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Abstract
In this paper, we consider a spectrally negative Markov additive risk process. Using the
theory of Jordan chain, a compact formula of Parisian ruin probability is given. The
formula depends only on the scale matrix of spectrally negative Markov additive risk
processes and the transition rate matrix �q.
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1 Introduction
During the last few years, continuous-time spectrally negative Markov additive processes
(SN-MAPs) has attracted a lot of attention. The SN-MAPs are a generalization of the Lévy
processes with no positive jumps which can be seen a spectrally negative Lévy processes
with Markov environment. Kyprianou and Palmowski [1] proved the existence of the scale
matrix for SN-MAPs, which counterpart to the scale function of Lévy processes. Ivanovs
and Palmowski [2] discussed the exist problems for spectrally negative SN-MAPs, and
gave some identities for two-sided reflection SN-MAPs. These results are fundament of
this paper.

Now, let us introduce some notations which can be found in Kyprianou and Palmowski
[1] and Albrecher and Ivanovs [3]. Let (X(t), J(t)) be a spectrally negative Markov additive
process on a filtered probability space (�,F , F,P). The process The filtration F = {Ft :
t ≥ 0} is right-continuous and augmented. For all t ≥ 0, the process (X(t), J(t)) is adapted
to the filtration Ft . In this paper, X(t) denotes a surplus of insurance company, which is
a real-valued right-continuous process with left limits. And J(t) represents the stochastic
environment, which is an irreducible Markov chain with finite state space E = {1, . . . , n},
the intensity matrix (transition rate matrix) Q = (qij)i,j∈E and the stationary distribution π .

For the SN-MAPs, we have the following property: Given {J(t) = i}, the process

(
X(t + s) – X(t), J(t + s)

)

is independent of Ft and has the same law as (X(s) – X(0), J(s)) conditionally on {J(0) = i}
for all s, t ≥ 0 and i ∈ E. When J(t) = i, X(t) evolves as some Lévy process Xi(t), which has
the Laplace exponent ψi(α), that is,

EeαXi(t) = eψi(α)t , α ≥ 0.
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In addition, X(t) has a jump distributed as Uij(Uii ≡ 0), while J(t) switches from i to j, for
all i, j ∈ E. Let G̃ij be the moment generation function of Uij.

Letting G̃ = (G̃ij)i,j=1,2,...,n and Q ◦ G̃ = (qijG̃ij)i,j=1,2,...,n, we can define the matrix exponent
of the SN-MAP X(t):

F(α) = Q ◦ G̃ + diag
(
ψ1(α), . . . ,ψn(α)

)
, for all α ≥ 0.

Furthermore, it is well known that

E
[
eαX(t); J(t)

]
= eF(α)t .

Let τ±
x be the first time of X(t) over level ±x, that is,

τ±
x = inf

{
t ≥ 0,±X(t) > x

}
.

Since X(t) has no positive jumps, X(τ+
x ) = x. In this article, we will use the transition rate

matrix � of the Markov chain {J(τ+
x ), x ≥ 0}, which is defined as

P
[
J
(
τ+

x
)

= j|J(0) = i
]

=
(
e�x)

ij∈E .

Let us make some review of the Remark 2.1 of Ivanovs and Palmowski [2].
Suppose J(t) will be absorbed at t = eq, where eq is an exponential random variable with

parameter q > 0. By doing that, we get the Markov chain with transition rate matrix Q – qI,
which leads to a SN-MAP with the matrix exponent F(α) – qI. Then we have

E
[
e–qτ+

x ; J
(
τ+

x
)]

= P
[
τ+

x < eq; J
(
τ+

x
)]

= e�qx. (1)

The matrix �q is closely related to the matrix exponent Fq(α) = F(α) – qI, where I is the
identity matrix. When n = 1, it is easy to see that the matrix –�q will reduce to the right
inverse �(q) of the Lévy process, where �(q) = sup{λ : F(λ) = q}. In particular, the non-
zero eigenvalues of �q coincide with the zeros of det(Fq(α)) in C

Re>0 = {z ∈ C : Re(z) > 0};
see Theorem 1 of D’Aauria et al. [4].

