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Abstract
The aim of this work is to establish a new fixed point theorem for generalized
contraction mappings with respect to w-distances in complete metric spaces. An
illustrative example is provided to advocate the usability of our results. Also, we give a
numerical experiment for approximating a fixed point in these examples. As an
application, the received results are used to summarize the existence and uniqueness
of the solution for nonlinear integral equations and nonlinear fractional differential
equations of Caputo type.
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1 Introduction
The most well-known fixed point result in the metrical fixed point theory is Banach’s con-
traction mapping principle. Since this principle requires only the structure of a complete
metric space with contractive condition on the mapping, which is easy to test in this set-
ting, it is the most widely applied fixed point result in many branches of mathematics.
In particular, it is used to demonstrate the existence and uniqueness of a solution of the
following equations:

• integral equations;
• ordinary differential equations;
• partial differential equations;
• matrix equations;
• functional equations.

Moreover, this principle has many applications not only in the various branches in mathe-
matics but also in economics, chemistry, biology, computer science, engineering, and oth-
ers. Based on the mentioned impact, it was developed extensively by several researchers.
In particular, it was improved by such famous fixed point researchers as Boy and Wong
[1] and Matkowski [2]. Recently, some fixed point results for generalized contraction map-
pings have been proved by Ri [3] as follows:
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Theorem 1.1 ([3]) Let (X, d) be a complete metric space and f : X → X be a mapping.
Suppose that there is a function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0, ϕ(t) < t, and
lim sups→t+ ϕ(s) < t for all t > 0 and

d
(
f (x), f (y)

) ≤ ϕ
(
d(x, y)

)
(1.1)

for all x, y ∈ X. Then f has a unique fixed point in X. Moreover, for each x ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx for all n ∈ N, converges to a unique fixed point
of f .

This result generalized Boyd and Wong’s fixed point theorem in [1] and Matkowski’s
fixed point theorem in [2] and hence it also contains Banach’s contraction mapping prin-
ciple.

On the another hand, the concept of a w-distance on a metric space was introduced
and investigated by Kada et al. [4], and this concept was applied to several famous fixed
point theorems. Meanwhile, Kada et al. [4] gave the important tool related to w-distances
which will be discussed in the next section. Many generalizations of fixed point results
with the idea of w-distances have been investigated heavily by many authors (see in [5–8]
and references therein).

To the best of our knowledge, there has been no discussion so far concerning Ri’s fixed
point result in [3] in the sense of w-distances. Based on the above mentioned fact, we
present new fixed point theorems for generalized contraction mappings with respect to
w-distances in complete metric spaces, which is an extension of Ri’s fixed point result, and
give an example for showing the usability of our results while Theorem 1.1 is not applica-
ble. We also give numerical experiments for finding a fixed point in this example. As an
application, the acquired results are used to aggregate the existence and uniqueness of the
solution for nonlinear integral equations and nonlinear fractional differential equations.

2 Preliminaries
In this section, we recall some important notations, needed definitions, and primary re-
sults joint with the literature.

Definition 2.1 ([4]) Let (X, d) be a metric space. A function q : X × X → [0,∞) is called
a w-distance on X if it satisfies the following three conditions for all x, y, z ∈ X:

(W1) q(x, y) ≤ q(x, z) + q(z, y);
(W2) q(x, ·) : X → [0,∞) is lower semicontinuous;
(W3) for each ε > 0, there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply

d(y, z) ≤ ε.

It is well known that each metric on a nonempty set X is a w-distance on X. Here, we
give some other examples of w-distances.

Example 2.2 Let (X, d) be a metric space. A function q : X × X → [0,∞) defined by
q(x, y) = c for every x, y ∈ X is a w-distance on X, where c is a positive real number. But
q is not a metric since q(x, x) = c �= 0 for any x ∈ X.
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Example 2.3 Let (X,‖·‖) be a normed space. Then the function q : X ×X → [0,∞) defined
by

q(x, y) = ‖y‖

for all x, y ∈ X is a w-distance.

