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Abstract
This paper deals with the third order nonlinear neutral delay difference equation with
a forced term

�2(a(n)�(x(n) + c(n)x(n – τ ))) + f (n, x(n – b1(n)), x(n – b2(n)), . . . , x(n – bk(n)))

= d(n), n ≥ n0.

Using the Banach fixed point theorem, we prove the existence of uncountably many
bounded positive solutions for the equation, suggest some Mann iterative schemes
and obtain the error estimates between these bounded positive solutions and the
sequences generated by the iterative schemes. Five nontrivial examples are also
included.
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1 Introduction and preliminaries
In the past thirty years there has been much research activity concerning the oscillation,
nonoscillation, asymptotic behavior and existence of solutions, nonoscillatory solutions
and bounded positive solutions for various kinds of neutral delay difference equations,
see, for example, [1–25] and the references therein. Jinfa [7] studied the existence of a
bounded nonoscillatory solution for the second order neutral delay difference equation
with positive and negative coefficients

�2(x(n) + px(n – m)
)

+ p(n)x(n – k) – q(n)x(n – l) = 0, n ≥ n0 (1.1)

under the condition p �= –1. Migda and Migda [17] got the asymptotic behavior of the
second order neutral difference equation

�2(x(n) + px(n – k)
)

+ f
(
n, x(n)

)
= 0, n ≥ 1. (1.2)
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Meng and Yan [16] discussed sufficient and necessary conditions of the existence of
bounded nonoscillatory solutions for the second order nonlinear neutral difference equa-
tion

�2(x(n) – px(n – r)
)

=
m∑

i=1

qifi
(
x(n – σi)

)
, n ≥ n0. (1.3)

El-Morshedy [5] obtained the oscillation of the second order neutral difference equation
with positive and negative coefficients

�2(x(n) ± a(n)x(n – τ )
)

+ p(n)x(n – δ) – q(n)x(n – σ ) = 0, n ≥ 0. (1.4)

Tripathy [22] studied the second order nonlinear neutral delay difference equation

�2(x(n) + p(n)x(n – m)
)

+ q(n)G
(
x(n – k)

)
= 0, n ≥ n0 (1.5)

and deduced sufficient conditions under which every solution of Eq. (1.5) oscillates. Rath
et al. [18] investigated the second order neutral delay difference equation

�
(
r(n)�

(
x(n) – p(n)x(n – m)

))
+ q(n)G

(
x(n – k)

)
= f (n), n ≥ n0 (1.6)

and found necessary conditions for every solution of Eq. (1.6) to oscillate or to tend to zero
as n → ∞. Liu, Xu and Kang [12] considered the solvability for the second order nonlinear
neutral delay difference equation

�
(
a(n)�

(
x(n) + bx(n – τ )

))
+ f

(
n, x

(
n – d1(n)

)
, x

(
n – d2(n)

)
, . . . , x

(
n – dk(n)

))

= c(n), n ≥ n0 (1.7)

and provided the global existence of uncountably many bounded nonoscillatory solutions
for Eq. (1.7) relative to all b ∈R. Saker [19] studied the third order difference equation

�3x(n) + p(n)x(n + 1) = 0, n ≥ n0 (1.8)

and established a few sufficient conditions for all solutions to be oscillatory or tend to zero.
Yan and Liu [23] provided the existence of a bounded nonoscillatory solution for the third
order difference equation

�3x(n) + f
(
n, x(n), x(n – r)

)
= 0, n ≥ n0 (1.9)

and got a necessary and sufficient condition for Eq. (1.9) to have a bounded nonoscillatory
solution {x(n)}n≥n0 with limn→∞ x(n) = d. Andruch-Sobilo and Migda [2] investigated the
third order linear difference equation of neutral type

�3(x(n) – p(n)x
(
σ (n)

)) ± q(n)x
(
τ (n)

)
= 0, n ≥ n0 (1.10)

and proved sufficient conditions which ensure that all solutions of Eq. (1.10) are oscillatory.
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The purpose of this paper is to study the below third order nonlinear neutral delay dif-
ference equation with a forced term

�2(a(n)�
(
x(n) + c(n)x(n – τ )

))
+ f

(
n, x

(
n – b1(n)

)
, x

(
n – b2(n)

)
, . . . , x

(
n – bk(n)

))

= d(n), n ≥ n0, (1.11)

where τ , k ∈ N, n0 ∈ N0 = {0} ∪ N, {a(n)}n∈Nn0
, {c(n)}n∈Nn0

and {d(n)}n∈Nn0
are real se-

quences with a(n) �= 0 for n ∈ Nn0 ,
⋃k

i=1{bi(n)}n∈Nn0
⊆ Z with limn→∞(n – bi(n)) = +∞,

1 ≤ i ≤ k and f : Nn0 × R
k → R is a mapping. Using the Banach fixed point theorem,

we prove several existence results of uncountably many bounded positive solutions for
Eq. (1.11), suggest a few Mann iterative methods for these bounded positive solutions and
discuss the error estimates between these bounded positive solutions and the iterative se-
quences generated by the Mann iterative methods. To illustrate our results, five examples
are also constructed.

Throughout this paper, we assume that � denotes the forward difference operator de-
fined by �x(n) = x(n + 1) – x(n), �2x(n) = �(�x(n)), �3x(n) = �(�2x(n)), R = (–∞, +∞),
R

+ = [0, +∞), Z and N stand for the sets of all integers and positive integers, respectively,

Nn0 = {n : n ∈N0 with n ≥ n0}, Zβ = {n : n ∈ Z with n ≥ β},
β = min

{
n0 – τ , inf

{
n – bi(n) : 1 ≤ i ≤ k, n ∈Nn0

}}
,

l∞β stands for the Banach space of all bounded sequences on Zβ with norm

‖x‖ = sup
n∈Zβ

∣
∣x(n)

∣
∣ for x =

{
x(n)

}
n∈Zβ

∈ l∞β

and

A(N , M) =
{

x =
{

x(n)
}

n∈Zβ
∈ l∞β : N ≤ x(n) ≤ M, n ∈ Zβ

}
for M > N > 0.

By a solution of Eq. (1.11), we mean a sequence {x(n)}n∈Zβ
with a positive integer n1 ≥

n0 + τ + |β| such that Eq. (1.11) holds for all n ≥ n1.