More recently, the concept of Parisian ruin is considered by many authors. The Parisian
implementation delay is firstly introduced in insurance risk model by Dassios and Wu [5,
6]. In Dassios and Wu [5, 6], the Laplace transform of Parisian ruin time of classical Pois-
son risk process is discussed. Czarna and Palmowski [7] studied the Laplace transform
of Parisian ruin time for spectrally negative Lévy risk process. Landriault et al. [8] dis-
cussed the Parisian ruin problem in which the delay followed a mixed Erlang distribution.
Czarna [9] deals with a ruin problem of spectrally negative Lévy risk process, which has
both Parisian delay and a lower ultimate bankrupt barrier. The Gerber–Shiu functionals
at Parisian ruin is discussed by Baurdoux et al. [10]. Using the scale function, Loeffen et al.
[11] gave a compact formula for the Parisian ruin probability of a spectrally negative Lévy
risk process. In this paper, we want to improve on the result of Loeffen et al. [11] by making
the model more general. The surplus process is extended from a spectrally negative Lévy
risk process to a spectrally negative Markov additive risk process.
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Now, we introduce some notations for Parisian delay. The quantity κr (r > 0), which is
called the Parisian ruin time, is defined as

κr = inf{t > r : t – gt > r}, where gt = sup{0 ≤ s ≤ t : Xs ≥ 0}.

In other words, when the first time an excursion below zero lasts longer than the fixed
implementation delay r, we say the company Parisian ruin. The probability Px(κr < ∞)
can be called Parisian ruin probability. In this paper, we are interested in Parisian ruin
probability. For x ∈R, defined the n × n matrix-valued function R(x) as:

R(x) := Px
[
κr = ∞; J

(
τ–

0
)]

.

Since the Parisian ruin probability Px[κr < ∞] can be expressed in terms of R(x), it suffices
to study the matrix-valued function, R(x).

On the other hand, the scale matrices play the important role in this paper. Therefore
we introduce them as follows. The scale matrix W (x) is characterized by

∫ ∞

0
e–αxW (x) dx = F–1(α),

where α is sufficiently large. Following Ivanovs and Palmowski [2], we know, when x > 0,
W (x) is non-singular and

W (x) = e–�xL(x).

The matrix L(x) is a positive matrix increasing (as x → ∞) to L, which is a matrix of ex-
pected occupation times at zero. Let W (0) = limx→0 W (x), and then W (0) = L(0) = (Lij(0))
with

Lij(0) =

⎧
⎨

⎩

1
di

, if i = j and Xi is of bounded variation,

0, otherwise,

for all i, j ∈ E and di > 0 is the drift coefficient of Xi, i ∈ E.
The second scale matrix Z(α, x) is defined as:

Z(α, x) = eαx
(
I –

∫ x

0
e–αyW (y) dyF(α)

)
for α, x ≥ 0. (2)

Note that Z(α, x) is continuous in x and Z(α, 0) = I. It is well known that Z(α, x) is analytic
in α ∈C

Re>0. From Theorem 1 and Corollary 3 of Ivanovs and Palmowski [2], we obtain

Px
[
τ+

y < τ–
0 ; J

(
τ+

y
)]

= W (x)W (y)–1, (3)

Ex
[
eαX(τ–

0 ); τ–
0 < τ+

y , J
(
τ–

0
)]

= Z(α, x) – W (x)W (y)–1Z(α, y), (4)

for all y ≥ x ≥ 0, and α ≥ 0.
All the above identities play an important role in the study of Parisian ruin. Further,

we assume that limt→∞ X(t)
t = μ > 0 (equivalently, E[X1] > 0), otherwise Parisian ruin will

happen with probability one.
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In Sect. 2, we give our result which is the compact formula for Parisian ruin probability.
Then we introduce the Jordan chain of �q and using the Jordan chain we prove the result
in Sect. 3.

Finally, we introduce some notation. Denote by Px,i the law of (X, J) given {X(0) =
x, J(0) = i}, where x ∈ R, i ∈ E. Write Ex[Y ; J(τ )] for a matrix with the (i, j)th element
E[Y 1{J(τ )=j}|J(0) = i, X(0) = x], where Y is an arbitrary random variable, τ is a (random)
time, and 1A denotes the indicator function of an event A. We also write Px[Y ; J(τ )] for a
matrix with the (i, j)th element Px,i[A, J(τ ) = j]. If x = 0, then we simply drop the subscript.
Let 1 denote the column vector of ones.

2 The main results
In this section, we first give an explicit expression for R(x) and also give a compact formula
for Parisian ruin probability.

Theorem 1 For x ∈R and r > 0, we have

R(x) = Px
[
κr = ∞; J

(
τ–

0
)]

= D(x) + H(x, r)
[
I – H(0, r)

]–1W (0)D, (5)

where

D(x) = Px
[
τ–

0 = ∞; J
(
τ–

0
)]

=
∫ x

0
W (z) dzQ + W (x)D,

D = lim
a↑∞ W (a)–1

[
I –

∫ a

0
W (z) dzQ

]
,

and the Laplace transform (with respect to r) of H(x, r) is given by
∫ ∞

0
e–qrH(x, r) dr =

1
q
[
η(q, x) – W (x)η(q)

]
,

η(q, x) = e–�qx – q
∫ x

0
W (z)e–�q(x–z) dz, (6)

η(q) = lim
y→∞ W –1(y)η(q, y).

Following Theorem 1, we obtain the following.

