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Abstract
In this paper, the stability problem of a new coupled model constructed by two
fractional-order differential equations for every vertex is studied. The coupled
relationship is hybrid. By using the method of constructing Lyapunov functions based
on graph-theoretical approach for coupled systems, sufficient conditions that the
coexistence equilibrium of the coupling model is globally Mittag–Leffler stable in R2n

are derived. An example is given to illustrate the main results.
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1 Introduction
The global-stability problem of equilibria has been investigated for coupled systems of
differential equations on networks for many years [1–6]. For example, Li and Shuai devel-
oped a systematic approach that allowed one to construct global Lyapunov functions for
large-scale coupled systems from building blocks of individual vertex systems by using re-
sults from graph theory. The approach was applied to several classes of coupled systems in
engineering, ecology, and epidemiology. Although there exist many results about stability
of coupled systems on networks (CSNs), most efforts have been devoted to CSNs whose
nodes are constructed by integer-order differential equations. In fact, it is more valuable
and practical to investigate a coupled system of fractional-order differential equations on
the network. Recently, Li [7] investigated the global Mittag–Leffler stability of the follow-
ing coupled system of fractional-order differential equations on network (CSFDEN):

⎧
⎨

⎩

t0 Dα
t xi = –αixi(t) + fi(xi(t)) +

∑n
j=1 βx

ij(xj(t) – xi(t)),

xi(t0) = xit0 , i = 1, . . . , n,
(1)

where D denoted Caputo fractional derivative, α ∈ (0, 1). t0 was the initial time, n (n ≥ 2)
denoted the number of vertices in the network. (x(t))T = (x1(t), x2(t), . . . , xn(t))T denoted
the state variable of the system where xi(t) ∈ R. αi was a positive constant. Constant βx

ij rep-
resented the influence of vertex j on vertex i with βx

ii = 0,βx
ij = –βx

ji , if i �= j. Function fi was
Lipschitz continuous. Several sufficient conditions were obtained to ensure the Mittag–
Leffler stability of CSFDEN by using graph theory and the Lyapunov method.
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Furthermore, Li [8] investigated a coupled system of fractional-order differential equa-
tions on network with feedback controls (CSFDENFCs). By using the contraction map-
ping principle, Lyapunov method, graph theoretic approach, and inequality techniques,
some sufficient conditions were derived to ensure the existence, uniqueness, and global
Mittag–Leffler stability of the equilibrium point of CSFDENFCs.

As far as we know, most of researchers are interested in CSNs constructed by only one
fractional-order differential equation for every vertex. To the best of author’s knowledge,
there are less results about CSNs constructed by two or many fractional-order differential
equations for every vertex. In this paper, the coupled model (1) is generalized to the more
complicated model. The vertex’s dynamical character is presented by the two-dimensional
system. The coupled relationship is constructed by two components of the vertex. The
coupled system of fractional differential equations on network is studied. Sufficient con-
ditions that the coexistence equilibrium of the coupling model is globally Mittag–Leffler
stable in R2n are derived by using the method of constructing Lyapunov functions based
on graph-theoretical approach for coupled systems.

Remark 1.1 In fact, the generalization of model (1) is important and meaningful. Because
a lot of ecological models can be seen as high-dimensional coupled systems. Every node is
constructed by two or many differential equations in integer-order systems. For example,
predator–prey models with patches and dispersal are studied by a lot of researchers [1–6].

This paper is organized as follows. Preliminary results are introduced in Sect. 2. In
Sect. 3, the main results are obtained. In the sequel, an example is presented in Sect. 4.
Finally, the conclusions and outlooks are drawn in Sect. 5.

2 Preliminaries
In this section, we list some definitions and theorems which will be used in the later sec-
tions.

A directed graph or digraph G = (V , E) contains a set V = {1, 2, . . . , n} of vertices and a
set E of arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of G is
said to be spanning if H and G have the same vertex set. A digraph G is weighted if each
arc (j, i) is assigned a positive weight. aij > 0 if and only if there exists an arc from vertex j
to i in G.

The weight w(H) of a subgraph H is the product of the weights on all its arcs. A di-
rected path P in G is a subgraph with distinct vertices i1, i2, . . . , im such that its set of arcs
is {(ik , ik+1) : k = 1, 2, . . . , m}. If im = i1, we call P a directed cycle.