Lemma 1.1 ([8]) Let τ ∈N, n0 ∈N0 and B : Nn0 →R
+ be a mapping. Then

∞∑

i=0

∞∑

s=n0+iτ

∞∑

t=s
B(t) < +∞ ⇐⇒

∞∑

s=n0

∞∑

t=s
sB(t) < +∞.

2 Existence of uncountably many bounded positive solutions and Mann
iterative schemes

Now we use the Banach fixed point theorem to show the existence of uncountably many
bounded positive solutions for Eq. (1.11), construct Mann iterative schemes and discuss
the error estimates between the bounded positive solutions and the sequences generated
by the Mann iterative schemes.
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Theorem 2.1 Assume that there exist two positive constants M and N with M > N and
two nonnegative sequences {P(n)}n∈Nn0

and {Q(n)}n∈Nn0
satisfying

c(n) = 1, eventually; (2.1)
∣
∣f (n, u1, u2, . . . , uk) – f (n, v1, v2, . . . , vk)

∣
∣

≤ P(n) max
{|ui – vi| : 1 ≤ i ≤ k

}
, n ∈ Nn0 , ui, vi ∈ [N , M], 1 ≤ i ≤ k; (2.2)

∣
∣f (n, u1, u2, . . . , uk)

∣
∣ ≤ Q(n), n ∈Nn0 , ui ∈ [N , M], 1 ≤ i ≤ k; (2.3)

∞∑

t=n0

1
|a(t)|

∞∑

s=t
(s – t + 1) max

{
P(s), Q(s),

∣
∣d(s)

∣
∣} < +∞. (2.4)

Then
(a) for any L ∈ (N , M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each

x0 = {x0(n)}n∈Zβ
∈ A(N , M), the Mann iterative sequence

{xm}m∈N0 = {xm(n)}(n,m)∈Zβ×N0 generated by the scheme:

xm+1(n)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 – αm)xm(n) + αm{L +
∑∞

i=1
∑n+2iτ–1

t=n+(2i–1)τ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
n ≥ n1, m ≥ 0,

(1 – αm)xm(n1) + αm{L +
∑∞

i=1
∑n1+2iτ–1

t=n1+(2i–1)τ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
β ≤ n < n1, m ≥ 0

(2.5)

converges to a bounded positive solution x ∈ A(N , M) of Eq. (1.11) and has the
following error estimate:

‖xm+1 – x‖ ≤ e–(1–θ )
∑m

k=0 αk ‖x0 – x‖, m ∈N0, (2.6)

where {αm}m∈N0 is an arbitrary sequence in [0, 1] such that

∞∑

m=0

αm = +∞; (2.7)

(b) Eq. (1.11) possesses uncountably many bounded positive solutions in A(N , M).

Proof First of all we show (a). Let L ∈ (N , M). It follows from (2.1) and (2.4) that there exist
θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| satisfying

c(n) = 1, n ≥ n1; (2.8)

θ =
∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s); (2.9)

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣) ≤ min{M – L, L – N}. (2.10)
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Define a mapping TL : A(N , M) → l∞β by

TLx(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L +
∑∞

i=1
∑n+2iτ–1

t=n+(2i–1)τ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, x(s – b1(s)), x(s – b2(s)), . . . , x(s – bk(s))) – d(s)],

n ≥ n1,

TLx(n1), β ≤ n < n1

(2.11)

for each x = {x(n)}n∈Zβ
∈ A(N , M). In view of (2.2), (2.3) and (2.9)~(2.11), we conclude that

for x = {x(n)}n∈Zβ
, y = {y(n)}n∈Zβ

∈ A(N , M) and n ≥ n1

∣∣TLx(n) – TLy(n)
∣∣

=

∣∣
∣∣
∣

∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))

– f
(
s, y

(
s – b1(s)

)
, y

(
s – b2(s)

)
, . . . , y

(
s – bk(s)

))]
∣
∣∣
∣∣

≤
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s) max

{∣∣x
(
s – bj(s)

)
– y

(
s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≤
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)‖x – y‖

≤
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)‖x – y‖

≤ θ‖x – y‖

and

∣∣TLx(n) – L
∣∣

=

∣
∣∣
∣∣

∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
∣∣
∣∣∣

≤
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)

× [∣∣f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))∣∣ +
∣
∣d(s)

∣
∣]

≤
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)

≤ min{M – L, L – N},
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which imply that

‖TLx – TLy‖ ≤ θ‖x – y‖, x, y ∈ A(N , M) and TL
(
A(N , M)

) ⊆ A(N , M). (2.12)

Thus (2.12) ensures that TL is a contraction mapping on the closed subset A(N , M) and it
has a unique fixed point x = {x(n)}n∈Zβ

∈ A(N , M). It follows that for n ≥ n1 + τ

x(n) = L +
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

x(n – τ ) = L +
∞∑

i=1

n+(2i–1)τ–1∑

t=n+2(i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

which yield that for n ≥ n1 + τ

x(n) + x(n – τ ) = 2L +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

which gives that for n ≥ n1 + τ

�
(
x(n) + x(n – τ )

)
= –

1
a(n)

∞∑

s=n
(s – n + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

which implies that for n ≥ n1 + τ

�
[
a(n)�

(
x(n) + x(n – τ )

)]
=

∞∑

s=n

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

and

�2[a(n)�
(
x(n) + x(n – τ )

)]
= –f

(
n, x

(
n – b1(n)

)
, x

(
n – b2(n)

)
, . . . , x

(
n – bk(n)

))
+ d(n),

which together with (2.8) means that x = {x(n)}n∈Zβ
is a bounded positive solution of

Eq. (1.11) in A(N , M).
It follows from (2.5), (2.8), (2.9), (2.11) and (2.12) that for any m ≥ 0 and n ≥ n1,

∣
∣xm+1(n) – x(n)

∣
∣

=

∣∣∣
∣∣
(1 – αm)xm(n) + αm

{

L +
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)
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× [
f
(
s, xm

(
s – b1(s)

)
, xm

(
s – b2(s)

)
, . . . , xm

(
s – bk(s)

))
– d(s)

]
}

– x(n)

∣∣
∣∣
∣

≤ (1 – αm)
∣∣xm(n) – x(n)

∣∣ + αm
∣∣TLxm(n) – TLx(n)

∣∣

≤ (1 – αm)‖xm – x‖ + αmθ‖xm – x‖
=

(
1 – (1 – θ )αm

)‖xm – x‖
≤ e–(1–θ )αm‖xm – x‖,

which gives that

‖xm+1 – x‖ ≤ e–(1–θ )αm‖xm – x‖ ≤ e–(1–θ )
∑m

k=0 αk ‖x0 – x‖, m ∈N0.