The following lemma will be used in the next section.

Lemma 2.4 ([4]) Let (X, d) be a metric space, q be a w-distance on X, {xn} and {yn} be two
sequences in X and x, y, z ∈ X.

(i) If limn→∞ q(xn, x) = limn→∞ q(xn, y) = 0, then x = y. In particular, if
q(z, x) = q(z, y) = 0, then x = y.

(ii) If q(xn, yn) ≤ αn and q(xn, y) ≤ βn for any n ∈N, where {αn} and {βn} are sequences
in [0,∞) converging to 0, then {yn} converges to y.

(iii) If, for each ε > 0, there exists Nε ∈N such that m > n > Nε implies q(xn, xm) < ε (or
limm,n→∞ q(xn, xm) = 0), then {xn} is a Cauchy sequence.

3 Main results
First, we will create two lemmas to prove the main result.

Lemma 3.1 Let q be a w-distance on a metric space (X, d). Suppose that ϕ : [0,∞) →
[0,∞) is a mapping satisfying ϕ(0) = 0,

ϕ(t) < t and lim sup
s→t+

ϕ(s) < t

for all t > 0 and f : X → X is a mapping satisfying the following condition:

q
(
f (x), f (y)

) ≤ ϕ
(
q(x, y)

)
(3.1)

for all x, y ∈ X. Then limn→∞ q(f n(x), f n+1(x)) = 0 and limn→∞ q(f n+1(x), f n(x)) = 0 for each
x ∈ X.

Proof Let x ∈ X be arbitrary. We define the sequence {xn} ⊂ X by

xn = f n(x)

for all n ∈ N. Set an := q(xn, xn+1) ≥ 0 for all n ∈N. If there is n0 ∈N such that an0 = 0, then
ϕ(an0 ) = 0 and so

0 ≤ an0+1

= q
(
f (xn0 ), f (xn0+1)

)

≤ ϕ(an0 )

= 0.
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This implies that an0+1 = 0. By a similar process, we obtain an = 0 for all n > nn0+1 and
hence

lim
n→∞ q

(
f n(x), f n+1(x)

)
= 0

for all x ∈ X. Now we may suppose that an > 0 for each n ∈ N. From condition (3.1) and
the fact that ϕ(t) < t for all t > 0, we obtain

0 < an+2

≤ ϕ(an+1)

< an+1

≤ ϕ(an)

< an

for all n ∈ N. Hence {an} and {ϕ(an)} are strictly decreasing and bounded below. This yields
that limn→∞ an and limn→∞ ϕ(an) exist. We assume that 0 < a = limn→∞ an and an = a +εn,
where εn > 0. Note that if lim sups→t+ ϕ(s) < t for all t > 0, then lim suptn→a+ ϕ(tn) < a for
each sequence {tn} with tn ↓ a+ as n → ∞. Therefore,

0 < a

= lim
n→∞ an+1

≤ lim
n→∞ϕ(an)

≤ lim
n→∞ sup

s∈(a,an+1)
ϕ(s)

= lim
εn+1→0

sup
s∈(a,a+εn+1)

ϕ(s)

≤ lim
ε→0

sup
s∈(a,a+ε)

ϕ(s)

< a.

This is a contradiction. Thus limn→∞ an = 0, that is, limn→∞ q(f n(x), f n+1(x)) = 0 for each
x ∈ X. Similarly, we can conclude that limn→∞ q(f n+1(x), f n(x)) = 0 for each x ∈ X. �

Lemma 3.2 Let q be a w-distance on a metric space (X, d). Suppose that ϕ : [0,∞) →
[0,∞) is a mapping satisfying ϕ(0) = 0,

ϕ(t) < t and lim sup
s→t+

ϕ(s) < t

for all t > 0 and f : X → X is a mapping satisfying the following condition:

q
(
f (x), f (y)