A connected subgraph T is a tree if it contains no cycles, directed or undirected.
A tree T is rooted at vertex i, called the root if i is not a terminal vertex of any arcs,

and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph Q is
unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.

Given a weighted digraph G with n vertices, the weight matrix A = (aij)n×n can be defined
by their entry aij equals the weight of arc (j, i) if it exists, and 0 otherwise. We denote a
weighted digraph as (G, A). A digraph G is strongly connected if, for any pair of distinct
vertices, there exists a directed path from one to the other. A weighted digraph (G, A) is
strongly connected if and only if the weight matrix A is irreducible.

The Laplacian matrix of (G, A) is denoted by L. Let ci denote the cofactor of the ith
diagonal element of L. The following results are listed.
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Lemma 2.1 ([6]) Assume n ≥ 2. Then

ci =
∑

T∈Ti

w(T),

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and w(T) is
the weight of T. In particular, if (G, A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n.

Lemma 2.2 ([6]) Assume n ≥ 2. Let ci be given in Lemma 2.1. Then the following identity
holds:

n∑

i,j=1

ciaijFij(xi, xj) =
∑

Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr , xs).

Here, Fij(xi, xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning unicyclic
graphs of (G, A), w(Q) is the weight of Q, and CQ denotes the directed cycle of Q.

If (G, A) is balanced, then

n∑

i,j=1

ciaijFij(xi, xj) =
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fij(xi, xj) + Fji(xj, xi)

]
.

Definition 2.3 ([9]) The Caputo fractional derivative of order α ∈ (n – 1, n) for a contin-
uous function f : R+ → R is given by

t0 Dα
t f (t) =

1
�(n – α)

∫ t

t0

f (n)(s)
(t – s)α+1–n ds.

Definition 2.4 ([7, 9]) The solution of the system

t0 Dα
t x(t) = f (t, x)

is said to be Mittag–Leffler stable if

∥
∥x(t)

∥
∥ ≤ {

m
[
x(t0)

]
Eα

(
–λ(t – t0)α

)}b.

Here, t0 is the initial time, α ∈ (0, 1),λ > 0, b > 0, m(0) = 0, m(x) ≥ 0. m(x) is locally Lipschitz
on x ∈ B ⊆ Rn with Lipschitz constant m0. Eα(t) is a Mittag–Leffler function. Moreover,
the domain of the function f (t, x) is [t0, +∞) × �, and the function f (t, x) is piecewise
continuous in t and locally Lipschitz in x.

3 Main results
A coupled system of fractional differential equations on network is constructed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

t0 Dα
t xi = –αixi(t) + θiyi(t) + fi(xi(t)) +

∑n
j=1 βx

ij(yj(t) – xi(t)),

t0 Dα
t yi = –βiyi(t) – εixi(t) + gi(yi(t)) +

∑n
j=1 β

y
ij(xj(t) – yi(t)),

xi(t0) = xit0 , yi(t0) = yit0 , i = 1, . . . , n.

(2)
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Here, D denotes the Caputo fractional derivative, α ∈ (0, 1). t0 is the initial time, n(n ≥ 2)
denotes the number of vertices in the network. z(t) = (x(t), y(t))T = (x1(t), x2(t), . . . , xn(t),
y1(t), y2(t), . . . , yn(t))T denotes the state variable of the system where xi(t) ∈ R and yi(t) ∈ R.
αi, βi, θi, εi are all positive constants. Constant βx

ij represents the influence of yj on xi with
βx

ii = 0,βx
ij = –βx

ji , if i �= j. Constant β
y
ij represents the influence of xj on yi with β

y
ii = 0,βy

ij =
–β

y
ji, if i �= j.

The following assumptions are given for system (2).
(H1) Functions fi, gi are Lipschitz-continuous on R with Lipschitz constant Lx

i > 0, Ly
i > 0,

respectively, i.e.,

∣
∣fi(u) – fi(v)

∣
∣ ≤ Lx

i |u – v|,
∣
∣gi(u) – gi(v)

∣
∣ ≤ Ly

i |u – v|

for all u, v ∈ R.
(H2) There exists a constant λ such that

λ = min

{

2

(

αi +
n∑

j=1

βx
ij – Lx

i

)

, 2

(

βi +
n∑

j=1

β
y
ij – Ly

i

)
∣
∣
∣ i = 1, 2, . . . , n

}

> 0.