That is, (2.6) holds. It follows from (2.6) and (2.7) that limm→∞ xm = x.
Next we show (b). Let L1, L2 ∈ (N , M) with L1 �= L2. Similarly we infer that for each

z ∈ {1, 2}, there exist constants θz ∈ (0, 1) and nz ≥ n0 + τ + |β| and a mapping TLz sat-
isfying (2.9)~(2.11), where θ , L and n1 are replaced by θz , Lz and nz , respectively, and the
contraction mapping TLz has a unique fixed point xz = {xz(n)}n∈Zβ

∈ A(N , M), which is a
bounded positive solution of Eq. (1.11) in A(N , M), that is,

xz(n) = Lz +
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xz(s – b1(s)

)
, xz(s – b2(s)

)
, . . . , xz(s – bk(s)

))
– d(s)

]
, n ≥ nz,

which together with (2.2) and (2.9) yields that

∣
∣x1(n) – x2(n)

∣
∣

=

∣∣∣
∣∣
L1 – L2 +

∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))]
∣
∣∣
∣∣

≥ |L1 – L2| –
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)

× ∣∣f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))∣∣

≥ |L1 – L2| –
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

× max
{∣∣x1(s – bj(s)

)
– x2(s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≥ |L1 – L2| –
∞∑

i=1

n+2iτ–1∑

t=n+(2i–1)τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

∥∥x1 – x2∥∥
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≥ |L1 – L2| –
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

∥
∥x1 – x2∥∥

≥ |L1 – L2| – max{θ1, θ2}
∥∥x1 – x2∥∥, n ≥ max{n1, n2},

which means that

∥∥x1 – x2∥∥ ≥ |L1 – L2|
1 + max{θ1, θ2} > 0,

that is, x1 �= x2. Thus the set of bounded positive solutions of Eq. (1.11) in A(N , M) is un-
countable. This completes the proof. �

Theorem 2.2 Assume that there exist two positive constants M and N with M > N and
two nonnegative sequences {P(n)}n∈Nn0

and {Q(n)}n∈Nn0
satisfying (2.2), (2.3) and

c(n) = –1, eventually; (2.13)
∞∑

t=n0

t
|a(t)|

∞∑

s=t
(s – t + 1) max

{
P(s), Q(s),

∣∣d(s)
∣∣} < +∞. (2.14)

Then
(a) for any L ∈ (N , M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each

x0 = {x0(n)}n∈Zβ
∈ A(N , M), the Mann iterative sequence

{xm}m∈N0 = {xm(n)}(n,m)∈Zβ×N0 generated by the scheme:

xm+1(n)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 – αm)xm(n) + αm{L –
∑∞

i=1
∑∞

t=n+iτ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
n ≥ n1, m ≥ 0,

(1 – αm)xm(n1) + αm{L –
∑∞

i=1
∑∞

t=n1+iτ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
β ≤ n < n1, m ≥ 0

(2.15)

converges to a bounded positive solution x ∈ A(N , M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {αm}m∈N0 is an arbitrary sequence in [0, 1] satisfying (2.7);

(b) Eq. (1.11) possesses uncountably many bounded positive solutions in A(N , M).

Proof First of all we show (a). Let L ∈ (N , M). It follows from (2.13), (2.14) and Lemma 1.1
that there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| satisfying

c(n) = –1, n ≥ n1; (2.16)

θ =
∞∑

i=1

∞∑

t=n1+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s); (2.17)

∞∑

i=1

∞∑

t=n1+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣
∣d(s)

∣
∣) ≤ min{M – L, L – N}. (2.18)
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Define a mapping TL : A(N , M) → l∞β by

TLx(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L –
∑∞

i=1
∑∞

t=n+iτ
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, x(s – b1(s)), x(s – b2(s)), . . . , x(s – bk(s))) – d(s)],

n ≥ n1,

TLx(n1), β ≤ n < n1

(2.19)

for each x = {x(n)}n∈Zβ
∈ A(N , M). On account of (2.2), (2.3) and (2.17)~(2.19), we derive

that for each x = {x(n)}n∈Zβ
, y = {y(n)}n∈Zβ

∈ A(N , M) and n ≥ n1

∣
∣TLx(n) – TLy(n)

∣
∣

=

∣
∣∣
∣∣
–

∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))

– f
(
s, y

(
s – b1(s)

)
, y

(
s – b2(s)

)
, . . . , y

(
s – bk(s)

))]
∣∣
∣∣
∣

≤
∞∑

i=1

∞∑

t=n+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s) max

{∣∣x
(
s – bj(s)

)
– y

(
s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≤
∞∑

i=1

∞∑

t=n1+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)‖x – y‖ = θ‖x – y‖,

and

∣∣TLx(n) – L
∣∣

=

∣
∣∣
∣∣
–

∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
∣∣
∣∣
∣

≤
∞∑

i=1

∞∑

t=n+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)

× [∣∣f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))∣∣ +
∣∣d(s)

∣∣]

≤
∞∑

i=1

∞∑

t=n1+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣
∣d(s)

∣
∣) ≤ min{M – L, L – N},

which yield (2.12). Consequently TL is a contraction mapping on the closed subset A(N , M)
and it has a unique fixed point x = {x(n)}n∈Zβ

∈ A(N , M). It follows that for n ≥ n1 + τ

x(n) = L –
∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,



Jiang et al. Advances in Difference Equations  (2018) 2018:151 Page 10 of 24

x(n – τ )

= L –
∞∑

i=1

∞∑

t=n+(i–1)τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

which guarantee that for n ≥ n1 + τ

�
(
x(n) – x(n – τ )

)

= –
1

a(n)

∞∑

s=n
(s – n + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,

�
(
a(n)�

(
x(n) – x(n – τ )