) ≤ ϕ
(
q(x, y)

)
(3.2)

for all x, y ∈ X. Then {f n(x)}n=∞
n=0 is a Cauchy sequence for each x ∈ X.
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Proof We want to prove that limm,n→∞ q(xn, xm) = 0. Suppose this by contradiction. Then
there exist ε > 0 and integers mk , nk ∈ N such that mk > nk > k and q(xnk , xmk ) ≥ ε for
k = 0, 1, 2, . . . . Also, we can choose mk in order to assume that q(xnk , xmk–1) < ε. Hence, for
each k ∈N, we have

ε ≤ q(xnk , xmk )

≤ q(xnk , xmk –1) + q(xmk –1, xmk )

≤ ε + q(xmk –1, xmk ).

Taking limit as k → ∞ in the above inequality and using Lemma 3.1, we obtain

lim
k→∞

q(xnk , xmk ) = ε.

We observe that

q(xnk , xmk ) ≤ q(xnk , xnk +1) + q(xnk +1, xmk +1) + q(xmk +1, xmk )

≤ q(xnk , xnk +1) + ϕ
(
q(xnk , xmk )

)
+ q(xmk +1, xmk ).

Letting k → ∞ in the above inequality and using the fact that ϕ(t) < t and lim sups→t+ ϕ(s) <
t for all t > 0, we obtain

ε = lim
k→∞

q(xnk , xmk )

≤ lim
k→∞

ϕ
(
q(xnk , xmk )

)

≤ lim
ε→+0

sup
s∈(ε,ε+ε)

ϕ(s)

< ε.

This is a contradiction. Hence, limm,n→∞ q(xn, xm) = 0. From Lemma 2.4 (iii), we get
{f n(x)}n=∞

n=1 is a Cauchy sequence in X. �

Next, we exhibit the main result in this paper.

Theorem 3.3 Let (X, d) be a complete metric space and q : [0,∞) → [0,∞) be a w-distance
on X. Suppose that f : X → X is a continuous mapping and ϕ : [0,∞) → [0,∞) is a function
satisfying ϕ(0) = 0, ϕ(t) < t, lim sups→t+ ϕ(s) < t for all t > 0 and

q
(
f (x), f (y)

) ≤ ϕ
(
q(x, y)

)
(3.3)

for all x, y ∈ X. Then f has a unique fixed point in X. Moreover, for each x ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx for all n ∈ N, converges to a unique fixed point
of f .

Proof Let x ∈ X be an arbitrary point in X. From Lemma 3.2, we obtain {f n(x)}n=∞
n=0 is a

Cauchy sequence. Since (X, d) is a complete metric space, we get limn→∞ f n(x) = p for
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some p ∈ X. From the continuity of f , we get

p = lim
n→∞ f n+1(x)

= lim
n→∞ f

(
f n(x)

)

= f
(

lim
n→∞ f n(x)

)

= f (p).

Thus, p is a fixed point of f . Furthermore, from condition (3.3), we obtain

q(p, p) = q(fp, fp) ≤ ϕ
(
q(p, p)

)
.

It implies that q(p, p) = 0.
Next, we will show the uniqueness of the fixed point of T . Suppose that u ∈ X is another

fixed point of f . From condition (3.3), we obtain

q(p, u) = q(fp, fu) ≤ ϕ
(
q(p, u)

)
.

This implies that q(p, u) = 0. By Lemma 2.4(i), we get p = u. Therefore, f has a unique fixed
point p. This completes the proof. �

Now, we give an example which is possible to apply by the contractive condition (3.3)
but not the contractive condition in Theorem 1.1.

Example 3.4 Let X = [0,∞) with the metric d : X × X → R which is defined by

d(x, y) =

⎧
⎨

⎩
0 if x = y,

1 if x �= y

for all x, y ∈ X. Define a mapping f : X → X by

fx =

⎧
⎨

⎩

x
4 if x ≥ 1,

0 if x < 1,

where x ∈ [0,∞). Next, we define a function ϕ : [0,∞) → [0,∞) by

ϕ(t) =
t
3

.