A mathematical description of a network is a directed graph consisting of vertices and
directed arcs connecting them. At each vertex, the local dynamics are given by a sys-
tem of differential equations called the vertex system. The directed arcs indicate inter-
connections and interactions among vertex systems.

Let βij represent the influence of vertex j on vertex i, with

βij =

⎧
⎨

⎩

βx
ijθ

–1
j , if |βx

ijθ
–1
j | ≥ |βy

ijε
–1
j |,

β
y
ijε

–1
j , if |βx

ijθ
–1
j | < |βy

ijε
–1
j |.

Let A = (|βij|)n×n, Ax = (|βx
ij|)n×n, Ay = (|βy

ij|)n×n.
A digraph (G, A) with n vertices for system (2) can be constructed as follows. Each vertex

represents a patch and (j, i) ∈ E(G) if and only if βx
ij �= 0 or β

y
ij �= 0. Here, E(G) denotes the

set of arcs (i, j) leading from initial vertex i to terminal vertex j. At each vertex of G, the
vertex dynamics are described by the following system (3):

⎧
⎨

⎩

t0 Dα
t xi = –αixi(t) + θiyi(t) + fi(xi(t)),

t0 Dα
t yi = –βiyi(t) – εixi(t) + gi(yi(t)).

(3)

The coupling among system (2) is provided by the network. The G is strongly connected
if and only if the matrix A = (|βij|)n×n is irreducible.

In this section, the coupled system of fractional differential equations on network is stud-
ied. By using the method of constructing Lyapunov functions based on graph-theoretical
approach for coupled systems, sufficient conditions that the coexistence equilibrium of
the coupling model (2) is globally Mittag–Leffler stable in R2n are derived.
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We obtain the main theorem as follows.

Theorem 3.1 Assume that the following conditions hold:
1. Diagraph (G, A) is balanced;
2. Ax = (|βx

ij|)n×n, Ay = (|βy
ij|)n×n are irreducible;

3. Conditions (H1) and (H2) hold;
4. The formula βx

ijθ
–1
j = β

y
ijε

–1
j holds for i, j = 1, 2, . . . , n.

Then system (2) is globally Mittag–Leffler stable.

Proof Let E∗ = (x∗, y∗)T = (x∗
1, x∗

2, . . . , x∗
n, y∗

1, y∗
2, . . . , y∗

n)T be an equilibrium of (2). Assume
that ex

i (t) = xi(t) – x∗
i , ey

i (t) = yi(t) – y∗
i (i = 1, 2, . . . , n). After calculating, we obtain that

t0 Dα
t ex

i (t) = –αiex
i (t) + θie

y
i (t) + fi

(
x∗

i + ex
i (t)

)
– fi

(
x∗

i
)

+
n∑

j=1

βx
ij
(
y∗

j + ey
j (t) – x∗

i – ex
i (t)

)
–

n∑

j=1

βx
ij
(
y∗

j – x∗
i
)
,

t0 Dα
t ey

i (t) = –βie
y
i (t) – εiex

i (t) + gi
(
y∗

i + ey
i (t)

)
– gi

(
y∗

i
)

+
n∑

j=1

β
y
ij
(
x∗

j + ex
j (t) – y∗

i – ey
i (t)

)
–

n∑

j=1

β
y
ij
(
x∗

j – y∗
i
)
.

Let

e(t) =
(
ex

1(t), ey
1(t), ex

2(t), ey
2(t), . . . , ex

n(t), ey
n(t)

)

and

Vi
(
ex

i (t), ey
i (t)

)
=

1
2
[
εi

(
ex

i (t)
)2 + θi

(
ex

i (t)
)2].

From condition 2 of Theorem 3.1, we have the matrix A is irreducible. Furthermore, (G, A)
is strongly connected. Let ci denote the cofactor of the ith diagonal element of Laplacian
matrix of (G, A). Then we have ci > 0. Let

V
(
t, e(t)

)
=

n∑

i=1

ciVi
(
ex

i (t), ey
i (t)

)
.