Corollary 1 For x ∈R and r > 0, if Q1 = 0, then

Px[κr = ∞] =
[
D(x) + H(x, r)

[
I – H(0, r)

]–1W (0)D
]
1 (7)

and

Px[κr < ∞] = π –
[
D(x) + H(x, r)

[
I – H(0, r)

]–1W (0)D
]
1, (8)

where π is the stationary distribution of Markov chain J(t).

Remark If n = 1, that is, the state space of Markov chain only has one state, the MAP
(X(t), J(t)) reduces to a spectrally negative Lévy process. In this special case, we can get
D = 0, D(x) = W (x)EX1, �q = �(q), η(q) = 0. Equation (8) is just Eq. (2) of Loeffen et al.
[11].
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3 Proof of Theorem 1
The proof of Theorem 1 relies on a spectral representation of the matrix �q (see (1)).
From Albrecher and Ivanovs [3], we obtain some results for the matrix –�q. Let γ be
an eigenvalue with Re(γ ) > 0 of matrix –�q and ν1, . . . ,νj be a Jordan chain of –�q, i.e.,
–�qν1 = γ ν1 and –�qνi = γ νi + νi–1 for i = 2, 3, . . . , j. By the theory of Jordan chains, we
have

e–�qxν1 = eγ xν1, (9)

e–�qxνj =
j–1∑

i=0

xi

i!
e–γ xνj–i, j ≥ 2, (10)

for all x ∈R. Moreover, this Jordan chain turns out to be a generalized Jordan chain of an
analytic matrix function Fq(α), Re(α) > 0, corresponding to the eigenvalue γ , i.e.,

F(γ )ν1 = qIν1, (11)

j–1∑

i=0

1
i!

di

dγ i Fq(γ )νj–i =
j–1∑

i=0

1
i!

di

dγ i F(γ )νj–i – qIνj = 0, j ≥ 2. (12)

Also, when X has paths of unbounded variation, the proof of exist problems often relies on
an approximation idea, which has already appeared in various papers; see Albrecher and
Ivanovs [3], Czarna [9] and Baurdoux et al. [10]. For this reason we consider a stopping
time κε

r which is the first time that an excursion below zero, starting when X gets below
level zero, ending before X gets back up to ε (ε > 0) (rather than zero) and lasting longer
than the fixed implementation delay r. More precisely, we define κε

r as

κε
r = inf

{
t > r, t – gε

t > r, Xt–r < 0
}

, where gε
t = sup{0 ≤ s ≤ t : Xs ≥ ε}.

It is easily to see that, for 0 < ε′ < ε,

{
κε′

r = ∞} ⊆ {
κε

r = ∞}
and

⋂

ε>0

{
κε

r = ∞}
= {κr = ∞},

therefore

P(κr = ∞) = lim
ε↓0

P
(
κε

r = ∞)
.

Let

Rε(x) := Px
[
κε

r = ∞; J
(
τ–

0
)]

,

then

R(x) = lim
ε↓0

Rε(x).

Since the process X has right-continuous paths, τ+
0 = limε↓0 τ+

ε .
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For x < 0, due to the strong Markov property and spectral negativity, we have

Rε(x) = Ex
[
I{τ+

ε ≤r}; J
(
τ+
ε

)]
Eε

[
I{κε

r =∞}; J
(
τ–

0
)]

= Ex
[
I{τ+

ε ≤r}; J
(
τ+
ε

)]
Rε(ε).

Consequently, for x ≥ 0,

Rε(x) = Px
[
τ–

0 = ∞;κε
r = ∞; J

(
τ–

0
)]

+ Ex
[
I{κε

r =∞}I{τ–
0 <∞}; J

(
τ–

0
)]

= Px
[
τ–

0 = ∞; J
(
τ–

0
)]

+
∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞; J
(
τ–

0
)]
Ey

[
I{τ+

ε ≤r}, J
(
τ+
ε

)]
Rε(ε). (13)

In fact, it is easy to verify that Eq. (13) is valid for any x ∈R.
From Theorem 8 in Kyprianou and Palmowski [1], we know

Px
[
τ–

0 < ∞; J
(
τ–

0
)]

= I –
∫ x

0
W (z) dz Q – W (x)D,

where

D = lim
a↑∞ W (a)–1

[
I –

∫ a

0
W (z) dz Q

]
.

