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Abstract
Observer design for nonlinear systems is very important in state-based stabilization,
fault detection, chaos synchronization and secret communication. This paper deals
with synchronization problem of a class of fractional-order neural networks (FONNs)
based on system observer. Two sufficient conditions are given for the FONNs with
known constant parameters and unknown time-varying parameters, respectively.
Based on the fractional Lyapunov stability criterion, the proposed sliding mode
observer can guarantee that the synchronization error between two identical FONNs
converges to zero asymptotically, and all involved signals keep bounded. Finally, some
simulation examples are provided to indicate the effectiveness of the proposed
method.

Keywords: Sliding mode control; Fractional-order neural network; Chaos
synchronization

1 Introduction
Being a very old topic in mathematics, fractional calculus was born on 17th century. Since
then, it was treated as an area of pure theoretical mathematics. Yet, during the past two
decades, it had been shown that many actual systems, ranging from life sciences and ma-
terials engineering to secret communication and control theory, can be well modeled by
fractional-order differential equations [1–12]. An important advantage of a fractional-
order system, as distinguished from the integer-order one, is that it has memory. This
useful property has significant applications in describing the memory and hereditary char-
acters of many processes and systems. Thus, many scholars used the fractional-order
derivative to replace the integer-order one in neural networks to obtain the fractional-
order neural networks (FONNs) [13–22]. It had been shown that the fractional models
might equip the neurons with more powerful computation ability than the integer ones,
and these abilities could be used in information processing, frequency-independent phase
shifts of oscillatory neuronal firing and stimulus anticipation [15, 23]. Up to now, lots of
efforts have been made on synchronization of FONNs [8, 14, 15, 24–26]. It should be men-
tioned that in the above work the state of the master FONN should be known in advance.
How to design a synchronization controller when the master system’s states are unmea-
surable is a challenging but interesting work.
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Observer design for nonlinear dynamic systems is a significant and interesting research
area, and it has a lot of potential applications in control engineering, fault reconstruction,
state estimation, and signal tracking [27–39]. Because the fractional derivative of a com-
pound function has a very complicated form, most of the current observers which were
designed for classical nonlinear systems cannot be used to fractional ones directly. With
respect to fractional-order linear systems, observers were designed in Refs. [40–42]. Up
to now, there was only little work that considered the observer design for fractional-order
nonlinear systems. In Ref. [36], a sliding mode observer was given based on state estima-
tion. An observer was proposed by using a scalar transmitted signal in Ref. [43]. A frac-
tional observer with non-fragile structure was proposed in Ref. [44], and a fractional-order
observer was introduced to cope with second-order multi-agent systems in Ref. [45]. Some
other results can be found in Refs. [46–49].

There are two main reasons leading us to investigate observer-based sliding mode syn-
chronization of FONNs. One is that there are few works focus on the synchronization of
FONNs by means of observer. Although observer design for integer-order neural networks
has been well studied, most of the current methods cannot be extended to FONNs directly.
Therefore, in this paper, we will give some stability analysis criteria in observer design for
FONNs. The other is that in the aforementioned literature the system model should be
known in advance. In short, observer-based synchronization for uncertain FONNs needs
to be investigated further. Based on the above discussions, we will consider the observer-
based synchronization for a class of uncertain FONNs in this paper. It is worth mentioning
that in this paper: (1) To handle the problem of state estimation for the FONNs, a robust
sliding mode observer is proposed. (2) When the FONNs are subjected to system uncer-
tainties and external disturbances, a robust fractional sliding mode observer, which can
accelerate the convergence speed of the synchronization errors between two FONNs, is
designed.

The organization of this paper is as follows. Section 2 gives some preliminaries of the
fractional calculus and some lemmas which will be used in stability analysis. Problem de-
scription, observer design and stability analysis are given in Sect. 3. Simulation studies are
presented in Sect. 4. Finally, Sect. 5 concludes this work.

2 Preliminaries
The qth fractional integral can be given as

I
qf (t) =

1
�(q)

∫ t

0

f (τ )
(t – τ )1–q dτ , (1)

with �(·) represents the Euler function.
The qth fractional-order derivative is given as

D
qf (t) =

1
�(n – q)

∫ t

0

f (n)(τ )
(t – τ )q+1–n dτ , (2)

where n – 1 ≤ q < n (n ∈N). In this paper, only the case 0 < q ≤ 1 is included.
To facilitate the controller design, let us give the following results first.
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Definition 1 ([1]) The Mittag–Leffler function is given as

Eα1,α2 (ζ ) =
∞∑

k=0

ζ k

�(α1k + α2)
, (3)

where α1 and α2 are positive constants, and ζ ∈C.