The α-derivative of V along the trajectories of system (2) is

t0 Dα
t V

(
t, e(t)

)

=
1
2

n∑

i=1

cit0 Dα
t
[
εi

(
ex

i (t)
)2 + θi

(
ey

i (t)
)2]

≤
n∑

i=1

[
ciεiex

i (t)t0 Dα
t ex

i (t) + ciθie
y
i (t)t0 Dα

t ey
i (t)

]

≤
n∑

i=1

ciex
i (t)2

(

–αi –
n∑

j=1

βx
ij + Lx

i

)

εiex
i (t) +

n∑

i=1

cie
y
i (t)2

(

–βi –
n∑

j=1

β
y
ij + Ly

i

)

θie
y
i (t)
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+ ciεiθie
y
i (t)ex

i (t) – ciθiεiex
i (t)ey

i (t) +
n∑

i=1

ciεiβ
x
ijθ

–1
j θjex

i ey
j +

n∑

i=1

ciθiβ
y
ijε

–1
j εje

y
i ex

j

=
n∑

i=1

ciex
i (t)2

(

–αi –
n∑

j=1

βx
ij + Lx

i

)

εiex
i (t) +

n∑

i=1

cie
y
i (t)2

(

–βi –
n∑

j=1

β
y
ij + Ly

i

)

θie
y
i (t)

+ ciεiθie
y
i (t)ex

i (t) – ciθiεiex
i (t)ey

i (t) +
n∑

i=1

ciaijFx
ij(t, x, y) +

n∑

i=1

ciaijF
y
ij(t, x, y).

Here, aij = |βij| = |βx
ijθ

–1
j | = |βy

ijε
–1
j | and Fx

ij(t, x, y) = sgn(βij)εiθjex
i ey

j , Fy
ij(t, x, y) =

sgn(βij)εjθie
y
i ex

j . From (G, A)’s balanced and strongly connected character, it follows that

n∑

i=1

ciaijFx
ij(t, x, y) =

1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fx

ij(t, x, y) + Fx
ji(t, x, y)

]
,

n∑

i=1

ciaijF
y
ij(t, x, y) =

1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fy

ij(t, x, y) + Fy
ji(t, x, y)

]
.

Furthermore, we obtain that

n∑

i=1

ciaij
[
Fx

ij(t, x, y) + Fy
ij(t, x, y)

]

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fx

ij(t, x, y) + Fy
ji(t, x, y)

]

+
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fy

ij(t, x, y) + Fx
ji(t, x, y)

]

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
sgn(βij)θiεjex

i ey
j + sgn(βji)θiεjex

i ey
j
]

+
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
sgn(βij)εjθie

y
i ex

j + sgn(βij)εjθie
y
i ex

j
]

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
sgn(βij)θiεjex

i ey
j – sgn(βij)θiεjex

i ey
j
]

+
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
sgn(βij)εjθie

y
i ex

j – sgn(βij)εjθie
y
i ex

j
]

= 0 + 0

= 0.

In the sequel, we have

t0 Dα
t V

(
t, e(t)

) ≤ –λV
(
t, e(t)

)
.

Let

t0 Dα
t V

(
t, e(t)

)
+ M(t) = –λV

(
t, e(t)

)
.
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Using the Laplace transform for the equation above, we obtain that

sαw(s) – w(0)sα–1 + M(s) = –βw(s),

where w(s), M(s) are the Laplace transform of V (t, e(t)) and M(t), respectively. Using the
inverse Laplace transform for the formula above, we have

V
(
t, e(t)

) ≤ V
(
0, e(0)

)
Eα

(
–βtα

)
.

By the definition of V (t, e(t)), we obtain that system (2) is globally Mittag–Leffler stable.
Then the proof is completed. �

By Theorem 3.1, we obtain the following corollary naturally.