))

=
∞∑

s=n

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

and

�2(a(n)�
(
x(n) – x(n – τ )

))

= –f
(
n, x

(
n – b1(n)

)
, x

(
n – b2(n)

)
, . . . , x

(
n – bk(n)

))
+ d(n),

which together with (2.16) implies that x = {x(n)}n∈Zβ
∈ A(N , M) is a bounded positive

solution of Eq. (1.11).
It follows from (2.12), (2.15), (2.17) and (2.19) that for any m ≥ 0 and n ≥ n1,

∣∣xm+1(n) – x(n)
∣∣

=

∣∣
∣∣
∣
(1 – αm)xm(n) + αm

{

L –
∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xm

(
s – b1(s)

)
, xm

(
s – b2(s)

)
, . . . , xm

(
s – bk(s)

))
– d(s)

]
}

– x(n)

∣∣∣
∣∣

≤ (1 – αm)
∣
∣xm(n) – x(n)

∣
∣ + αm

∣
∣TLxm(n) – TLx(n)

∣
∣

≤ (1 – αm)‖xm – x‖ + αmθ‖xm – x‖
=

(
1 – (1 – θ )αm

)‖xm – x‖
≤ e–(1–θ )αm‖xm – x‖,

which gives (2.6). Thus (2.6) and (2.7) guarantee that limm→∞ xm = x.
Next we show (b). Let L1, L2 ∈ (N , M) and L1 �= L2. Analogously we deduce that for each

z ∈ {1, 2}, there exist constants θz ∈ (0, 1) and nz ≥ n0 + τ + |β| and a mapping TLz satis-
fying (2.17)~(2.19), where θ , L and n1 are replaced by θz , Lz and nz , respectively, and the
contraction mapping TLz has a unique fixed point xz = {xz(n)}n∈Zβ

∈ A(N , M), which is a
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bounded positive solution of Eq. (1.11) in A(N , M), that is,

xz(n) = Lz –
∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xz(s – b1(s)

)
, xz(s – b2(s)

)
, . . . , xz(s – bk(s)

))
– d(s)

]
, n ≥ nz,

which together with (2.2) and (2.17) gives that

∣
∣x1(n) – x2(n)

∣
∣

=

∣∣
∣∣∣
L1 – L2 –

∞∑

i=1

∞∑

t=n+iτ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))]
∣∣∣
∣∣

≥ |L1 – L2| –
∞∑

i=1

∞∑

t=n+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)

× ∣
∣f

(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))∣∣

≥ |L1 – L2| –
∞∑

i=1

∞∑

t=n+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

× max
{∣∣x1(s – bj(s)

)
– x2(s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≥ |L1 – L2| –
∞∑

i=1

∞∑

t=n+iτ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

∥∥x1 – x2∥∥

≥ |L1 – L2| – max{θ1, θ2}
∥
∥x1 – x2∥∥, n ≥ max{n1, n2},

which yields that

∥
∥x1 – x2∥∥ ≥ |L1 – L2|

1 + max{θ1, θ2} > 0,

that is, x1 �= x2. Hence Eq. (1.11) possesses uncountably many bounded positive solutions
in A(N , M). This completes the proof. �

Theorem 2.3 Assume that there exist positive constants M and N , nonnegative constants
c1 and c2 and nonnegative sequences {P(n)}n∈Nn0

and {Q(n)}n∈Nn0
satisfying (1 – c1 – c2)M >

N , (2.2)~(2.4) and

–c1 ≤ c(n) ≤ c2, eventually. (2.20)

Then
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(a) for any L ∈ (c2M + N , (1 – c1)M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that
for each x0 = {x0(n)}n∈Zβ

∈ A(N , M), the Mann iterative sequence
{xm}m∈N0 = {xm(n)}(n,m)∈Zβ×N0 generated by the scheme:

xm+1(n)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 – αm)xm(n) + αm{L – c(n)x(n – τ )

+
∑∞

t=n
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
n ≥ n1, m ≥ 0,

(1 – αm)xm(n1) + αm{L – c(n1)x(n1 – τ )

+
∑∞

t=n1
1

a(t)
∑∞

s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s))) – d(s)]},
β ≤ n < n1, m ≥ 0

(2.21)

converges to a bounded positive solution x ∈ A(N , M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {αm}m∈N0 is an arbitrary sequence in [0, 1] satisfying (2.7);

(b) Eq. (1.11) possesses uncountably many bounded positive solutions in A(N , M).

Proof Let L ∈ (c2M + N , (1 – c1)M). It follows from (2.4) that there exist θ ∈ (0, 1) and
n1 ≥ n0 + τ + |β| satisfying

–c1 ≤ c(n) ≤ c2, n ≥ n1; (2.22)

θ = c1 + c2 +
∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s); (2.23)

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣) ≤ min

{
M(1 – c1) – L, L – c2M – N

}
. (2.24)

Define a mapping TL : A(N , M) → l∞β by

TLx(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L – c(n)x(n – τ ) +
∑∞

t=n
1

a(t)
∑∞

s=t(s – t + 1)

×[f (s, x(s – b1(s)), x(s – b2(s)), . . . , x(s – bk(s))) – d(s)],

n ≥ n1,

TLx(n1), β ≤ n < n1

(2.25)

for x = {x(n)}n∈Zβ
∈ A(N , M). Using (2.2), (2.3) and (2.22)~(2.25), we derive that for each

x = {x(n)}n∈Zβ
, y = {y(n)}n∈Zβ

∈ A(N , M) and n ≥ n1

∣
∣TLx(n) – TLy(n)

∣
∣

=

∣
∣∣
∣∣
–c(n)

(
x(n – τ ) – y(n – τ )

)

+
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
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– f
(
s, y

(
s – b1(s)

)
, y

(
s – b2(s)

)
, . . . , y

(
s – bk(s)

))]
∣∣
∣∣
∣

≤ ∣∣c(n)
∣∣∣∣x(n – τ ) – y(n – τ )

∣∣

+
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s) max

{∣∣x
(
s – bj(s)

)
– y

(
s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≤
[

c1 + c2 +
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

]

‖x – y‖

≤ θ‖x – y‖,

TLx(n) = L – c(n)x(n – τ ) +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≤ L + c1M +
∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣
∣d(s)