The Laplace transform of (3) is [1]

L
{

tα2–1Eα1,α2

(
–atα1

)}
=

sα1–α2

sα
1 + a

. (4)

Lemma 1 ([1]) Let α2 ∈ C. If 0 < α1 < 2 and πα1
2 < ι < min{π ,πα1}, |ζ | → ∞ and ι ≤

| arg(ζ )| ≤ π , then we have

Eα1,α2 (ζ ) = –
n∑

j=1

1
�(α2 – α1j)ζ j + o

(
1

|ζ |n+1

)
. (5)

Lemma 2 ([1]) Let 0 < α1 < 2 and α2 ∈R. If πα1
2 < ι ≤ min{π ,πα1}, then we can obtain

∣∣Eα1,α2 (ζ )
∣∣ ≤ C

1 + |ζ | , (6)

where C > 0, ι ≤ | arg(ζ )| ≤ π and |ζ | ≥ 0.

Lemma 3 ([2]) Suppose that η(t) = 0 is an equilibrium point of

D
αη(t) = f

(
t,η(t)

)
. (7)

If there exist a Lyapunov function V (t,η(t)) and three class-K functions g1, g2 and g3 such
that

g1
(∥∥η(t)

∥∥) ≤ V
(
t,η(t)

) ≤ g2
(∥∥η(t)

∥∥)
, (8)

D
αV

(
t,η(t)

) ≤ –g3
(∥∥η(t)

∥∥)
, (9)

then system (7) is asymptotically stable.

Lemma 4 ([3, 7]) Let x(t) ∈ R
n be a smooth function and G ∈ R

n×n be a positive definite
matrix. Then

1
2
D

αxT (t)Gx(t) ≤ xT (t)GD
αx(t). (10)

To proceed, we present the following lemmas.

Lemma 5 Let z(t) ∈ R be a smooth function. If Dqz(t) ≤ 0, then z(t) will be monotone
decreasing.
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Proof According to the statements in Lemma 5, we have

D
qz(t) + g(t) = 0, (11)

where g(t) ∈R is a non-negative function. The Laplace transform of (11) is

Z(s) =
z(0)

s
–

G(s)
sq , (12)

where Z(s) and G(s) represent the Laplace transforms of z(t) and g(t), respectively. The
solution of (12) can be given as

z(t) = z(0) – D
–qg(t). (13)

Noting that g(t) ≥ 0 for all t > 0, according to (1) we have D
–qg(t) ≥ 0. Thus, it follows

from (13) that z(t) ≤ z(0), and z(t) will be monotone decreasing. �

Lemma 6 Let V1(t) = 1
2 z2

1(t) + 1
2 z2

2(t), where z1(t) ∈ R and z2(t) ∈ R are smooth functions.
Suppose that

D
q
V1(t) ≤ –κz2

1(t), (14)

where κ > 0. Thus,

z2
1(t) ≤ 2V1(0)Eq,1

(
–2κtq). (15)

Proof Taking the qth fractional integral (14) gives

V1(t) – V1(0) ≤ –κIqz2
1(t). (16)

Then (16) implies that

z2
1(t) ≤ 2V1(0) – 2κIqz2

1(t). (17)

Thus we know that we can find a function h(t) ≥ 0 such that

z2
1(t) + h(t) = 2V1(0) – 2κIqz2

1(t). (18)

Then the Laplace transform (L{·}) of (18) is

Z(s) = 2V1(0)
sq–1

sq + 2κ
–

sq

sq + 2κ
H(s). (19)

Based on (4), we can solve (19) as

z2
1(t) = 2V1(0)Eq,1

(
–2κtq) – 2h(t) ∗ [

t–1Eq,0
(
–2κtq)], (20)

where ∗ represents the convolution operator. It is easy to see that both Eq,0(–2ktq) and t–1

are nonnegative, thus we see that (15) holds. �
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Remark 1 It should be emphasized that Lemma 6, which will facilitate the stability analysis
of the closed-loop system, plays an important role in this paper. In fact, this lemma has
a similar structure to the conventional integer-order Lyapunov stability theorem. That is
to say, some integer-order observer design method can be extended to a fractional-order
one based on this lemma.