Corollary 3.2 Consider the model

⎧
⎪⎪⎨

⎪⎪⎩

t0 Dα
t xi = –αixi(t) + θiyi(t) + fi(xi(t)) +

∑n
j=1 βx

ij(yj(t) – xi(t)),

t0 Dα
t yi = –βiyi(t) – εixi(t) + gi(yi(t)) +

∑n
j=1 βx

ij(xj(t) – yi(t)),

xi(t0) = xit0 , yi(t0) = yit0 , i = 1, . . . , n.

(4)

Assume that (G, A) is balanced and A = Ax = (|βx
ij|)n×n is irreducible, θi = εi for any i =

1, 2, . . . , n, conditions (H1) and (H2) hold. Then system (4) is globally Mittag–Leffler stable.

4 An example
In this section, an example is presented to illustrate Theorem 3.1. Consider the following
system of fractional equations on network:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t0 Dα
t x1(t) = –α1x1(t) + θ1y1(t) + f1(x1(t)) +

∑n
j=1 βx

1j(yj(t) – x1(t)),

t0 Dα
t y1(t) = –β1y1(t) – ε1x1(t) + g1(y1(t)) +

∑n
j=1 β

y
1j(xj(t) – y1(t)),

t0 Dα
t x2(t) = –α2x2(t) + θ2y2(t) + f2(x2(t)) +

∑n
j=1 βx

2j(yj(t) – x2(t)),

t0 Dα
t y2(t) = –β2y2(t) – ε2x2(t) + g2(y2(t)) +

∑n
j=1 β

y
2j(xj(t) – y2(t)),

(5)

where, α = 0.5, α1 = α2 = 5, β1 = β2 = 9, 2θ1 = 2θ2 = ε1 = ε2 = 1, f1(x1(t)) = sin(x1(t)),
f2(x2(t)) = sin(x2(t)), g1(y1(t)) = sin(2y1(t)), g2(y2(t)) = sin(2y2(t)), and βx

11 = βx
22 = β

y
11 =

β
y
22 = 0, βx

12 = –βx
21 = 3, βy

12 = –β
y
21 = 6. Therefore, we have

A =

(
0 6
6 0

)

, L =

(
6 –6

–6 6

)

.

Then we obtain that c1 = c2 = 6. Obviously, (G, A) is strongly connected and balanced. It
is easy to obtain that conditions H1, H2 hold. According to Theorem 3.1, system (5) has
an equilibrium point (0, 0, 0, 0) which is globally Mittag–Leffler stable. The solution and
Lyapunov function V (t, e(t)) for system (5) with initial value x0 = (0, 0, 0, 0.1) are shown in
Figs. 1 and 2.

Model (5) can be regarded as the ecology model with two patches and dispersal. Some
kind of rate of change for species can be denoted by fractional order differential for the
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Figure 1 The solution

Figure 2 The Lyapunov function

species. This kind of rate of change of species xi is related to yj through the dispersal.
Moreover, the rate of change of species yi is related to xj through the dispersal. The model
with patches and dispersal is important in application [1–6]. In the sequel, model (5) is
universal and useful in reality.

5 Conclusions and utlooks
In this paper, the new coupled model constructed by two fractional-order differential
equations for every vertex is studied. The coupled relationship is constructed by two com-
ponents of the vertex. By using the method of constructing Lyapunov functions based on
graph-theoretical approach for coupled systems, sufficient conditions that the coexistence
equilibrium of the coupling model is globally Mittag–Leffler stable in R2n are derived. Fi-
nally, an example is given to illustrate the main results.

Theorem 3.1 is the main result of this paper. This result is different from the previous
studies. Firstly, Theorem 3.1 is a generalization of the main result of Li [7]. The model
in this paper is more complicated for every vertex and the conditions of Theorem 3.1 are
different from the result in Li [7]. Secondly, Theorem 3.1 is different from Shuai’s results [6]
with the integer order differential. The fractional order differential is the main character
for this paper. Moreover, the hybrid coupled relation is new and different from the previous
papers [1–7]. There are also many difficulties in proving Theorem 3.1. One is the proof of
∑n

i=1 ciaij[Fx
ij(t, x, y) + Fy

ij(t, x, y)] = 0; the other is the construction of the Lyapunov function
for the coupled system.
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Further studies on this subject are being carried out by the presenting author in the two
aspects: one is to study the model with time delay; the other is to discuss the method to
design control terms.
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