It is easy to see that condition (1.1) is not satisfied for x, y ≥ 1 with x �= y. Hence Theo-
rem 1.1 cannot be applied in this case.

Next, we define a w-distance q : X × X → [0,∞) by

q(x, y) = y

for all x, y ∈ X. Now, we will show that f satisfies the contractive condition (3.3). We will
divide this claim into the following cases.
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Table 1 The iterates of Picard iterations in Example 3.4

x0 = 50 x0 = 100 x0 = 150 x0 = 200

x1 12.500000 25.000000 37.500000 50.000000
x2 3.125000 6.250000 9.375000 12.500000
x3 0.781250 1.562500 2.343750 3.125000
x4 0.000000 0.390625 0.585938 0.781250
x5 0.000000 0.000000 0.000000 0.000000
x6 0.000000 0.000000 0.000000 0.000000
x7 0.000000 0.000000 0.000000 0.000000
x8 0.000000 0.000000 0.000000 0.000000
x9 0.000000 0.000000 0.000000 0.000000
x10 0.000000 0.000000 0.000000 0.000000
...

...
...

...
...

Figure 1 The convergence behavior in Example 3.4

Case 1. If x ∈ [0,∞) and y ≥ 1, then

q(fx, fy) = fy

=
y
4

≤ y
3

= ϕ(y)

= ϕ
(
q(x, y)

)
.

Case 2. If x ∈ [0,∞) and y < 1, then

q(fx, fy) = fy = 0 ≤ ϕ
(
q(x, y)

)
.

Therefore, all the conditions of Theorem 3.3 hold and hence f has a unique fixed point.
Here, x = 0 is a unique fixed point of f .

Some numerical experiments for the unique fixed point of f are given in Table 1. Fur-
thermore, the convergence behavior of these iterations is shown in Fig. 1.

Here, we give the well-known lemma about the relation between some conditions of the
control function without the proof.

Lemma 3.5 Let ϕ : [0,∞) → [0,∞) be a function.
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(♠1) If ϕ is right continuous such that ϕ(t) < t for all t > 0, then ϕ(0) = 0.
(♠2) If ϕ is increasing and right continuous, then ϕ is upper semi-continuous.
(♠3) If ϕ is upper semi-continuous from the right such that ϕ(t) < t for all t > 0, then

lim sups→t+ ϕ(s) < t for all t > 0.
By using Theorem 3.3 and Lemma 3.5, we get the following results.

Corollary 3.6 Let (X, d) be a complete metric space and q : [0,∞) → [0,∞) be a w-
distance on X. Suppose that f : X → X is a continuous mapping and ϕ : [0,∞) → [0,∞) is
an upper semi-continuous function from the right such that ϕ(0) = 0, ϕ(t) < t for all t > 0
and

q
(
f (x), f (y)

) ≤ ϕ
(
q(x, y)

)
(3.4)

for all x, y ∈ X. Then f has a unique fixed point in X. Moreover, for each x ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx for all n ∈ N, converges to a unique fixed point
of f .

Corollary 3.7 Let (X, d) be a complete metric space and q : [0,∞) → [0,∞) be a w-
distance on X. Suppose that f : X → X is a continuous mapping and ϕ : [0,∞) → [0,∞) is
increasing and right continuous such that ϕ(t) < t for all t > 0 and

q
(
f (x), f (y)

) ≤ ϕ
(
q(x, y)

)
(3.5)

for all x, y ∈ X. Then f has a unique fixed point p in X. Moreover, for each x0 ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx0 for all n ∈ N, converges to a unique fixed point
of f .

Taking q = d in Theorem 3.3 and Corollaries 3.6, 3.7, we obtain the following results.