According to Lemma 6, we can obtain the following results.

Lemma 7 Suppose that V2(t) = 1
2 zT (t)G1z(t) + 1

2 rT (t)G2r(t), where z(t) ∈R
n and r(t) ∈R

n

are smooth functions, and G1 and G2 ∈ R
n×n are two positive definite matrices. Then, if

there exists a positive definite matrix G3 such that

D
qV2(t) ≤ –zT (t)G3z(t), (21)

then we see that ‖z(t)‖ converges to the origin asymptotically (i.e. limt→∞ ‖z(t)‖ = 0).

3 Main results
3.1 Problem description
Consider a class of FONNs which are described as

D
qxi(t) = –aixi(t) +

n∑
k=1

bikfk
(
xk(t)

)
+

m∑
j=1

cijuj(t) + Ii, (22)

where i = 1, . . . , n, n represents the amounts of units of the neural network, xi(t) is the
state variable, uj(t), j = 1, 2, . . . , m denotes the input variable, ai is a positive constant,
bik , cij, k = 1, 2, . . . , m, are constants, Ii corresponds to the external input, and fk(·) is a
smooth nonlinear function.

Let x(t) = [x1(t), . . . , xn(t)]T ∈ R
n, f (·) = [f1(·), . . . , fn(·)]T ∈ R

n, I = [I1, . . . , In]T ∈ R
n, A =

– diag(a1, . . . , an) ∈ R
n×n, u(t) = [u1(t), . . . , um(t)] ∈ R

m, B =

⎡
⎣

b11 ··· b1n
...

. . .
...

bn1 ··· bnn

⎤
⎦ ∈ R

n×n and C =

[ c11 ··· c1m
...

. . .
...

cn1 ··· bnm

]
∈ R

n×m, then the FONN model (22) can be written into the following com-

pact form:

D
qx(t) = Ax(t) + Bf

(
x(t)

)
+ Cu(t) + I. (23)

As is well known, the system parameters in actual physical systems usually change with
time. These parameter uncertainties may damage the stability of the system if they are
not well disposed. In this paper, we will consider the condition that the parameters of the
FONN (23) vary in a certain range with respect to time. Suppose that 	A = A + Ā and
	C = C + C̄, where Ā ∈R

n×n and C̄ ∈R
n×m are two unknown matrices. Thus, we will also

consider the following uncertain FONN as the master system:

D
qx(t) = 	Ax(t) + Bf

(
x(t)

)
+ 	Cu(t) + I. (24)
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Assumption 1 The unknown matrices Ā and C̄ are norm-bounded and satisfying

[Ā, C̄] = N1G(t)[N2, N3],

where N1 ∈ R
n×g , N2 ∈ R

g×n and N3 ∈ R
g×m are known matrices with proper dimensions,

and G(t) ∈ R
g×g is an unknown matrix with GT (t)G(t) ≤ Eg×g where Eg×g represents an

identity matrix.

Assumption 2 f (x(t)) is norm-bounded, i.e., we can find a positive constant γ1 such that
‖f (x(t))‖ ≤ γ1.

Assumption 3 f (x(t)) is a Lipschitz function with respect to x(t), i.e., we can find a positive
Lipschitz constant γ2 such that ‖f (x1(t)) – f (x2(t))‖ ≤ γ2‖x1(t) – x2(t)‖.

Remark 2 The Assumption 1 is commonly used in related works, for example, in Refs.
[36, 50–54]. Assumptions 2 and 3 are also not restrictive because a lot of neural networks
satisfy these assumptions, and in fact they can guarantee the existence and uniqueness of
the solutions of the considered FONN (24).

3.2 Observer design of FONN with constant systems parameters
Suppose that the master FONN is defined as (23). Let us construct the following slave
system:

D
qx̂(t) = Ax̂(t) + Cu(t) + I + Ke(t) + B�(t), (25)

where x̂(t) ∈ R
n represents the slave system’s state, e(t) = x(t) – x̂(t) corresponds to the

synchronization error, K ∈ R
n×n is a gain matrix, and �(t) ∈ R

n is a sliding mode term
which is defined as

�(t) =

⎧⎨
⎩

0, e(t) = 0,

ρ He(t)
‖He(t)‖ , e(t) 
= 0,

(26)

where H ∈ R
n×n is a constant matrix which will be determined later, and ρ is a positive

design parameter.
When e(t) 
= 0, according to (23), (25) and (26) we have

D
qe(t) = (A – K)e(t) + Bf

(
x(t)

