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1 Introduction and preliminaries

In the past thirty years there has been much research activity concerning the oscillation,
nonoscillation, asymptotic behavior and existence of solutions, nonoscillatory solutions
and bounded positive solutions for various kinds of neutral delay difference equations,
see, for example, [1-25] and the references therein. Jinfa [7] studied the existence of a
bounded nonoscillatory solution for the second order neutral delay difference equation
with positive and negative coefficients

A% (x(n) + px(n — m)) + p(n)x(n — k) —q(mx(n—1) =0, n>ng (1.1)

under the condition p # —1. Migda and Migda [17] got the asymptotic behavior of the
second order neutral difference equation

A? (x(n) + px(n — k)) +f(n,x(n)) =0, n>1. (1.2)
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Meng and Yan [16] discussed sufficient and necessary conditions of the existence of
bounded nonoscillatory solutions for the second order nonlinear neutral difference equa-

tion

Az(x(n) —px(n— r)) = Zqiﬁ(x(n - cr,')), n>np. (1.3)

i=1

El-Morshedy [5] obtained the oscillation of the second order neutral difference equation
with positive and negative coefficients

Az(x(n) + a(n)x(n - ‘L')) +pm)x(n—-38)—qgn)x(n-0o)=0, n=>0. (1.4)
Tripathy [22] studied the second order nonlinear neutral delay difference equation
Az(x(n) + p(n)x(n — m)) + q(n)G(x(n - k)) =0, n>ng (1.5)

and deduced sufficient conditions under which every solution of Eq. (1.5) oscillates. Rath
et al. [18] investigated the second order neutral delay difference equation

A(r(n)A(x(n) —pn)x(n - m))) + q(n)G(x(n - k)) =f(n), n>ng (1.6)

and found necessary conditions for every solution of Eq. (1.6) to oscillate or to tend to zero
as n — oo. Liu, Xu and Kang [12] considered the solvability for the second order nonlinear
neutral delay difference equation

A(a(m)A(x(n) + bx(n — 7)) + f (n,5(n — dy(n)), x(n — dy(n)), ..., x(n — di(n)))

=c(n), n=>ng (1.7)

and provided the global existence of uncountably many bounded nonoscillatory solutions
for Eq. (1.7) relative to all b € R. Saker [19] studied the third order difference equation

A3x(n) + pn)x(n+1) =0, n>ny (1.8)
and established a few sufficient conditions for all solutions to be oscillatory or tend to zero.
Yan and Liu [23] provided the existence of a bounded nonoscillatory solution for the third
order difference equation

A3x(n) +f(n,x(n),x(n - r)) =0, n>ng (1.9)
and got a necessary and sufficient condition for Eq. (1.9) to have a bounded nonoscillatory

solution {x(7)},>,, with lim,_,  x(#) = d. Andruch-Sobilo and Migda [2] investigated the

third order linear difference equation of neutral type
As(x(n) —p(n)x(a(n))) + q(n)x(t(n)) =0, n>n (1.10)

and proved sufficient conditions which ensure that all solutions of Eq. (1.10) are oscillatory.
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The purpose of this paper is to study the below third order nonlinear neutral delay dif-

ference equation with a forced term

A (a(m) A (x(n) + c(n)xn — 1)) +f (mx(n - bi(n)),x(1n = by(n)), ..., x(n — br(n)))
=d(n), n>ny, (1.11)

where 7,k e N, ngp e Ny = {0} UN, {a(n)}neNno, {c(n)}n,eNn0 and {a’(n)},,eNn0 are real se-
quences with a(n) # 0 for n € N, Uf;l{bi(n)}neNno C Z with lim,,_, o (n — b;(n)) = +00,
1 <i<kandf:N, x Rf - R is a mapping. Using the Banach fixed point theorem,
we prove several existence results of uncountably many bounded positive solutions for
Eq. (1.11), suggest a few Mann iterative methods for these bounded positive solutions and
discuss the error estimates between these bounded positive solutions and the iterative se-
quences generated by the Mann iterative methods. To illustrate our results, five examples
are also constructed.

Throughout this paper, we assume that A denotes the forward difference operator de-
fined by Ax(n) = x(n + 1) — x(n), A%x(n) = A(Ax(n)), A3x(n) = A(A%x(n)), R = (00, +00),

R* = [0, +00), Z and N stand for the sets of all integers and positive integers, respectively,

Ny, = {n:n e Ny with n > n}, Zg={n:neZwithn> g},

B = min{no - t,inf{n -bin):1<i<kmne Nno}},
I3 stands for the Banach space of all bounded sequences on Zg with norm

llx]| = sup ’x(n)‘ forx = {x(n)}

o0
€ly
HEZﬂ

nezg

and
A(N,M) = {x: {x(n)}nezlj €ly N <x(n)<Mne Zﬁ} for M >N > 0.

By a solution of Eq. (1.11), we mean a sequence {x(1)},cz, with a positive integer n; >
no + 7 + | B] such that Eq. (1.11) holds for all n > n;.

Lemma 1.1 ([8]) Let t € N, ny € Ny and B:N,; — R* be a mapping. Then

i i ZB(t)<+oo = iisB(t)<+oo.

i=0 s=no+it t=s s=nqy t=s

2 Existence of uncountably many bounded positive solutions and Mann
iterative schemes

Now we use the Banach fixed point theorem to show the existence of uncountably many

bounded positive solutions for Eq. (1.11), construct Mann iterative schemes and discuss

the error estimates between the bounded positive solutions and the sequences generated

by the Mann iterative schemes.
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Theorem 2.1 Assume that there exist two positive constants M and N with M > N and

two nonnegative sequences {P(n)}y,eNnO and {Q(n)},,eNno satisfying

c(n) =1, eventually; (2.1)

f (s s, .y ai) = f (1, v, v,y i) |

§P(n)max{|u,» —vl:1<i< k}, neNy,u,v;e [N,M,1<i<k; (2.2)
V(n, ul,uz,...,uk)} <Qn), neNy,u;e[N,M],1<i<k; (2.3)
o0 1 oo
> o > (s—t+ 1)max{P(s), Qs), |d(s)|} < +oc. (2.4)
t=ng s=t