Corollary 3.8 ([3]) Let (X, d) be a complete metric space and f : X → X be a mapping.
Suppose that there is a function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0, ϕ(t) < t and
lim sups→t+ ϕ(s) < t for all t > 0 and

d
(
f (x), f (y)

) ≤ ϕ
(
d(x, y)

)
(3.6)

for all x, y ∈ X. Then f has a unique fixed point p in X. Moreover, for each x0 ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx0 for all n ∈ N, converges to a unique fixed point
of f .

Corollary 3.9 Let (X, d) be a complete metric space. Suppose that f : X → X is a mapping
and ϕ : [0,∞) → [0,∞) is upper semi-continuous from the right such that ϕ(0) = 0, ϕ(t) < t
for all t > 0 and

d
(
f (x), f (y)

) ≤ ϕ
(
d(x, y)

)
(3.7)

for all x, y ∈ X. Then f has a unique fixed point in X. Moreover, for each x ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx for all n ∈ N, converges to a unique fixed point
of f .
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Corollary 3.10 ([2]) Let (X, d) be a complete metric space. Suppose that f : X → X is a
mapping and ϕ : [0,∞) → [0,∞) is increasing and right continuous such that ϕ(t) < t for
all t > 0 and

d
(
f (x), f (y)

) ≤ ϕ
(
d(x, y)

)
(3.8)

for all x, y ∈ X. Then f has a unique fixed point p in X. Moreover, for each x0 ∈ X, the Picard
iteration {xn}, which is defined by xn = f nx0 for all n ∈ N, converges to a unique fixed point
of f .

4 Applications
The theory of nonlinear integral equations nowadays is a large topic which is found in
many applications of various branches in mathematics and other fields such as biology,
engineering, economics, etc. Meanwhile, the fractional order models and the theory of
nonlinear fractional differential equations are very important to study natural problems
because the manner of the trajectory of the fractional order derivatives is nonlocal, which
describes that the fractional order derivative has memory effect features. So the theory of
nonlinear fractional differential equations can be widely applied in many branches such
as the optimal control, finance, chaos, physics, etc. For more details, we refer the reader to
[9–16] and the references therein. Nowadays, many mathematicians proved the existence
and uniqueness of a solution of nonlinear fractional differential equations by using the
fixed point results (see in [7, 17] and the references therein).

In this section, we use the theoretical result in the previous section for proving the ex-
istence and uniqueness results of a solution for the following equations:

• nonlinear Fredholm integral equations;
• nonlinear Volterra integral equations;
• fractional differential equations of Caputo type.
Throughout this section, let us denote by C[a, b], where a, b ∈ R with a < b, the set of all

continuous functions from [a, b] into R.

4.1 The nonlinear integral equations
In this subsection, we prove the existence and uniqueness results of a solution for the
nonlinear Fredholm integral equation and nonlinear Volterra integral equation by using
our main results in the previous section.

Theorem 4.1 Consider the nonlinear Fredholm integral equation

x(t) = φ(t) +
∫ b

a
K

(
t, s, x(s)

)
ds, (4.1)

where x ∈ C[a, b] such that a, b ∈ R with a < b, φ : [a, b] → R and K : [a, b]2 ×R → R are
given continuous mappings. Suppose that there is a function ϕ : [0,∞) → [0,∞) such that
ϕ(0) = 0, ϕ(t) < t, and lim sups→t+ ϕ(s) < t for all t > 0 and

∣
∣K

(
t, s, x(s)

)∣∣ +
∣
∣K

(
t, s, y(s)

)∣∣ ≤ [ϕ(sups∈[a,b] |x(s)| + sups∈[a,b] |y(s)|)] – 2φ(t)
b – a
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for all x, y ∈ C[a, b] and for all t, s ∈ [a, b]. Then the nonlinear integral equation (4.1) has a
unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}, which is defined
by

(xn)(t) = φ(t) +
∫ b

a
K

(
t, s, xn–1(s)

)
ds

for all n ∈N, converges to a unique solution of the nonlinear integral equation (4.1).