)
– B�(t)

= (A – K)e(t) + Bf
(
x(t)

)
– ρB

He(t)
‖He(t)‖ . (27)

Theorem 1 Consider the master FONN (23) and the slave system (25) under Assumptions
2 and 3. Suppose that the sliding term in (25) is defined as (26). If there exist a positive
definite matrix � and a gain matrix K such that

1 = (A – K)T� + �(A – K) < 0, (28)

the gain matrix H in (27) is chosen as H = �B, and ρ is selected as ρ > γ1, then we see that
the synchronization error between the two FONNs will converge to zero asymptotically.
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Proof From (27) we have

eT (t)�D
qe(t) = eT (t)�(A – K)e(t) + eT (t)�Bf

(
x(t)

)
– ρeT (t)�B

He(t)
‖He(t)‖ . (29)

Let us consider the following Lyapunov function:

V1(t) = eT (t)�e(t). (30)

It follows from (29), (30), Assumption 2 and Lemma 4 that

D
qV1(t) ≤ D

q(eT (t)
)
�e(t) + eT�D

qe(t)

= eT (t)
(
(A – K)T� + �(A – K)

)
e(t) + f T(

x(t)
)
BT�e(t)

–
ρ

‖He(t)‖
(
He(t)

)T BT�e(t) + eT (t)�Bf
(
x(t)

)

– ρeT (t)�B
He(t)

‖He(t)‖
= eT (t)

(
(A – K)T� + �(A – K)

)
e(t) + 2eT (t)�Bf

(
x(t)

)

– 2ρeT (t)�B
He(t)

‖He(t)‖
≤ eT (t)1e(t) + 2γ1‖H‖∥∥e(t)

∥∥ – 2ρ‖H‖∥∥e(t)
∥∥

≤ eT (t)1e(t). (31)

Noting that 1 is negative definite, it follows from (31) and Lemma 7 that limt→∞ e(t) = 0.
According to Lemma 5 and (31) we know that the signal e(t) will keep bounded. Since the
FONN (23) is a chaotic system, x(t) remains bounded for all t ≥ 0. As a result, we see that
x̂(t) and �(t) will be bounded either. This completes the proof of Theorem 1. �

Remark 3 Noting that A is a diagonal negative definite matrix, we can easily choose proper
matrices � and K such that the condition (28) is satisfied. For example, if we choose K =
1
2 A, then for arbitrary positive definite matrix �, (28) can always be guaranteed.

Remark 4 It is worth mentioning that an observer was designed for a class of fractional-
order nonlinear systems in Ref. [36]. In this interesting work, two sufficient conditions
were given for fractional-order nonlinear systems with and without parameter varieties,
respectively. However, our results are quite different from this work. In Ref. [36], to discuss
the stability, a complicated boundary condition,

∥∥∥∥∥
∞∑

k=1

�(1 + α)
�(1 + k)�(1 – k + α)

D
kx(t)Dq–kx(t)

∥∥∥∥∥ ≤ a‖x‖,

should be satisfied in advance. In fact, this condition was proven strictly in this work.
However, the exact value of the coefficient a is very hard to obtain indeed. Besides, in the
stability analysis, one drew the conclusion that the system was asymptotically stable once
D

qx(t) < 0. In fact, this conclusion had not been proven up to present; we can only knew
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that the signal x(t) would be strictly monotone decreasing (see Lemma 5 in this paper).
But in this work, by using the proposed Lemmas 5, 6 and 7 the above problems will not
occur.

Remark 5 There was some previous work that considered observer design for fractional-
order nonlinear systems, for example, in [36, 43–49]. It should be pointed out that in the
above literature the prior knowledge of the system model should be known in advance.
However, in this work, compared with the above results, our method has a very high ro-
bustness, which can be seen in the following subsection (the system models suffer from
time-varying parameters as well as system uncertainties).