∣
∣)

≤ L + c1M + min
{

M(1 – c1) – L, L – c2M – N
}

≤ M

and

TLx(n) = L – c(n)x(n – τ ) +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≥ L – c2M –
∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)

≥ L – c2M – min
{

M(1 – c1) – L, L – c2M – N
}

≥ N ,

which imply (2.12). Hence TL is a contraction mapping on the closed subset A(N , M) and
it has a unique fixed point x = {x(n)}n∈Zβ

∈ A(N , M). That is,

x(n) = L – c(n)x(n – τ ) +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
, n ≥ n1,

which gives that for n ≥ n1 + τ

�
(
x(n) + c(n)x(n – τ )

)

= –
1

a(n)

∞∑

s=n
(s – n + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]
,
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which implies that for n ≥ n1 + τ

�
(
a(n)�

(
x(n) + c(n)x(n – τ )

))

=
∞∑

s=n

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

and

�2(a(n)�
(
x(n) + c(n)x(n – τ )

))

= –f
(
n, x

(
n – b1(n)

)
, x

(
n – b2(n)

)
, . . . , x

(
n – bk(n)

))
+ d(n),

which means that x = {x(n)}n∈Zβ
is a bounded positive solution of Eq. (1.11) in A(N , M).

By means of (2.12), (2.21), (2.23) and (2.25), we conclude that for any m ≥ 0 and n ≥ n1

∣∣xm+1(n) – x(n)
∣∣

=

∣
∣∣
∣∣
(1 – αm)xm(n) + αm

{

L – c(n)x(n – τ ) +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xm

(
s – b1(s)

)
, xm

(
s – b2(s)

)
, . . . , xm

(
s – bk(s)

))
– d(s)

]
}

– x(n)

∣∣
∣∣∣

≤ (1 – αm)
∣
∣xm(n) – x(n)

∣
∣ + αm

∣
∣TLxm(n) – TLx(n)

∣
∣

≤ (1 – αm)‖xm – x‖ + αmθ‖xm – x‖
=

(
1 – (1 – θ )αm

)‖xm – x‖
≤ e–(1–θ )αm‖xm – x‖,

which implies (2.6). Thus (2.6) and (2.7) ensure that limm→∞ xm = x.
Let L1, L2 ∈ (c2M + N , (1 – c1)M) and L1 �= L2. Homoplastically we conclude that for each

z ∈ {1, 2}, there exist constants θz ∈ (0, 1) and nz ≥ n0 + τ + |β| and a mapping TLz satis-
fying (2.22)~(2.25), where θ , L and n1 are replaced by θz , Lz and nz , respectively, and the
contraction mapping TLz has a unique fixed point xz = {xz(n)}n∈Zβ

, which is a bounded
positive solution of Eq. (1.11) in A(N , M), that is,

xz(n) = Lz – c(n)xz(n – τ ) +
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xz(s – b1(s)

)
, xz(s – b2(s)

)
, . . . , xz(s – bk(s)

))
– d(s)

]
, n ≥ nz,

which together with (2.2), (2.22) and (2.23) yield that

∣
∣x1(n) – x2(n)

∣
∣

=

∣
∣∣
∣∣
L1 – L2 – c(n)

(
x1(n – τ ) – x2(n – τ )

)

+
∞∑

t=n

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))
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– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))]
∣∣
∣∣
∣

≥ |L1 – L2| –
∣∣c(n)

∣∣∣∣x1(n – τ ) – x2(n – τ )
∣∣

–
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)

∣
∣f

(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))∣∣

≥ |L1 – L2| – (c1 + c2)
∥
∥x1 – x2∥∥

–
∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s) max

{∣∣x1(s – bj(s)
)

– x2(s – bj(s)
)∣∣ : 1 ≤ j ≤ k

}

≥ |L1 – L2| –

[

c1 + c2 +
∞∑

t=max{n1,n2}

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

]
∥
∥x1 – x2∥∥

≥ |L1 – L2| – max{θ1, θ2}
∥
∥x1 – x2∥∥, n ≥ max{n1, n2},

which means that

∥
∥x1 – x2∥∥ ≥ |L1 – L2|

1 + max{θ1, θ2} > 0,

that is, x1 �= x2. This completes the proof. �

Theorem 2.4 Assume that there exist four constants M, N , c1 and c2 and two nonnegative
sequences {P(n)}n∈Nn0

and {Q(n)}n∈Nn0
satisfying M > N , c2(c2

1 – c2)M > c1(c2
2 – c1)N > 0,

(2.2)~(2.4) and

1 < c1 ≤ c(n) ≤ c2, eventually. (2.26)

Then
(a) for any L ∈ ( c2

c1
M + c2N , c1

c2
N + c1M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such

that for each x0 = {x0(n)}n∈Zβ
∈ A(N , M), the Mann iterative sequence

{xm}m∈N0 = {xm(n)}(n,m)∈Zβ×N0 generated by the scheme:

xm+1(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 – αm)xm(n) + αm{ L
c(n+τ ) – x(n+τ )

c(n+τ )

+ 1
c(n+τ )

∑∞
t=n+τ

1
a(t)

∑∞
s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s)))

– d(s)]},
n ≥ n1, m ≥ 0,

(1 – αm)xm(n1) + αm{ L
c(n1+τ ) – x(n1+τ )

c(n1+τ )

+ 1
c(n1+τ )

∑∞
t=n1+τ

1
a(t)

∑∞
s=t(s – t + 1)

× [f (s, xm(s – b1(s)), xm(s – b2(s)), . . . , xm(s – bk(s)))

– d(s)]},
β ≤ n < n1, m ≥ 0

(2.27)
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converges to a bounded positive solution x ∈ A(N , M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {αm}m∈N0 is an arbitrary sequence in [0, 1] satisfying (2.7);

(b) Eq. (1.11) possesses uncountably many bounded positive solutions in A(N , M).