Then
(a) forany L € (N, M), there exist 0 € (0,1) and ny; > ng + t + |B| such that for each
Xo = {xo(n)},,ezﬂ € A(N, M), the Mann iterative sequence
{(%mbmeng = (%m (1)} nmyezy <, generated by the scheme:

KXm+1 (1’1)

(1= ) + 0oL+ 355 200G sty Loeca(s =2+ 1)
X [f (5,2 (5 = D1(5)), (s = b)), -, (5 = i(5))) — d(5)]},

n>ny,m=>0,

= ny+2it-1 1 oo (25)
(1 am)xm(nl) + am{L + Zl 1 Zt m+Q2i-1)t a(t) Zs:t(s -+ 1)
X [f (8, % (s = b1(5)), %pu(s = Da($)), . .., X (s — b (5))) — d($)]},
B<n<n,m=>0
converges to a bounded positive solution x € A(N, M) of Eq. (1.11) and has the
following error estimate:
otmer = x| < e Zi0% |l — x]l,  m € N, (2.6)
where {0t} men, is an arbitrary sequence in [0, 1] such that
o0
Zam = 400; (2.7)
m=0

(b) Egq. (1.11) possesses uncountably many bounded positive solutions in A(N, M).

Proof First of all we show (a). Let L € (N, M). It follows from (2.1) and (2.4) that there exist
0 €(0,1) and n; > ny + 7 + | B satisfying

cm)=1, n=ny (2.8)

oo
ezlﬂl

t=n1 s

(s—t+1)P(s); (2.9)

Mg

I
~

> |a(—1t)| > (s—t+1)(Qls) + |d(s)|) < min{M - L,L - N}. (2.10)
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Define a mapping 77 : A(N, M) — [§° by

L+ Z:l 1 Z:H;fj-rbl )T a([) Zsojt(s —-t+ 1)
Tyx(n) = x [f(s,%(s — by (s)), x(s — ba(5)), ..., x(s — br(s))) — d(s)], 211)
n=n,

TLx(nl): ﬁ <n<m

for each x = {x(n)},ez, € AN, M). In view of (2.2), (2.3) and (2.9)~(2.11), we conclude that
for x = {x(n)}nezy, y = (Y(M)}nez, € AN, M) and n = m

|TL9€(”) - TLy(n)|

oo nm+2it-1

> Z (lt)Ds t+ D)[f (s,x(s = ba(s)),x(s — ba(s)), ..., x(s — bi(s)))

i=1 t=n+(2i-1

—f(s5(s=b1(5)),5(s = ba(s)), ..., y(s — hk(s)))]

o] n+2it-1 00
1

=2 ) 26—t DR max{a(s = b(s)) (s - b©)|: 1=/ <k}
i=1 t=n+Q2i-1)t s=t
o] n+2it-1 1 00

=2 )llx -yl
i=1 t=n+(Q2i-1)t |[l(t)|
o0 1 o0

< ; = ;(s £+ 1)P(s) -y

=0lx -yl

and
| Tpx(n) - L|

oo n+2it-1

=2 X (lt) ds-t+1)

i=1 t=n+Q2i-1)t

x [f(s,2(s = b1(s)),x(s = ba(5)), ..., x(s — bi(s))) — d(s)]

oo n+2it 1 )
Z ; la(®)| ;(S_”l)

X [V(S,x(s - b1(S))’x(S - bz(S)),...,x(s — bk(s)))| + |d(s)|]
o0 1 00
< Z P ;(s —t+1)(Qls) + |d(s)])

<min{M - L,L - N},
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which imply that
I Ty —Tupl <6la—yl, xycAN,M) and Ti(A(N,M)) CAN,M).  (212)

Thus (2.12) ensures that 77 is a contraction mapping on the closed subset A(N, M) and it
has a unique fixed point x = {x(n)},,ezﬂ € A(N,M). It follows that for n > n; + T

n+2it-1 0o
x(n) = L+Z Z %Z(s—t+1)
i=1 t=n+(2i-1)t s=t

X [f(s,x(s - bl(s)),x(s - bz(s)), ... ,x(s - bk(s))) - d(s)],

oo n+(2i-1)t-1

x(n—1) L+Z Z (lt)Z(s—t+1)
i=1 t=n+2(i

X [f(s,x(s - bl(s)),x(s - bz(S)), ... ,x(s - bk(s))) - d(s)],

which yield that forn > n; + 7

x(n) +x(n—1) :2L+Z$Z(s—t+l)
x [f(s,%(s = b1(9)),x(s = ba(s)), ..., x(s — bils))) — d(s)],

which gives that forn > n; + 7

A(x(n) +x(n—1)) = Z(s—n+1)
X [f(s,x(s - bl(s)),x(s - bz(s)), ... ,x(s - bk(s))) - d(s)],

which implies that forn > n; + ©
A[a(n)A(x(n) +x(n - 1:) Z f (s, x s— bl(s) (s - bg(S)), . ,x(s - bk(s))) - d(s)]

s=n

and

Az[a(n)A(x(n) +x(n— r))] = —f(n,x(n - bl(n)),x(n - bz(n)), .. ,x(n - bk(n))) +d(n),
which together with (2.8) means that x = {x(n)},cz, is a bounded positive solution of

Eq. (1.11) in A(N, M).
It follows from (2.5), (2.8), (2.9), (2.11) and (2.12) that for any m > 0 and n > nj,

X1 () — x(n) |

[e'e) +2it 00
= (l—am)xm(n)+am:L+Z Z lt) Z(s—t+1)
n+(2i— s=t

i=1 t=
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X [f(s,xm (s - bl(s)),xm (s - bz(s)), e X (s - bk(s))) - d(s)] } —x(n)

<(@- am)|xm(n) - x(”)| + am‘TLxm(n) - TLJC(I’I)’
< (1 —a)ll®m — x| + b |, — x|l
= (1= (1= 0)am)ll%m — x|

< e 0| x,, — x|,
which gives that
—(1— (11— m
[%s1 — x| < e8|, — x]| < &1 L0 |5 — x|,  m € N.