3.3 Observer design for FONN with time-varying parameter
Suppose that the FONN is subjected to parameter varieties. Let the master FONN be (24),
and the slave system be

D
qx̂(t) = 	Ax̂(t) + Bf

(
x̂(t)

)
+ 	Cu(t) + I + K1e(t) + �(t), (32)

where K1 ∈R
n×n is a gain matrix, and �(t) is a sliding term which is defined as

�(t) =

⎧⎨
⎩

0, e(t) = 0,

ρ
e(t)

‖e(t)‖ , e(t) 
= 0.
(33)

Then, it follows from (24) and (32) that

D
qe(t) = (	A – K1)e(t) + Bf

(
x(t)

)
– Bf

(
x̂(t)

)
– �(t). (34)

Theorem 2 Consider the master FONN (24) and the slave system (25) with uncertain
parameters under Assumptions 1, 2 and 3. Suppose that the sliding term in (32) is given as
(33). If there exist a positive definite matrix � and a gain matrix K1 such that

� =

[
2 BT�

�B –En×n

]
< 0, (35)

where 2 = (A – K)T� + �(A – K) + γ 2
2 En×n + N1NT

1 + �NT
2 N2�, then we see that the

synchronization error between the two FONNs will converge to zero asymptotically.

Proof Define the Lyapunov function as (30), then its fractional-order derivative with re-
spect to time can be given as

D
qV1(t) ≤ D

q(eT (t)
)
�e(t) + eT�D

qe(t)

= eT (t)
(
(	A – K)T� + �(	A – K)

)
e(t) – ρeT (t)�

e(t)
‖e(t)‖

–
ρ

‖e(t)‖
(
e(t)

)T
�e(t) + eT (t)�B

(
f
(
x(t)

)
– f

(
x̂(t)

))

+
(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t)
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= eT (t)
(
(	A – K)T� + �(	A – K)

)
e(t) – ρeT (t)�

e(t)
‖e(t)‖

–
ρ

‖e(t)‖
(
e(t)

)T
�e(t) + eT (t)�B

(
f
(
x(t)

)
– f

(
x̂(t)

))

+
(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t)

+
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

–
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

≤ eT (t)
(
(	A – K)T� + �(	A – K)

)
e(t) – ρeT (t)�

e(t)
‖e(t)‖

–
ρ

‖e(t)‖
(
e(t)

)T
�e(t) + eT (t)�B

(
f
(
x(t)

)
– f

(
x̂(t)

))

+
(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t) + γ 2
2
∥∥e(t)

∥∥2

–
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

≤ eT (t)
(
(	A – K)T� + �(	A – K) + γ 2

2 En×n
)
e(t)

–
ρ

‖e(t)‖
(
e(t)

)T
�e(t) + eT (t)�B

(
f
(
x(t)

)
– f

(
x̂(t)

))

+
(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t) – ρeT (t)�
e(t)

‖e(t)‖
–

(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

≤ eT (t)
(
(	A – K)T� + �(	A – K) + γ 2

2 En×n
)
e(t)

–
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

+ eT (t)�B
(
f
(
x(t)

)
– f

(
x̂(t)

))
+

(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t), (36)

where En×n represents the unit matrix.
Noting that

2eT (	A�)e(t) = 2eT (t)A�e(t) + 2eT (t)Ā�e(t)

= 2eT (t)A�e(t) + 2eT (t)N1G(t)N2�e(t)

≤ 2eT (t)A�e(t) + eT (t)N1G(t)GT (t)NT
1 e(t) + eT (t)�NT

2 N2�e(t)

≤ 2eT (t)A�e(t) + eT (t)N1NT
1 e(t) + eT (t)�NT

2 N2�e(t), (37)

then substituting (37) into (36) yields

D
qV1(t) ≤ eT (t)

(
(	A – K)T� + �(	A – K) + γ 2

2 En×n
)
e(t)

–
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

+ eT (t)�B
(
f
(
x(t)

)
– f

(
x̂(t)

))
+

(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t)

≤ eT (t)
(
(A – K)T� + �(A – K) + γ 2

2 En×n + N1NT
1 + �NT

2 N2�
)
e(t)

–
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))
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+ eT (t)�B
(
f
(
x(t)

)
– f

(
x̂(t)

))
+

(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t)

= eT (t)2e(t) –
(
f
(
x(t)

)
– f

(
x̂(t)

))T(
f
(
x(t)

)
– f

(
x̂(t)

))

+ eT (t)�B
(
f
(
x(t)

)
– f

(
x̂(t)

))
+

(
f
(
x(t)

)
– f

(
x̂(t)

))T BT�eT (t)

= ζ T (t)�ζ (t), (38)

where ζ T (t) = [eT (t), (f (x(t)) – f (x̂(t)))T ]T ∈R
2n. It follows from Lemma 7 and (38) that e(t)

is eventually asymptotically stable. �

4 Simulation studies
In the FONN model (23), suppose that x(t) ∈R

3, x(0) = [–0.301, 0.400, 0.299]T , q = 0.955,
fi(xi(t)) = tanh(xi(t)), ai = 1, Ii = 0, u(t) ≡ 0, and

B =

⎡
⎢⎣

2.001 –1.201 0
2.002 1.712 1.153

–4.751 0 1.101

⎤
⎥⎦ .