Proof Let X = C[a, b] and f : X → X be defined by

(fx)(t) = φ(t) +
∫ b

a
K

(
t, s, x(s)

)
ds

for all x ∈ X and t ∈ [a, b]. Clearly, X with the metric d : X × X → [0,∞) given by

d(x, y) = sup
t∈[a,b]

∣
∣x(t) – y(t)

∣
∣

for all x, y ∈ X is a complete metric space. Next, we define the function q : X × X → [0,∞)
by

q(x, y) = sup
t∈[a,b]

∣
∣x(t)

∣
∣ + sup

t∈[a,b]

∣
∣y(t)

∣
∣

for all x, y ∈ X. Clearly, q is a w-distance on X. Here, we will show that f satisfies the con-
tractive condition (3.3). Assume that x, y ∈ X and t ∈ [a, b]. Then we get

∣∣(fx)(t)
∣∣ +

∣∣(fy)(t)
∣∣ =

∣
∣∣
∣φ(t) +

∫ b

a
K

(
t, s, x(s)

)
ds

∣
∣∣
∣ +

∣
∣∣
∣φ(t) +

∫ b

a
K

(
t, s, y(s)

)
ds

∣
∣∣
∣

≤ ∣∣φ(t)
∣∣ +

∣
∣∣
∣

∫ b

a
K

(
t, s, x(s)

)
ds

∣
∣∣
∣ +

∣∣φ(t)
∣∣ +

∣
∣∣
∣

∫ b

a
K

(
t, s, y(s)

)
ds

∣
∣∣
∣

≤ 2
∣∣φ(t)

∣∣ +
∫ b

a

∣∣K
(
t, s, x(s)

)∣∣ds +
∫ b

a

∣∣K
(
t, s, y(s)

)∣∣ds

= 2
∣∣φ(t)

∣∣ +
∫ b

a

(∣∣K
(
t, s, x(s)

)∣∣ +
∣∣K

(
t, s, y(s)

)∣∣)ds

≤ 2
∣
∣φ(t)

∣
∣ +

∫ b

a

( [ϕ(sups∈[a,b] |x(s)| + sups∈[a,b] |y(s)|)] – 2|φ(t)|
b – a

)
ds

= 2
∣
∣φ(t)

∣
∣ +

1
b – a

[∫ b

a

[
ϕ
(
q(x, y)

)]
– 2

∣
∣φ(t)

∣
∣ds

]

= ϕ
(
q(x, y)

)
.

This implies that supt∈[a,b] |(fx)(t)| + supt∈[a,b] |(fy)(t)| ≤ ϕ(q(x, y)), and so

q(fx, fy) ≤ [
ϕ
(
q(x, y)

)]

for all x, y ∈ X. It follows that f satisfies condition (3.3). Therefore, all the conditions of
Theorem 3.3 are satisfied and thus f has a unique fixed point. This implies that there
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exists a unique solution of the nonlinear Fredholm integral equation (4.1). This completes
the proof. �

Using the identical method in the proof of the above theorem, we get the following
result.

Theorem 4.2 Consider the nonlinear Volterra integral equation

x(t) = φ(t) +
∫ t

a
K

(
t, s, x(s)

)
ds, (4.2)

where x ∈ C[a, b] such that a, b ∈ R with a < b, φ : [a, b] → R and K : [a, b]2 ×R → R are
given continuous mappings. Suppose that there is a function ϕ : [0,∞) → [0,∞) such that
ϕ(0) = 0, ϕ(t) < t and lim sups→t+ ϕ(s) < t for all t > 0 and

∣∣K
(
t, s, x(s)

)∣∣ +
∣∣K

(
t, s, y(s)

)∣∣ ≤ [ϕ(sups∈[a,b] |x(s)| + sups∈[a,b] |y(s)|)] – 2φ(t)
b – a

for all x, y ∈ C[a, b] and for all t, s ∈ [a, b]. Then the nonlinear integral equation (4.2) has a
unique solution. Moreover, for each x0 ∈ C[a, b], the Picard iteration {xn}, which is defined
by

(xn)(t) = φ(t) +
∫ t

a
K

(
t, s, xn–1(s)

)
ds

for all n ∈N, converges to a unique solution of the nonlinear integral equation (4.2).

