[
0.9093 –0.0607 + 0.0400i

–0.0607 – 0.0400i 1.4613

]
,

R =

[
0.8406 + 0.5150i 0.6126 – 0.1789i
0.3399 + 0.9786i –0.5699 + 0.7400i

]
.

Hence, we have

K = P–1R =

[
0.2757 + 0.1880i 0.1839 – 0.0444i
0.0835 + 0.1932i –0.0959 + 0.1344i

]
.

Moreover, it can be obtained from Corollary 1 that system (1) with the estimator gain K
obtained is globally asymptotically stable. The simulation results are shown in Figs. 1, 2, 3.

5 Conclusion
In this paper, the state estimation problem of complex-valued memristive neural networks
with time-varying delays has been investigated for the first time. Based on Lyapunov sta-
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Figure 1 The responses of state Re(z1(t)), Re(z2(t)) and its estimation

Figure 2 The responses of state Im(z1(t)), Im(z2(t)) and its estimation

Figure 3 Trajectories of the error states e1(t)

bility theory and the matrix inequality techniques, a sufficient delay-dependent condition
has been obtained to ensure the existence of the desired state estimator for the system
addressed. In the end, an example has been given to illustrate the effectiveness of our
results.
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