That is, (2.6) holds. It follows from (2.6) and (2.7) that lim,,,_, o %,,; = X.

Next we show (b). Let Ly,L, € (N,M) with L; # L,. Similarly we infer that for each
z € {1,2}, there exist constants 6, € (0,1) and n, > ny + T + |8| and a mapping T, sat-
isfying (2.9)~(2.11), where 0, L and #n; are replaced by 6,, L, and n,, respectively, and the
contraction mapping 77, has a unique fixed point x° = {x*(n)},ez, € AN, M), which is a

bounded positive solution of Eq. (1.11) in A(N, M), that is,

n+2it-1
x*(n) =L, +Z Z Z(s—t+1)
i=1 t=n+Q2i-1)t

X [f(s,xz(s - bl(s)),xz(s - bz(s)), .. ,xz(s - bk(s))) - d(s)], n>ny,,
which together with (2.2) and (2.9) yields that

’xl(n) - xz(n)|

oo n+2it-1

=Li-Ly+) Y %X;(s—tu)

i=1 t=n+(2i-1)t

X [f(s,x1 (s— bl(s)),x1 (s = bals)),... ,xl(s - b(s)))

—f(s,x2 (s - 191(5)),962 (s - bz(s)), .. ,xz(s - bk(s)))]

n+2it-1 1 e8]
>|L;-L s—t+1
CEAE DD ST DI
i=1 t=n+(2i-1)t s=t

x[f(s, (s—bl(s) (s—bz(s)) X (s—bk(s))
~f (5,2 (s = b1(5)),4% (5 = ba(5)), .., &% (s — i s)) )|

n+2it-1 1 oo
>|L-L s—t+1)P
Ly - Ly| ~ Z Z WHZ( + 1)P(s)
i=1 t=n+(2i-1)t

x max{|x' (s — bj(s)) — x*(s — b;(s))| : 1 <j < k}

n+2it-1 oo

A Y ﬁZ(s—t+l)P(s)Hxl—x2”

i=1 t=n+(2i-1)t s=t
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> |Ly — Ly| —Z ﬁ Z(S_H 1)P(s)[|x" - 2

> |Ly — Ly —max{91,92}||x1 —x*, n=>max{n,n},

which means that

1 2” > |L1_L2|

X —X = - .~ > 07
|
1 + max{61,0;}

that is, ! # x2. Thus the set of bounded positive solutions of Eq. (1.11) in A(N, M) is un-
countable. This completes the proof. d

Theorem 2.2 Assume that there exist two positive constants M and N with M > N and
two nonnegative sequences {P(n)}neN"o and {Q(n)}neNno satisfying (2.2), (2.3) and

c(n)=-1, eventually; (2.13)
o0 o0

s—t+1)max P(s), } < +00. (2.14)
t=np |ﬂ | s=t

Then
(a) forany L € (N, M), there exist 0 € (0,1) and ny > no + t + |B| such that for each
%o = {x%0(1)}nezy € AN, M), the Mann iterative sequence

(XY meny = {xm(n)}(y,,m)ezﬁmo generated by the scheme:

Xm+1 (l’l)

(1 = o)) + L = 375 3500 25 (s =+ 1)
X [f (8, %m(s = b1(5)), X (s — D2(5)), . . ., X (5 — bi(s))) — d(s)]},
n>n,m>0,
_ (2.15)
(1 - am)xm(nl) + am{L - Z:fl Ztojnlnr ﬁ Zsojt(s —t+ 1)
X [f (8, %m(s = b1(5)), X (s — D2(5)), . . ., % (s — bi(s))) — d(s)]},

B<n<n,m>0

converges to a bounded positive solution x € A(N, M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {cty,} men, is an arbitrary sequence in [0, 1] satisfying (2.7);
(b) Egq. (1.11) possesses uncountably many bounded positive solutions in A(N, M).

Proof First of all we show (a). Let L € (N, M). It follows from (2.13), (2.14) and Lemma 1.1
that there exist 0 € (0,1) and n; > 1 + T + | 8] satisfying

c(n)=-1, n>ng; (2.16)

0= > (lm > (s—t+1)P(s); (217)
i=1 t=ny+it s=t

> Z Z(s—t+1 (Q(s) + |d(s)]) < min{M — L,L - N}. (2.18)

i=1 t=n1+i1: s=t
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Define a mapping 77 : A(N, M) — [§° by

L- Zifl Zto:nﬂ'f ﬁ Z;):t(s —t+ 1)

Tyx(n) = x [f(s,x(s = b1(s)), x(s = ba(5)), . .., x(s = bi(s))) — d(5)], (2.19)
n=n,

Tix(m), B<m<m

for each x = {x(n)},,ezﬁ € A(N,M). On account of (2.2), (2.3) and (2.17)~(2.19), we derive
that for each x = {x(n)}nezﬁ,y = {y(n)}nezﬁ € A(N,M) and n > m;

|TLx(n) - TLy(n)|

Z Z Z(s t+ D[ (s,x(s = b1(s)),x(s = ba(5)),...,x(s — bi(s)))

i=1 t= n+lr

—f(s5(s=b1(5)),5(s = ba(s)), ..., y(s — bk(s)))]

Mg

=22

(s—t+1)P(s) max{ ’x(s - b,»(s)) —y(s - b}-(s))’ :1<j< k}

i=1 t=n+it s=t
= Z Z |6Z(t)| Z s—t+ I)P(S)llx—yll =0lx-yl,
i=1 t=my+it s=t
and
|TLx(n) —L|
B> o Z(s £+1)
i=1 t=n+it
x [f(s,%(s = b1(s)), (s — ba(s)),...,x(s — bi(s))) — d(s)]
00 o0 1 00
< Z”Z B ;(s—t+ 1)
< [[f(5,%(5 = 1(9),x(5 = 5206)), .. 5(s = bics))) | + |d(6)]]

whichyield (2.12). Consequently 77 is a contraction mapping on the closed subset A(N, M)
and it has a unique fixed point x = {x(n)}nezﬂ € AN, M). It follows that for n > n; + T

x(m) =L - ZZ ()Z(s t+1)

i=1 t=n+it

x [f(s,%(s = b1(9)),x(s = ba(s)), ..., x(s — bils))) — d(s)],
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oo o0 1 oo
:L—Z > EZ(s—t+1)
X [f(s,x(s = b1(5)), x(s = b2(5)), ..., x(s — bi(s))) - d(s)],

which guarantee thatforn>mn; + ¢

A(x(n) —x(n— r))