4.2 The nonlinear fractional differential equations
The aim of this subsection is to prove the existence and uniqueness result of solutions for
the nonlinear fractional differential equations of Caputo type by using Theorem 3.3.

First, let us recall some basic definitions of fractional calculus (see [18, 19]). For a contin-
uous function g : [0,∞) → R, the Caputo derivative of functional g order β > 0 is defined
as

CDβ
(
g(t)

)
:=

1
�(n – β)

∫ t

0
(t – s)n–β–1g(n)(s) ds

(
n – 1 < β < n, n = [β] + 1

)
,

where [β] denotes the integer part of the positive real number β and � is a gamma func-
tion.

Consider the nonlinear fractional differential equation of Caputo type:

CDβ
(
x(t)

)
= f

(
t, x(t)

)
, (4.3)

via the integral boundary conditions

x(0) = 0, x(1) =
∫ η

0
x(s) ds,

where 1 < β ≤ 2, 0 < η < 1, x ∈ C[0, 1], and f : [0, 1]×R→R is a given continuous function
(see [20]). It is well known that if f is continuous, then (4.3) is immediately inverted as the
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very familiar integral equation

x(t) =
1

�(β)

∫ t

0
(t – s)β–1f

(
s, x(s)

)
ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1f

(
s, x(s)

)
ds

+
2t

(2 – η2)�(β)

∫ η

0

(∫ s

0
(s – m)β–1f

(
m, x(m)

)
dm

)
ds. (4.4)

Now, we prove the following existence theorem.

Theorem 4.3 Consider the nonlinear fractional differential equation (4.3). Suppose that
there is a function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0, ϕ(t) < t, and lim sups→t+ ϕ(s) < t
for all t > 0, and for each x, y ∈ C[0, 1], we have

∣
∣K

(
s, x(s)

)∣∣ +
∣
∣K

(
s, y(s)

)∣∣ ≤ �(β + 1)
5

[
ϕ
(

sup
s∈[0,1]

∣
∣x(s)

∣
∣ + sup

s∈[0,1]

∣
∣y(s)

∣
∣
)]

for all s ∈ [0, 1]. Then the nonlinear fractional differential equation of Caputo type (4.3)
has a unique solution. Moreover, for each x0 ∈ C[0, 1], the Picard iteration {xn}, which is
defined by

(xn)(t) =
1

�(β)

∫ t

0
(t – s)β–1K

(
s, xn–1(s)

)
ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1K

(
s, xn–1(s)

)
ds

+
2t

(2 – η2)�(β)

∫ η

0

(∫ s

0
(s – m)β–1K

(
m, xn–1(m)

)
dm

)
ds

for all n ∈N, converges to a unique solution of the nonlinear fractional differential equation
of Caputo type (4.3).

Proof Let X = C[0, 1] and f : X → X be defined by

(fx)(t) =
1

�(β)

∫ t

0
(t – s)β–1K

(
s, x(s)

)
ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1K

(
s, x(s)

)
ds

+
2t

(2 – η2)�(β)

∫ η

0

(∫ s

0
(s – m)β–1K

(
m, x(m)

)
dm

)
ds

for all x ∈ X. Clearly, X with the metric d : X × X → [0,∞) given by

d(x, y) = sup
t∈[0,1]

∣∣x(t) – y(t)
∣∣
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for all x, y ∈ X is a complete metric space. Next, we define the function q : X × X → [0,∞)
by

q(x, y) = sup
t∈[0,1]

∣∣x(t)
∣∣ + sup

t∈[0,1]