Proof Let L ∈ ( c2
c1

M + c2N , c1
c2

N + c1M). Note that (2.4) and (2.26) imply that there exist
θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| satisfying

c1 ≤ c(n) ≤ c2, n ≥ n1; (2.28)

θ =
1
c1

+
1
c1

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s); (2.29)

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣
∣d(s)

∣
∣)

≤ min

{
c1M +

c1N
c2

– L,
c1L
c2

– M – c1N
}

. (2.30)

Define a mapping TL : A(N , M) → l∞β by

TLx(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L
c(n+τ ) – x(n+τ )

c(n+τ ) + 1
c(n+τ )

∑∞
t=n+τ

1
a(t)

∑∞
s=t(s – t + 1)

× [f (s, x(s – b1(s)), x(s – b2(s)), . . . , x(s – bk(s))) – d(s)],

n ≥ n1,

TLx(n1), β ≤ n < n1

(2.31)

for each x = {x(n)}n∈Zβ
∈ A(N , M). It follows from (2.2), (2.3) and (2.28)~(2.31) that for

each x = {x(n)}n∈Zβ
, y = {y(n)}n∈Zβ

∈ A(N , M) and n ≥ n1

∣∣TLx(n) – TLy(n)
∣∣

=

∣∣
∣∣
∣
–

x(n + τ ) – y(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))

– f
(
s, y

(
s – b1(s)

)
, y

(
s – b2(s)

)
, . . . , y

(
s – bk(s)

))]
∣∣∣
∣∣

≤ |x(n + τ ) – y(n + τ )|
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

× max
{∣∣x

(
s – bj(s)

)
– y

(
s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≤ 1
c1

‖x – y‖ +
1
c1

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)‖x – y‖

= θ‖x – y‖,
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TLx(n) =
L

c(n + τ )
–

x(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≤ L
c1

–
N
c2

+
1
c1

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)

≤ L
c1

–
N
c2

+
1
c1

min

{
c1M +

c1N
c2

– L,
c1L
c2

– M – c1N
}

≤ M

and

TLx(n) =
L

c(n + τ )
–

x(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≥ L
c2

–
M
c1

–
1
c1

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)

≥ L
c2

–
M
c1

–
1
c1

min

{
c1M +

c1N
c2

– L,
c1L
c2

– M – c1N
}

≥ N ,

which yield (2.12), that is, TL is a contraction mapping on the closed subset A(N , M) and
it has a unique fixed point x = {x(n)}n∈Zβ

∈ A(N , M), which is a bounded positive solution
of Eq. (1.11).

It follows from (2.12), (2.27), (2.29) and (2.31) that for any m ≥ 0 and n ≥ n1,

∣
∣xm+1(n) – x(n)

∣
∣

=

∣
∣∣
∣∣
(1 – αm)xm(n) + αm

{
L

c(n + τ )
–

x(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xm

(
s – b1(s)

)
, xm

(
s – b2(s)

)
, . . . , xm

(
s – bk(s)

))
– d(s)

]
}

– x(n)

∣∣
∣∣
∣

≤ (1 – αm)
∣∣xm(n) – x(n)

∣∣ + αm
∣∣TLxm(n) – TLx(n)

∣∣

≤ (1 – αm)‖xm – x‖ + αmθ‖xm – x‖
=

(
1 – (1 – θ )αm

)‖xm – x‖
≤ e–(1–θ )αm‖xm – x‖,

which gives (2.6). Thus (2.6) and (2.7) guarantee that limm→∞ xm = x.
Let L1, L2 ∈ ( c2

c1
M + c2N , c1

c2
N + c1M) and L1 �= L2. Similarly we deduce that for each

z ∈ {1, 2}, there exist constants θz ∈ (0, 1) and nz ≥ n0 + τ + |β| and a mapping TLz sat-
isfying (2.28)~(2.31), where θ , L and n1 are replaced by θz, Lz and nz , respectively, and the
contraction mapping TLz has a unique fixed point xz = {xz(n)}n∈Zβ

, which is a bounded
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positive solution of Eq. (1.11) in A(N , M), that is,

xz(n) =
Lz

c(n + τ )
–

xz(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, xz(s – b1(s)

)
, xz(s – b2(s)

)
, . . . , xz(s – bk(s)

))
– d(s)

]
, n ≥ nz,

which together with (2.2), (2.28) and (2.29) yields that

∣∣x1(n) – x2(n)
∣∣

=

∣
∣∣
∣∣

L1 – L2

c(n + τ )
–

x1(n – τ ) – x2(n – τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))]
∣∣
∣∣
∣

≥ |L1 – L2|
c(n + τ )

–
|x1(n + τ ) – x2(n + τ )|

c(n + τ )

–
1

c(n + τ )

∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)

× ∣∣f
(
s, x1(s – b1(s)

)
, x1(s – b2(s)

)
, . . . , x1(s – bk(s)

))

– f
(
s, x2(s – b1(s)

)
, x2(s – b2(s)

)
, . . . , x2(s – bk(s)

))∣∣

≥ |L1 – L2|
c2

–
‖x1 – x2‖

c1

–
1
c1

∞∑

t=n

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s) max

{∣∣x1(s – bj(s)
)

– x2(s – bj(s)
)∣∣ : 1 ≤ j ≤ k

}

≥ |L1 – L2|
c2

–
‖x1 – x2‖

c1
–

1
c1

∞∑

t=max{n1,n2}

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

∥∥x1 – x2∥∥

≥ |L1 – L2|
c2

– max{θ1, θ2}
∥∥x1 – x2∥∥, n ≥ max{n1, n2},

which means that

∥
∥x1 – x2∥∥ ≥ |L1 – L2|

c2(1 + max{θ1, θ2}) > 0,

that is, x1 �= x2. This completes the proof. �

Theorem 2.5 Assume that there exist four constants M, N , c1 and c2 and two nonnegative
sequences {P(n)}n∈Nn0

and {Q(n)}n∈Nn0
satisfying (1 + c2)M < (1 + c1)N < 0, (2.2)~(2.4) and

c1 ≤ c(n) ≤ c2 < –1, eventually. (2.32)
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Then
(a) for any L ∈ ((1 + c2)M, (1 + c1)N) there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that

for each x0 = {x0(n)}n∈Zβ
∈ A(N , M), the Mann iterative sequence

{xm}m∈N0 = {xm(n)}(n,m)∈Zβ×N0 generated by (2.27) converges to a bounded positive
solution x ∈ A(N , M) of Eq. (1.11) and has the error estimate (2.6), where {αm}m∈N0 is
an arbitrary sequence in [0, 1] satisfying (2.7);

(b) Eq. (1.11) possesses uncountable bounded positive solutions.