= —L Z(s -n+ 1)[f(s,x(s - bl(s)),x(s - bz(s)), . ..,x(s - bk(s))) - d(s)],

a(n) £

A(a(n)A(x(n) - x(n - 1))

= [f(s.x(s - br(s)), (s — ba(s)), ..., x(s — buls))) — d(s)]
and

A (a(n)A(x(n) — x(n - 1)))

= —f (mx(n - by(n)),x(n — by(n)),...,x(n - b(n))) + d(n),

which together with (2.16) implies that x = {x(n)},qufj € A(N,M) is a bounded positive
solution of Eq. (1.11).

It follows from (2.12), (2.15), (2.17) and (2.19) that for any m > 0 and n > n;,

’xm+l (I’l) - x(n) ’

= (l—am)xm(n)+am:L—Z Z %Z(S—t+ 1)
i=1 t=n+it s=t

X [f(s,xm(s—bl(s)),xm(s—bz(s)),...,xm(s—bk(s))) —d(s)]} —x(n)

< (1 = ) |m(n) — x(n)| + ot | Trxm(n) — Tyx(n)|
< (1 —am)ll%m — x| + 008 |20, — x|l
= (1-(1-0)atm) % — x|l

< e 0|, — x|,

which gives (2.6). Thus (2.6) and (2.7) guarantee that lim,,_, o %, = x.

Next we show (b). Let Ly, L, € (N, M) and L; # L,. Analogously we deduce that for each
z € {1,2}, there exist constants 6, € (0,1) and #n, > ny + 7 + | 8| and a mapping 77, satis-
fying (2.17)~(2.19), where 0, L and #; are replaced by 0,, L, and n,, respectively, and the
contraction mapping 77, has a unique fixed point x* = {x*(n)},ez, € AN, M), which is a
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bounded positive solution of Eq. (1.11) in A(N, M), that is,

which together with (2.2) and (2.17) gives that
6! (n) — &% ()|
Ll—Lz—ZZ Z(s—t+1)
i=1 t= n+zt

[ 5 B9 5~ a5 1)
—f(8,%%(s = b1(5)),° (s = ba(5)), ..., 8% (s — b (s)))]

[}
> |Ly =Ly - Z Z |a(t|Z —t+1)
i=1 t=n+it s=t

X [f(s, (s—bl(s) (s—bz(s)),...,xl(s—bk(s)))
—f(s,x (s—bl(s)),x (s—bz(s)),...,xz(s—bk(s)))|

> |Ly - Ly| - Z Z ” ()| Z(s—t+1)P(s)

i=1 t=n+it
X max{|x1(s—bj(s)) xz(s— )} 1<j< k}
>|Ly - Ly| - Z Z |a(t)| Z(s—t+ 1)P(s)Hx1 —x* ”
i=1 t=n+it s=t

> Ly — Ly| —max{6?1,92}||x1 —*, n=>max{n,n},

which yields that

1 2“ -~ |L1_L2|

X —X = - .~ > 07
H
1 + max{64,0,}

that is, x* #x2. Hence Eq. (1.11) possesses uncountably many bounded positive solutions
in A(N, M). This completes the proof. d

Theorem 2.3 Assume that there exist positive constants M and N, nonnegative constants
¢y and ¢, and nonnegative sequences {P(n)},,eNnO and {Q(;fz)},qun0 satisfying (1—c1 —cy)M >
N, (2.2)~(2.4) and

—c1 <c(n) <cy, eventually. (2.20)

Then
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(a) forany L € (coM + N, (1 — ¢1)M), there exist 6 € (0,1) and n1 > ng + © + |B| such that
Sfor each xo = {xo(n)}necz, € AN, M), the Mann iterative sequence

{Xmtmeng = (%m (1)} nmyezy <y, generated by the scheme:

KXm+1 (}’1)

(1 —ap)xm(n) + ap{L — c(n)x(n—t)
+ Y e % Yoo s—t+1)
X [f (8, %m(s = b1(8)), % (s = b2(8)), - .., % (s = bi(s))) — ()1},
n=n,m=0,

_ (2.21)
(1 = etp)xim(my) + L = c(n1)x(ny — 7)

+ Ztojnl ﬁ Zs:t(s_ L+ 1)
X [f (8, %m (s — b1(8)), X (s — D2(5)), - . . X (s — i (5))) — d(s)]},

B<n<n,m=>0

converges to a bounded positive solution x € A(N, M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {t;,}men, is an arbitrary sequence in [0, 1] satisfying (2.7);
(b) Egq. (1.11) possesses uncountably many bounded positive solutions in A(N, M).

Proof Let L € (coM + N, (1 — c1)M). It follows from (2.4) that there exist 6 € (0,1) and

ny > np + T + | B] satisfying

—c1<c(n) <cy n=ny (2.22)
O=ci+cy+ ;} ﬁ SX:;(S —t+1)P(s); (2.23)
> Iu(lt)l > (s—t+1)(Qls) + |d(s)]) < min{M(1 - ¢1) - L,L — c;M - N}. (2.24)

Define a mapping 77 : A(N, M) — [5° by

L—cnmax(n—t)+) % Yoo (s—t+1)

Tyx(n) = X [f(s,%(s = b1(s)), (s — ba(5)), ..., %(s — br(s))) — d(s)], (2.25)
n Z nly
Tix(ny), B<n<m

for x = {x(n)},,ezﬁ € A(N,M). Using (2.2), (2.3) and (2.22)~(2.25), we derive that for each
x = {x(m)}nezy> ¥y = {y(M)}nezy, € AN, M) and n > m

| Tpx(n) — Try(n)|

= |—c(n)(x(n — 1) - y(n - 7))