∣∣y(t)
∣∣

for all x, y ∈ X. Clearly, q is a w-distance on X. Here, we will show that f satisfies the con-
tractive condition (3.3). Assume that x, y ∈ X and t ∈ [0, 1]. Then we get

∣
∣(fx)(t)

∣
∣ +

∣
∣(fy)(t)

∣
∣

=
∣
∣∣∣

1
�(β)

∫ t

0
(t – s)β–1K

(
s, x(s)

)
ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1K

(
s, x(s)

)
ds

+
2t

(2 – η2)�(β)

∫ η

0

(∫ s

0
(s – m)β–1K

(
m, x(m)

)
dm

)
ds

∣
∣∣
∣

+
∣
∣∣
∣

1
�(β)

∫ t

0
(t – s)β–1K

(
s, y(s)

)
ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1K

(
s, y(s)

)
ds

+
2t

(2 – η2)�(β)

∫ η

0

(∫ s

0
(s – m)β–1K

(
m, y(m)

)
dm

)
ds

∣∣∣
∣

≤ 1
�(β)

∫ t

0
|t – s|β–1(∣∣K

(
s, x(s)

)∣∣ +
∣∣K

(
s, y(s)

)∣∣)ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1(∣∣K

(
s, x(s)

)∣∣ +
∣∣K

(
s, y(s)

)∣∣)ds

+
2t

(2 – η2)�(β)

∫ η

0

∣∣∣
∣

∫ s

0
(s – m)β–1(K

(
m, x(m)

)
+ K

(
m, y(m)

))
dm

∣∣∣
∣ds

≤ 1
�(β)

∫ t

0
|t – s|β–1 �(β + 1)

5

[
ϕ
(

sup
s∈[0,1]

∣∣x(s)
∣∣ + sup

s∈[0,1]

∣∣y(s)
∣∣
)]

ds

–
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1 �(β + 1)

5

[
ϕ
(

sup
s∈[0,1]

∣
∣x(s)

∣
∣ + sup

s∈[0,1]

∣
∣y(s)

∣
∣
)]

ds

+
2t

(2 – η2)�(β)

∫ η

0

∣
∣∣∣

∫ s

0
(s – m)β–1 �(β + 1)

5

[(
sup

s∈[0,1]

∣∣x(s)
∣∣ + sup

s∈[0,1]

∣∣y(s)
∣∣
)]

dm
∣
∣∣∣ds

≤ �(β + 1)
5

[
ϕ
(
q(x, y)

)]

× sup
t∈(0,1)

(
1

�(β)

∫ 1

0
|t – s|β–1 ds

+
2t

(2 – η2)�(β)

∫ 1

0
(1 – s)β–1 ds +

2t
(2 – η2)�(β)

∫ η

0

∫ s

0
|s – m|β–1 dm ds

)

≤ ϕ
(
q(x, y)

)
.



Aydi et al. Advances in Difference Equations  (2018) 2018:132 Page 14 of 15

This implies that supt∈[a,b] |(fx)(t)| + supt∈[a,b] |(fy)(t)| ≤ ϕ(q(x, y)), and so

q(fx, fy) ≤ ϕ
(
q(x, y)

)

for all x, y ∈ X. It follows that f satisfies condition (3.3). Therefore, all the conditions of
Theorem 3.3 are satisfied and thus f has a unique fixed point. This implies that there
exists a unique solution of the nonlinear fractional differential equation of Caputo type
(4.3). This completes the proof. �

5 Conclusions
Motivated by the great impact of the models in the form of an integral equation and frac-
tional differential equations of Caputo type, we introduced a new contractive condition
by using the idea of a w-distance in metric spaces and established fixed point results
for a mapping satisfying the purposed contractive condition. Then we used the received
analysis theoretical results for investigating the existence and uniqueness of the solution
for nonlinear integral equations and nonlinear fractional differential equations of Caputo
type.
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