Proof Let L ∈ ((1+c2)M, (1+c1)N). It follows from (2.4) and (2.32) that there exist θ ∈ (0, 1)
and n1 ≥ n0 + τ + |β| satisfying

c1 ≤ c(n) ≤ c2 < –1, n ≥ n1; (2.33)

θ = –
1
c2

–
1
c2

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s); (2.34)

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)

≤ min

{
L – (1 + c2)M,

c2(1 + c1)N
c1

–
c2L
c1

}
. (2.35)

Let the mapping TL : A(N , M) → l∞β be defined by (2.31). It follows from (2.2), (2.3), (2.31)
and (2.33)~(2.35) that for x = {x(n)}n∈Zβ

, y = {y(n)}n∈Zβ
∈ A(N , M) and n ≥ n1

∣∣TLx(n) – TLy(n)
∣∣

=

∣
∣∣
∣∣
–

x(n + τ ) – y(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

[
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))

– f
(
s, y

(
s – b1(s)

)
, y

(
s – b2(s)

)
, . . . , y

(
s – bk(s)

))]
∣∣
∣∣∣

≤ –
‖x – y‖

c2
–

1
c2

∞∑

t=n+τ

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)

× max
{∣∣x

(
s – bj(s)

)
– y

(
s – bj(s)

)∣∣ : 1 ≤ j ≤ k
}

≤ –
‖x – y‖

c2
–

1
c2

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)P(s)‖x – y‖

= θ‖x – y‖,

TLx(n) =
L

c(n + τ )
–

x(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≤ L
c2

–
M
c2

–
1
c2

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣∣d(s)
∣∣)
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≤ L
c2

–
M
c2

–
1
c2

min

{
L – (1 + c2)M,

c2(1 + c1)N
c1

–
c2L
c1

}

≤ M

and

TLx(n) =
L

c(n + τ )
–

x(n + τ )
c(n + τ )

+
1

c(n + τ )

∞∑

t=n+τ

1
a(t)

∞∑

s=t
(s – t + 1)

× [
f
(
s, x

(
s – b1(s)

)
, x

(
s – b2(s)

)
, . . . , x

(
s – bk(s)

))
– d(s)

]

≥ L
c1

–
N
c1

+
1
c2

∞∑

t=n1

1
|a(t)|

∞∑

s=t
(s – t + 1)

(
Q(s) +

∣
∣d(s)

∣
∣)

≥ L
c1

–
N
c1

+
1
c2

min

{
L – (1 + c2)M,

c2(1 + c1)N
c1

–
c2L
c1

}

≥ N ,

which implies (2.12). The rest of the proof is similar to that of Theorem 2.4 and is omitted.
This completes the proof. �

3 Examples
In this section, we construct five examples to illustrate our results.

Example 3.1 Consider the third order nonlinear neutral delay difference equation

�2((n2 – n
3
2 + 2

)
�

(
x(n) + x(n – τ )

))
+

(–1)n[x2(n2) + x4(n3 – 2n + 1)]
(n + 1)3 + n ln2 n + x2(n2 – n)

=
2n – (n + 3) sin(5n4 – 3n + 1)

n4 – n2 + 1
, n ≥ 1, (3.1)

where τ ∈N is fixed. Let n0 = 1, k = 3, M = 2, N = 1, β = min{1 – τ , 0},

a(n) = n2 – n
3
2 + 2, c(n) = 1, b1(n) = n – n2,

b2(n) = 3n – n3 – 1, b3(n) = 2n – n2,

d(n) =
2n – (n + 3) sin(5n4 – 3n + 1)

n4 – n2 + 1
, f (n, u1, u2, u3) =

(–1)n(u2
1 + u4

2)
(n + 1)3 + n ln2 n + u2

3
,

P(n) =
6M5 + 4M3 + 2M(1 + 2M2)[(n + 1)3 + n ln2 n]

((n + 1)3 + n ln2 n + N2)2
,

Q(n) =
M4 + M2

(n + 1)3 + n ln2 n + N2
, (n, u1, u2, u3) ∈ Nn0 ×R

3.

It is clear that (2.1)~(2.4) hold. It follows from Theorem 2.1 that Eq. (3.1) possesses un-
countably many bounded positive solutions in A(N , M) and for each L ∈ (N , M), there
exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each x0 ∈ A(N , M), the Mann iterative
sequence {xm}m≥0 generated by (2.5) and (2.7) converges to a bounded positive solution
x ∈ A(N , M) of Eq. (3.1) and has the error estimate (2.6).
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Example 3.2 Consider the third order nonlinear neutral delay difference equation

�2((n3 + n ln2 n + 1
)
�

(
x(n) – x(n – τ )

))
+

(–1)n+1x3( n(n+1)
2 )

n4 + n3x4(n – 3) +
√

n5 + 1x2(n2 – 2)

=
3n4 – n2 – (–1)n–1n + 2

n7 – n6 + n3 + 1
, n ≥ 1, (3.2)

where τ ∈N is fixed. Let n0 = 1, k = 3, M = 3
2 , N = 1

2 , β = min{1 – τ , –2},

a(n) = n3 + n ln2 n + 1, c(n) = –1, b1(n) =
–n(n – 1)

2
,

b2(n) = 3, b3(n) = –n2 + n + 2,

d(n) =
3n4 – n2 – (–1)n–1n + 2

n7 – n6 + n3 + 1
, f (n, u1, u2, u3) =

(–1)n+1u3
1

n4 + n3u4
2 +

√
n5 + 1u2

3
,

P(n) =
M2(3n4 + 7M4n3 + 5M2

√
n5 + 1)

(n4 + n3N4 +
√

n5 + 1N2)2
,

Q(n) =
M3

n4 + n3N4 +
√

n5 + 1N2
, (n, u1, u2, u3) ∈Nn0 ×R

3.

It is easy to verify that (2.2), (2.3), (2.13) and (2.14) are fulfilled. It follows from Theorem 2.2
that Eq. (3.2) possesses uncountably many bounded positive solutions in A(N , M) and for
each L ∈ (N , M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each x0 ∈ A(N , M),
the Mann iterative sequence {xm}m≥0 generated by (2.7) and (2.15) converges to a bounded
positive solution x ∈ A(N , M) of Eq. (3.2) and has the error estimate (2.6).