+ Z % Z(S -+ 1)[f(5,x(5 - bl(s))’x(s - b2(s))' e ,x(S B bk(s)))
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—f(s,y(s - bl(s)),y(s - bz(s)), . ..,y(s - bk(s)))]‘
< ()| [x(n - )~ y(n — 7)|

[ 1 00
+ ;: @l ;(s— t + 1)P(s) max{|x(s — b(s)) — y(s — b;(s))| : 1 <j <k}

< |:Cl+62+Zﬁ2(~3_t+I)P(S)j|”x_y”

=0llx-yl,
Tyx(n) = L — c(n)x(n - 7) + i % i:(s —t+1)
x [f(5,2(s = b1(9)), (s = ba(s)), ..., x(s = bi(s))) — d(s)]
<L+cM+ i ﬁ Si:(s— t+1)(Q(s) + |d(s)))

<L+cM+min{M(1-c1)-L,L-c;M~-NJ}

<M

and

M8

Tix(n) = L—c(n +Z£

t=n s=

x [ (5:2(s = 1(9), 2(s = 2(6)), .., x(s - bi(s))) — d(s)]

>L—coM— Z |a(1t)| Z(s —t+ 1)(Q(S) + \d(s)|)

(s—t+1)

~

> L-cM-min{M(1-¢;) - L,L—c;M-N}

>N,

which imply (2.12). Hence T} is a contraction mapping on the closed subset A(N, M) and
it has a unique fixed point x = {x(n)},ez, € AN, M). That is,

x(n) :L—c(n)x(n—r)+§;$s§;(s—t+ 1)
x [f(s,2(s = b1(5)), (s = b2(5)), ..., %(s = b (s))) = d(s)], n=>n,
which gives that forn > n; + 7
A(x(n) + clm)x(n - 7))

= a( )Z(s n+1) s, bl(s)) ( bz(s)),...,x(s—bk(s)))—d(s)],
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which implies that for n > n; + ©
A(a(n)A(x(n) + c(n)x(n — 1')))

= [f(sx(s = br(9)), (s = ba(s)), ..., x(s = buls))) — d(s)]

and

Az(a(n)A(x(n) +c(n)x(n — r)))
= ~f (x(0t = 210), (01 = o). (o1 = b)) + ),

which means that x = {x(n)},,ezﬁ is a bounded positive solution of Eq. (1.11) in A(N, M).
By means of (2.12), (2.21), (2.23) and (2.25), we conclude that for any m > 0 and n > m;

|%me1(n) — x(n)|

(1 = ) (1) + !L —cmx(n—T)+ Y % > (s—t+1)

X [f(s,xm (s - bl(s)),xm (s - bz(s)), e (s - bk(s))) - d(s)] } —x(n)

< (1= o) |2 (1) = (1) | + Q| Tr6 (1) — Tr(m) |
< (L= ll%m — x| + 0t || — x|
= (1= (1= 0)am)ll%m — x|

< e 0m | x,, — x|,

which implies (2.6). Thus (2.6) and (2.7) ensure that lim,,,_, oo X, = X.

LetL;,Ly € (c;M+N,(1—-c1)M) and L; # L,. Homoplastically we conclude that for each
z € {1,2}, there exist constants 6, € (0,1) and #n, > ny + 7 + | 8| and a mapping 17, satis-
fying (2.22)~(2.25), where 0, L and #; are replaced by 0,, L, and n,, respectively, and the
contraction mapping 77, has a unique fixed point x* = {x*(11)},ez,, which is a bounded

positive solution of Eq. (1.11) in A(N, M), that is,

x*(n) = L, —c(n)x*(n—1) + Z % Z(s— t+1)

X [f(s,xz(s - bl(s)),xz(s - bz(s)), ... ,xz(s - bk(s))) - d(s)], n>n,,
which together with (2.2), (2.22) and (2.23) yield that
|x1(n) - xz(n)|

=|L;—Ly— c(n)(xl(n 1) —x*(n— ‘L'))

oo

+ ﬁ D=+ D[f (5" (s = b1(), 2 (s = ba(s)), o' (5~ bids)))

t=n
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—f(s,xz(s—bl(s)),xZ(s— bz(s)),...,xz(s—bk(s)))]
> Ly = Lo - |e(m)| ¢ 01— 7) — #3(n - 7)|
_ Z |a(1t)| Z(s —t+ 1)[]‘(s,x1 (s— lol(s)),x1 (s— bz(s)),...,xl(s - bk(s)))

—f(s,x2 (s - l?l(s)),ac2 (s - bz(S)), ... ,xz(s — bk(s))) |

> |Ly — Ly| = (c1 + ¢2) &' =&

2 |a2t>| (s =+ D) max{[x' (s = bs)) ~#*(s - bi(s))| : 1 =] <k}

2|L1—L2|—|:c1+cz+ 3 m(lt)'Z(s—”l)P(S)}Hxl—xz”

t=max{ny,ny} s=t

> |L1 - Ly| — max {6y, 6o} || x" - &

,  n>max{n, n},

which means that

s -2 2 o
1 + max{64,0,}

)

that is, x! # 2. This completes the proof. O

Theorem 2.4 Assume that there exist four constants M, N, c; and ¢, and two nonnegative
sequences {P(n)},,ENn0 and {Q(l’l)}neN,,O satisfying M > N, ca(c? — ca)M > c1(c3 — c1)N > 0,
(2.2)~(2.4) and

l<c <c(n) <cy, eventually. (2.26)

Then
(@) foranyL € (%M + N, %N + 1 M), there exist 0 € (0,1) and ny > ng + t + |B| such
that for each xo = {xo(n)}nez, € AN, M), the Mann iterative sequence
{Xm}meng = {xm(n)}(n,m)eZﬂXNO generated by the scheme:
(1 — o) (m) + am{ﬁ - ’Ccé;’ig
+ o) tonee 2l st —E+ 1)
X [f (s, (s — b1(8)), Xpa(s — D2(8)), - . ., % (s — D (s)))
—d(s)1},
n=mn;,m=0,
Xmi1(n) = (2.27)
(1 — )% (1) + am{m - fEZ;:;;
e tomer a et £ +1)
X [f (8, %m(s — b1(S)), X (s — D2(8)), . . ., X (s — i (s)))
—d(s)]},

B<n<n,m=>0
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converges to a bounded positive solution x € A(N, M) of Eq. (1.11) and satisfies the
error estimate (2.6), where {ct;,} men, is an arbitrary sequence in [0, 1] satisfying (2.7);

(b) Egq. (1.11) possesses uncountably many bounded positive solutions in A(N, M).