Then the FONN (23) exhibits chaotic behavior, which is depicted in Fig. 1.

4.1 Effectiveness of the proposed method with constant system parameters
The initial condition of the slave FONN (25) is x̂(0) = [4.252, –3.114, –1.931]. The gain
matrices K and � are chosen as diag[0.5, 0.5, 0.5], � = I3×3, respectively. The control pa-
rameter ρ is chosen as ρ = 5.5. Thus, it is easy to see that the condition (28) is satisfied.
The simulation results are presented in Fig. 2. It is shown in Fig. 2 that the variables of the
slave FONN track the signals of the master FONN in short time, and the synchronization
errors converge to the origin very fast. It can be concluded that a good synchronization
performance has been obtained.

Let C = I3. To indicate the effectiveness of our methods, the simulation results when
u(t) = [5 sin(20t), 3 cos(20t), 4 sin(10t)]T and u(t) = –[2 sin(10t) + 15 rand(t), 2 cos(10t) +

Figure 1 Chaotic behavior of the FONN in (a) 3-D space; (b) x1–x2 plane; (c) x1–x3 plane; (d) x2–x3 plane



Li and Hou Advances in Difference Equations  (2018) 2018:146 Page 11 of 15

Figure 2 Simulation results when u(t) ≡ 0 in (a) x1(t) and x̂1(t); (b) x2(t) and x̂2(t); (c) x3(t) and x̂3(t); (d)
synchronization errors

20 rand(t), 2 sin(5t) + 18 rand(t)]T where rand(·) represents the random function produced
in MATLAB software are shown in Fig. 3 and Fig. 4, respectively. From these results, we
can see that the proposed method has good robustness.

4.2 Simulation results with time-varying parameters
Consider the master FONN (24) and the slave FONN (32). Let

N1 =

⎡
⎢⎣

0.1 0
0 0.1

0.1 0.1

⎤
⎥⎦ ,

N2 =

[
0.1 0.1 0
0.1 0.2 0.1

]
,

N3 =

[
0.1 0 0.1
0.1 0.1 0

]
,

and

G(t) =

[
0.2 sin t 0

0 0.2 cos t

]
.
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Figure 3 Simulation results when u(t) = [5 sin(20t), 3 cos(20t), 4 sin(10t)]T in (a) x1(t) and x̂1(t); (b) x2(t) and
x̂2(t); (c) x3(t) and x̂3(t); (d) synchronization errors

Figure 4 Simulation results when u(t) = –[2 sin(10t) + 15 rand(t), 2 cos(10t) + 20 rand(t), 2 sin(5t) + 18 rand(t)]T

in (a) x1(t) and x̂1(t); (b) x2(t) and x̂2(t); (c) x3(t) and x̂3(t); (d) synchronization errors
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Figure 5 Simulation results when u(t) = [2 sin(5t), 2 cos(5t), 2 sin(2t)]T in (a) x1(t) and x̂1(t); (b) x2(t) and x̂2(t);
(c) x3(t) and x̂3(t); (d) synchronization errors

It is easy to see that Assumptions 1, 2 and 3 are satisfied. By solving the LMI (35), we have

K1 =

⎡
⎢⎣

13.4125 –5.3211 15.8725
–5.3211 115.1978 59.0776
15.8725 59.0776 15.4258

⎤
⎥⎦ .

The other control parameters are chosen the same as above. The simulations are presented
in Fig. 5, from which we can see that the proposed methods have good robustness.

5 Conclusions
In this paper, an observer for a class of FONNs has been proposed based on sliding mode
control. Observers for constant parameters and uncertain time-varying parameters have
been studied, respectively. Two sufficient conditions are fulfilled, and the asymptotical
stability of the synchronization error can be guaranteed. How to combine the proposed
method with another control method, such as adaptive fuzzy control and adaptive neu-
ral network control, to construct a robust sliding mode observer is one of our research
directions.
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