Example 3.3 Consider the third order nonlinear neutral delay difference equation

�2
((

n3

ln n
– n ln n + n2

)
�

(
x(n) +

(–1)nn
3
√

n2 + n + n
x(n – τ )

))
+

√
nx2(3n2 – 2)

n3 + 1

+
(n 3

2 – ln n + 3)x(n – 8)x3(n5 – 1)
(n2 + n – 1)2 =

n2 – 3 ln n + 2
4n5 – 3n3 + n2 + 5n + 1

, n ≥ 2, (3.3)

where τ ∈Nn0 is fixed. Let n0 = 2, k = 3, M = 5, N = 2, c1 = c2 = 1
4 , β = min{2 – τ , –6},

a(n) =
n3

ln n
– n ln n + n2, b1(n) = –3n2 + n + 2,

b2(n) = 8, b3(n) = –n5 + n + 1,

c(n) =
(–1)nn

3
√

n2 + n + n
, d(n) =

n2 – 3 ln n + 2
4n5 – 3n3 + n2 + 5n + 1

,

f (n, u1, u2, u3) =
√

nu2
1

n3 + 1
+

(n 3
2 – ln n + 3)u2u3

3
(n2 + n – 1)2 ,

P(n) =
2M

√
n

n3 + 1
+

4M3(n 3
2 – ln n + 3)

(n2 + n – 1)2 ,

Q(n) =
M2√n
n3 + 1

+
M4(n 3

2 – ln n + 3)
(n2 + n – 1)2 , (n, u1, u2, u3) ∈ Nn0 ×R

3.
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Clearly (2.2)~(2.4) and (2.20) hold. It follows from Theorem 2.3 that Eq. (3.3) possesses
uncountably many bounded positive solutions in A(N , M) and for every L ∈ (c1M + N ,
(1 – c2)M), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each x0 ∈ A(N , M), the
Mann iterative sequence {xm}m≥0 generated by (2.7) and (2.21) converges to a bounded
positive solution x ∈ A(N , M) of Eq. (3.3) and has the error estimate (2.6).

Example 3.4 Consider the third order nonlinear neutral delay difference equation

�2
(

(–1)n–1(2n5 – 7n3 + 11)
ln2(n + 2) + 6n

�

(
x(n) +

3n2 + 2n + 4
n2 + n + 1

x(n – τ )
))

+
x2(n2 + n)
n3 + 2n + 1

+
x3(n – (–1)n)
n2 ln2(n + 1)

=
(–1)n(n –

√
n + 3)

2n4 + 3n2 – 1
, n ≥ 1, (3.4)

where τ ∈N is fixed. Let n0 = 1, k = 2, M = 7
3 , N = 3

7 , c1 = 2, c2 = 3, β = min{1 – τ , 1} = 1 – τ ,

a(n) =
(–1)n–1(2n5 – 7n3 + 11)

ln2(n + 2) + 6n
, c(n) =

3n2 + 2n + 4
n2 + n + 1

,

b1(n) = –n2, b2(n) = (–1)n,

d(n) =
(–1)n(n –

√
n + 3)

2n4 + 3n2 – 1
, f (n, u1, u2) =

u2
1

n3 + 2n + 1
+

u3
2

n2 ln2(n + 1)
,

P(n) =
2M

n3 + 2n + 1
+

3M2

n2 ln2(n + 1)
,

Q(n) =
M2

n3 + 2n + 1
+

M3

n2 ln2(n + 1)
, (n, u1, u2) ∈Nn0 ×R

2.

Obviously (2.2)~(2.4) and (2.26) hold. It follows from Theorem 2.4 that Eq. (3.4) pos-
sesses uncountably many bounded positive solutions in A(N , M) and for any L ∈ ( c2

c1
M +

c2N , c1
c2

N + c1M), there exist θ ∈ (0, 1) and n1 ≥ n0 +τ + |β| such that for each x0 ∈ A(N , M),
the Mann iterative sequence {xm}m≥0 generated by (2.7) and (2.27) converges to a bounded
positive solution x ∈ A(N , M) of Eq. (3.4) and has the error estimate (2.6).

Example 3.5 Consider the third order nonlinear neutral delay difference equation

�2
(

n2((–1)nn – 3
)
�

(
x(n) –

5n + (–1)nn
2n + 1

x(n – τ )
))

+
(–1)nx( n(n–1)

2 )x(n2)
n3 ln2 n + n2 + x2( n(n+1)(n+2)

3 )
=

n2 – (–1)n–1n ln(1 +
√

2n + 1)
n5 – 2n3 + 3

, n ≥ 1, (3.5)

where τ ∈N is fixed. Let n0 = 1, k = 3, M = 10, N = 3, c1 = –3, c2 = –2, β = min{1 – τ , 0},

a(n) = n2((–1)nn – 3
)
, c(n) = –

5n + (–1)nn
2n + 1

,

b1(n) =
n(3 – n)

2
, b2(n) = –n2 + n,

b3(n) =
–n(n2 + 3n – 1)

3
, d(n) =

n2 – (–1)n–1n ln(1 +
√

2n + 1)
n5 – 2n3 + 3

,
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f (n, u1, u2, u3) =
(–1)nu1u2

n3 ln2 n + n2 + u2
3

,

P(n) =
4M3 + 2M(n3 ln2 n + n2)

(n3 ln2 n + n2 + N2)2
,

Q(n) =
M2

n3 ln2 n + n2 + N2
, (n, u1, u2, u3) ∈Nn0 ×R

3.

It is easy to verify that (2.2)~(2.4) and (2.32) are fulfilled. It follows from Theorem 2.5 that
Eq. (3.5) possesses uncountably many bounded positive solutions in A(N , M) and for each
L ∈ ((1 + c2)M, (1 + c1)N), there exist θ ∈ (0, 1) and n1 ≥ n0 + τ + |β| such that for each x0 ∈
A(N , M), the Mann iterative sequence {xm}m≥0 generated by (2.7) and (2.27) converges to
a bounded positive solution x ∈ A(N , M) of Eq. (3.5) and has the error estimate (2.6).
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