Proof Let L € (i—fM + N, E—;N + ¢1M). Note that (2.4) and (2.26) imply that there exist
0 €(0,1) and 11 > ng + 7 + | B] satisfying

ca<cn<c, n=>ny; (2.28)
I 1 1 &
f=—+— (s —t+1)P(s); (2.29)
a a ;} la(t)] ;
o0 o0
Z Zs—t+1) s)+|d(s)|)
t=n1 |ﬂ | s=t
aN al
<miny¢ceM+ ——-L, — -M-cNy. (2.30)
Cy Cy
Define a mapping T} : A(N, M) — [§° by
x(n+7)
c(nLJrr) = cnr) + c(nlJrr) Zf:n*—‘f ﬁ Z;}:t(s —i+ 1)
X [f(s,%(s = b1(5)), x(s — by(s)), ..., x(s — bi(s))) — d(s)],
Tyx(n) = [f (s,x(s = b1(5)), x(s = ba(s)) (s = bi(s))) — d(s)] (2.31)

n=n,

Tix(m), B=<m<m

for each x = {x(n)},ez, € AN, M). It follows from (2.2), (2.3) and (2.28)~(2.31) that for
each x = {x(n)}nezy, ¥ = {y(M)}nezy, € AN, M) and n > my

| Ty x(n) — Try(n)|

_x(n +7)—y(m+1)

c(n+1)

C(}Hr) Z 0 Z(s t+ D[f (s,2(s = 51(5)),x(s = ba(8)), ..., x(s — bi(s)))

—f(s,y(s - bl(s)),y(s - bz(s)), . ..,y(s - bk(s)))]

_ [x(n+ 1) —y(n+7)|
cn+1)

I &1 &
* T tz T ;(s —t+1)P(s)

X max{|x(s —bj(s)) - y(s - bj(S))| 11<j< k}

1 13 1 &
<—lx-yll+— (s—t+1)P(s)llx -yl
o e t:Z,ll la(t)] ; g

=0llx-yl,
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oo

L x(n+ 1) 1

1 (o0}
Tyae(n) = c(n+1) B cm+1) * cn+1) t;f %;(S_“— b

X [f(s,x(s - bl(s)),x(s - bz(s)), ... ,x(s - bk(s))) - d(s)]

C2

LN Zm(t)l Z(s t+1)(Qes) + |d(s)])

<———+—minfjctM+—-L,— -M-c1N

L N 1 ClN C1L
cqG ¢ C 2

<M

and

B L x(n+1) 1 g, P
Tyx(n) = cn+1) - c(n+1) " c(n+1) t;f % ;(s— t+1)
x [f(s,(s = b1(s)),x(s = b2(5)),...,x(s — bil(s))) — d(s)]

Z£—A—/I—lz Z(s t+1)(Q(s) + |d(s)])

© a la(£)]
L M 1 ClN ClL

> ——— - — min{ccM + — —-L,— -M - 1N
¢ ¢ (%) (%)

> N,

which yield (2.12), that is, 7} is a contraction mapping on the closed subset A(N, M) and
it has a unique fixed point x = {x(n)},cz, € A(N, M), which is a bounded positive solution
of Eq. (1.11).

It follows from (2.12), (2.27), (2.29) and (2.31) that for any m > 0 and n > #n;,

|%me1(n) — x(n) |

L x(n+r
- (I_GM)xM(n)+am!c(n+r) c(n+1) C(Vl+‘L’) Z a(t) Z(S t+1)

t=n+t1

X [f(s,xm (s - bl(s)),xm (s - bz(s)), s X (s - bk(s))) - d(s)] } —x(n)

< (1 — ) |m(n) — x(n)| + ot | Trxm(n) — Tyx(n)|
=< (1 _am)”xm — x| + a0 %y, — x|l
= (1= (1= 0)cty) 6 —

< e 0| x,, — x|,

which gives (2.6). Thus (2.6) and (2.7) guarantee that limy,_, o %, = %.
Let Ly,L, € (C—ZM + N, C—lN + M) and L; # L. Similarly we deduce that for each
z € {1,2}, there exist constants 0, € (0,1) and n, > ny + v + |B| and a mapping 17, sat-

isfying (2.28)~(2.31), where 6, L and n; are replaced by 6,, L, and n,, respectively, and the
contraction mapping 7, has a unique fixed point x* = {x*(1)},cz,, which is a bounded
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positive solution of Eq. (1.11) in A(N, M), that is,

L, x*(n + ‘L')

#(n) = c(m+ r) cn+1) c(n +7T) Z a(t) Z(s t+1)

t=n+t

X [f(s,xz(s = b1(5)), 8% (s = b3(s)), ..., %" (s — bk(s))) - d(s)], n>ny,
which together with (2.2), (2.28) and (2.29) yields that

’xl(n) — xz(n)’

| Li-Ly x(n-1)-x*(n-1)

- C(Vl+l’)_ c(n+1)

1 Gl
+ D) t;,;r%;(s_t-F 1)
X [f(s,x1 (s—lal(s)),x1 (s—lag(s)),...,x1 (s—bk(s)))
—f(s,xQ(s—bl(s)),xZ(s—bz(s)),...,xz(s—bk(s)))]

ILi =Ly |x'(m+ 1) —x*(n+7)|

~ c(n+1) cn+1)

I 1 &
_7C(n+‘[);:m;(s_t+l)

X [f(s, (S—bl(S) (s—bz(s)),...,xl(s—bk(s)))
—f (8,27 (s = b1(5)), #* (s = b2(5)), ..., %% (s = b (9)))|
o Mi=La] lla — 2

2 (4]

i Z |a(1t)| Z(s —t+1)P(s) max{ |x1 (s - bj(s)) —x? (s - bj(s))| 1< < k}

ILi—Lo] ' =l 1
> - - — (s=t+1)P(s)||x —x
€2 c & l:m‘;’; (t)| Z =]
Li-L
> bl max{6y,60} ' —*||, 1> max{ny,n},

2
which means that

[t -] = L,
¢ (1 + max{61,6,})

that is, x! # 2. This completes the proof. O

Theorem 2.5 Assume that there exist four constants M, N, ¢, and ¢, and two nonnegative
sequences {P(n)},,eNn0 and {Q(n)},,eNnO satisfying (1 + c3)M < (1 + ¢1)N <0, (2.2)~(2.4) and

1 <c(n) <cy<-1, eventually. (2.32)

Page 18 of 24
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Then
(a) forany L € (1 + c)M, (1 + c1)N) there exist 6 € (0,1) and ny > ng + t© + |B| such that
Jor each xo = {xo(n)}nez, € AN, M), the Mann iterative sequence
(XY meny = {xm(n)}(n,m)ezﬂxNo generated by (2.27) converges to a bounded positive
solution x € A(N, M) of Eq. (1.11) and has the error estimate (2.6), where {0t} men, is
an arbitrary sequence in [0, 1] satisfying (2.7);
(b) Egq.(1.11) possesses uncountable bounded positive solutions.

Proof LetL € ((1+¢2)M, (1+c¢1)N). It follows from (2.4) and (2.32) that there exist 6 € (0,1)

and m; > ny + T + | B satisfying

aa=<cn)<c<-1, n=ny (2.33)
1 [o¢] 1 [e¢]
- (s—t+1)P(s); (2.34)
& 2 a2

oo 1 o0
; m SZ;(S— t+ 1)(Q(S) + |d(s)|)

(2.35)

1 N L
Smm{L_(mz)M,Mﬂ_}.

C1 C1
Let the mapping T : A(N, M) — lgo be defined by (2.31). It follows from (2.2), (2.3), (2.31)
and (2.33)~(2.35) that for x = {x(n)}nezﬂ,y = {y(n)},,ezﬁ € A(N,M) and n > n;

’TLx(n) - TLy(n)|

x(n+7)—yn+1)

c(n+1)
+ c(n1+ - t;, it Zzt: s—t+ D[f(s,x(s = b1(s)),x(s — b2(5)),...,x(s — bi(s)))

—f(s:5(s = b1(9)), ¥(s = B2(5)), ..., y(s = bi(9))) ]

le—yll 1 o 1 <
<- G ZHW;(S—IHI)P(S)

2 t=n

x max{|x(s — bj(s)) - y(s — b;(s))| : 1 <j <k}

Ix=yll 1o 1 o
=- -— (s=t+1DP(s)llx - yll
%) 2 ;‘: la(?)| ;

=0lx -yl
L x(n+1) 1 1 &
Tyax(n) = cn+1) B cn+1) * c(n+1) t;f %;(S_“— 1

X [f(s,x(s —b; (s)),x(s — bg(s)), ... ,x(s - bk(s))) - d(s)]
<= _Z_- Zl ol Z(s—t+ 1)(Q(s) + |d(s)])
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L M 1+c)N ¢l
LMt mm{L_(“Q,M,M_Cz_}
C € O 4] C1

<M

and

Tix(n) = L _x(n+r) + ! Z iz:(s—t+1)

cn+t) cm+t) cn+1)

L N 1 1 &

— 4 — (s—t+1)(Q(s) + |d(s)

< t_znl la(t)| ; ( | ‘)

L N 1 1 N L
> ———+—min{L—(1+c2)M,M—Cz—}

c1T €1 € C1 C1

>N,

which implies (2.12). The rest of the proofis similar to that of Theorem 2.4 and is omitted.
This completes the proof. O

3 Examples
In this section, we construct five examples to illustrate our results.

Example 3.1 Consider the third order nonlinear neutral delay difference equation

(=1)"[x*(1?) + x*(n® - 2n + 1)]

(n+1)3 +nIn®n + x2(n? - n)

A2((n2 —nd Z)A(x(n) +x(n— r))) +

21— (n+3)sin(5n* —3n +1)

’ n>17 3»1
nt-n?+1 - (3.1)

where v € Nis fixed. Let ng =1, k=3, M =2,N =1, 8 =min{l — 7,0},

a(n) =n? - "+ 2, c(n) =1, bi(n)=n-n?

by(n) =3n-n®-1, bs(n) =2n-n?,

_2n- (n+3)sin(5n* —3n + 1) (=1)"(u? + u5)

d(n ) n, Uy, U, Uz) = )
) nt—n?+1 S 01, 2, 43) (n+13 +nln’n + u
P(n) 6M° + 4M> + 2M(1 + 2M?)[(n + 1)% + n1n? ]
n) = ,
(1 +1)3 + nln®n + N2)2
M* + M?
Q(n) (n, uy, ug, u3) € N,y x R3,

B (n+1)3+nln’n+ N2’

It is clear that (2.1)~(2.4) hold. It follows from Theorem 2.1 that Eq. (3.1) possesses un-
countably many bounded positive solutions in A(N,M) and for each L € (N, M), there
exist @ € (0,1) and n; > ny + T + |B] such that for each xy € A(N, M), the Mann iterative
sequence {x,,},,>0 generated by (2.5) and (2.7) converges to a bounded positive solution
x € A(N, M) of Eq. (3.1) and has the error estimate (2.6).
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Example 3.2 Consider the third order nonlinear neutral delay difference equation

(_1)n+1x3( n(n2+1) )

nt + mBxt(n - 3) + Vnd + 1x%(n? - 2)

A (7 + nIn® n+ 1) A(x(n) — x(n - 1)) +

Bt - = (-1)"'n+2

n —n®+nd+1

n>1, (3.2)

’

where 7 € Nis fixed. Let ng =1, k=3, M = %, N = %, B =min{l — t,-2},
—n(n-1

ain)=n®+nln’n+1, c(n) = -1, bi(n) = %,
by(n) =3, bs(n)=-n*+n+2,

3nt—n? - (1) n+2 (1)1
d n)= ) n,uy, Uz, U3) = L )

(n) n —-nt+nd+l Sl s, 1z, 1) nt + m3ud + b + 113

M?*(3n* + 7TM*n® + 5M>N/ 15 + 1)

P(n) =
(n* + B3N* + V/n° + 1N?)?
M3

Q(Vl) = (nr Uy, Uy, I/lg) S Nn() X RB'

)
n* + m3N* + v/n® + 1N2

Itis easy to verify that (2.2), (2.3), (2.13) and (2.14) are fulfilled. It follows from Theorem 2.2
that Eq. (3.2) possesses uncountably many bounded positive solutions in A(N, M) and for
each L € (N, M), there exist @ € (0,1) and 11 > ng + t + | 8] such that for each xy € A(N, M),
the Mann iterative sequence {x,,},,>0 generated by (2.7) and (2.15) converges to a bounded
positive solution x € A(N, M) of Eq. (3.2) and has the error estimate (2.6).

Example 3.3 Consider the third order nonlinear neutral delay difference equation

A2<<n—3 —nlnn+ n2>A<x(n) + #x(n—t))) + w

Inn 4/n2+n+n }’l3+1
3
21 3)x(n - 8)x3(n° — 1 231 2
(n nn+3)x(n - 8)x°(n ): n nn+ Cnso, (3.3)
n2+n-1)> An5 -3m® +n2 +5n+1

where 7 € N, is fixed. Let ng =2, k=3, M =5,N=2,c1 =¢; = i, B =min{2 — t,-6},

3
a(n):n——nlnn+n2, bi(n)=-3n*+n+2,
Inn

by(n) =8, bsy(n)=-n" +n+1,

(-1)"n n?-3Inn+2
(n) d(n)
cn) = ————, n) = ,
34/n2+n+n 41’15—3}’13+I’12+5}’l+1
Finunu M):\/ﬁu% (n%—lnn+3)u2u§
B I m2+n-12

OMJn  AMB(n? —Inn+3)

P(n) = +
) m+1 (n?+n-1)>2

’

M2 M*(n? —Inn+3)
Qm) = — + 2 2
m+1 (2 +n-1)

3
, (mu,ug,u3) € Ny x R,
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Clearly (2.2)~(2.4) and (2.20) hold. It follows from Theorem 2.3 that Eq. (3.3) possesses
uncountably many bounded positive solutions in A(N, M) and for every L € (c;M + N,
(1 = ¢c3)M), there exist 6 € (0,1) and n; > ny + T + | 8] such that for each xy € A(N, M), the
Mann iterative sequence {x,,}>0 generated by (2.7) and (2.21) converges to a bounded
positive solution x € A(N, M) of Eq. (3.3) and has the error estimate (2.6).

Example 3.4 Consider the third order nonlinear neutral delay difference equation

A2 (=11 2n° - 713 + 11) N 31 +2n + 4 ( ) x2(n® + n)
x(n) + ————a(n—1 —_—
In%(n +2) + 6n n+n+1 m+2n+1
- (-1)")  (-1)"(n—/n+3) o1 (3.4)
= , n>1, .
n21n®(n + 1) 2n* +3n2 -1 -

where t € Nisfixed. Letng=1,k=2, M = %,N: %,cl:2,c2:B,ﬁ:min{l—t,l}:l—r,

(-1)"'@2n° - 71 +11) 3n? +2n + 4
a(n) = 5 , cn)=—-—"-—,
In“(n + 2) + 61 n+n+1
bi(n) = -n?, by(n) = (-1)",
(=1)"(n—/n+3) uj uh
d S ) ) = 5
) 2t +3m2 -1 S, u2) mw+2n+1 2In’(n+1)
2M 3M?
P(n) = + 5 ,
m+2n+1 m2ln*(m+1)
M? M3
Q(”) = (n,u1,uy) € Nno x R,

+ ’
mB+2n+1l  n2ln’(n+1)

Obviously (2.2)~(2.4) and (2.26) hold. It follows from Theorem 2.4 that Eq. (3.4) pos-
sesses uncountably many bounded positive solutions in A(N, M) and for any L € (%M +
N, %N+ c1M), there exist 0 € (0,1) and n; > ng + 7 + | 8| such that for each xg € A(N, M),
the Mann iterative sequence {x,,},,>0 generated by (2.7) and (2.27) converges to a bounded
positive solution x € A(N, M) of Eq. (3.4) and has the error estimate (2.6).

Example 3.5 Consider the third order nonlinear neutral delay difference equation

A? (nz((—l)”n -3)A (x(n) - %x(ﬂ - r)))

(—1)"96(@)96(1’12) = (=1)"'nin(1+ /21 +1) - 35
n3In?p + p? 4 2 (el - n® —2n3 + 3 o =0 (35)

where T € Nis fixed. Let ng =1, k=3, M =10, N =3, ¢; = -3, ¢; = -2, 8 = min{1 - 7,0},

_ 2 n __5n+(—1)”n
a(n) = n*((-1)"n - 3), c(n) = I
b =" b= e,
ba(r) —n(n®+3n-1) ) 12— (=1)"1nin(l + V21 + 1)
3 = - a7 = ’

3 n® —2n3 +3
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(=1)"u1uy
f(n,u1,u9,u3) = 2

mnn+n?+u
4AM3 + 2M (P 1n% 1 + n?)
(n31n® 1 + n2 + N2)2
M2

= )
m31n®n + n? + N2

P(n) =

’

(I’l, Uy, Uy, Ltg) € Nno X RS,

Q(n)

It is easy to verify that (2.2)~(2.4) and (2.32) are fulfilled. It follows from Theorem 2.5 that
Eq. (3.5) possesses uncountably many bounded positive solutions in A(N, M) and for each
L e ((1+c)M,(1+c1)N), there exist 0 € (0,1) and 11 > ng + T + |B]| such that for each x( €
A(N, M), the Mann iterative sequence {x,,},>0 generated by (2.7) and (2.27) converges to
a bounded positive solution x € A(N, M) of Eq. (3.5) and has the error estimate (2.6).
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