So

D(x) = Px
[
τ–

0 = ∞; J
(
τ–

0
)]

=
∫ x

0
W (z) dz Q + W (x)D.

Let

H(x, r, ε) =
∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞; J
(
τ–

0
)]
Ey

[
I{τ+

ε ≤r}; J
(
τ+
ε

)]
,

= Ex
[
I{τ–

0 <∞}PX(τ–
0 )

(
τ+
ε ≤ r

)
; J

(
τ–

0
)]

,

and

H(x, r) := lim
ε↓0

H(x, r, ε) =
∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞; J
(
τ–

0
)]
Ey

[
I{τ+

0 ≤r}; J
(
τ+

0
)]

=
∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞; J
(
τ–

0
)]
E

[
I{τ+

–y≤r}; J
(
τ+

–y
)]

, (14)

where in the third equality we have used spatial homogeneity.
Now, we can re-write Eq. (13) as

Rε(x) = D(x) + H(x, r, ε)Rε(ε). (15)

Letting ε tends to zero on both sides of (15), we can obtain

R(x) = D(x) + H(x, r)R(0). (16)
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Setting x = 0 in (16), we get

R(0) =
[
I – H(0, r)

]–1W (0)D.

Finally, we will analyze the matrix function H(x, r) in (14) by the Laplace transform. For
all –y > 0, q ≥ 0, integrating by parts and using (1), one can get

∫ ∞

0
e–qr

E
[
I{τ+

–y≤r}; J
(
τ+

–y
)]

dr =
1
q

∫ ∞

0
P
[
τ+

–y ≤ r; J
(
τ+

–y
)]

de–qr

=
1
q
E

[
e–qτ+

–y ; J
(
τ+

–y
)]

=
1
q

e–�qy.

Using Fubini’s theorem and the above equation, we obtain

∫ ∞

0
e–qrH(x, r) dr =

∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)]

×
∫ ∞

0
e–qr

E
[
I{τ+

–y≤r}; J
(
τ+

–y
)]

dr

=
1
q

∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)]

e–�qy. (17)

We will split the proof of Eq. (6) into two parts:
Part I: Assume that the matrix –�q has n linearly independent eigenvectors ν , that is,

–�qν = γ ν . Multiplied by ν on both sides of Eq. (17) and using (4), (9), one can get

∫ ∞

0
e–qrH(x, r) drν =

1
q

∫ 0

∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)]

e–�qyν

=
1
q

∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)]

eγ yν

=
1
q
Ex

[
eγ X(τ–

0 ); τ–
0 < ∞, J

(
τ–

0
)]

ν

=
1
q

lim
a→∞Ex

[
eγ X(τ–

0 ); τ–
0 < τ+

a , J
(
τ–

0
)]

ν

=
1
q

[
Z(γ , x)ν – W (x) lim

a→∞ W (a)–1Z(γ , a)ν
]
. (18)

From the definition of Z(γ , x) and (11), we know

Z(γ , x)ν = eγ xν –
∫ x

0
W (z)eγ (x–z) dz F(γ )ν

= eγ xν –
∫ x

0
W (z)eγ (x–z) dz qIν

= eγ xν – q
∫ x

0
W (z)eγ (x–z) dz ν

=
[

e–�qx – q
∫ x

0
W (z)e–�q(x–z) dz

]
ν = η(q, x)ν.
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Then Eq. (18) can be re-written as

∫ ∞

0
e–qrH(x, r) dr ν =

1
q

[
η(q, x) – W (x) lim

a→∞ W (a)–1η(q, a)
]
ν

=
1
q
[
η(q, x) – W (x)η(q)

]
ν, (19)

where the matrix η(q) = lima→∞ W (a)–1η(q, a) is well-defined, because lima→∞ Ex[eγ X(τ–
0 );

τ–
0 < τ+

a , J(τ–
0 )] exists.

Finally, under the assumption that there are n linearly independent eigenvectors, we
have

∫ ∞

0
e–qrH(x, r) dr =

1
q
[
η(q, x) – W (x)η(q)

]
. (20)

Part II: In general, we consider a Jordan chain, ν1, . . . ,νj, of –�q corresponding to an
eigenvalue γ . Multiplying νj on both sides of Eq. (17) and using (10), one can get

∫ ∞

0
e–qrH(x, r) dr νj =

1
q

∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)]

e–�qyνj

=
1
q

∫ 0

–∞
Px

[
X

(
τ–

0
) ∈ dy; τ–

0 < ∞, J
(
τ–

0
)] j–1∑

i=0

1
i!

∂ i

∂γ i eγ yνj–i

=
1
q

lim
a→∞

j–1∑

i=0

1
i!

∂ i

∂γ i Ex
[
eγ X(τ–

0 ); τ–
0 < τ+

a , J
(
τ–

0
)]

νj–i

=
1
q

lim
a→∞

j–1∑

i=0

1
i!

∂ i

∂γ i

[
Z(γ , x) – W (x)W (a)–1Z(γ , a)

]
νj–i. (21)

Also

∂ i

∂γ i Z(γ , x) =
∂ i

∂γ i

[
eγ x

I –
∫ x

0
W (z)eγ (x–z) dz F(γ )

]

= xieγ x
I –

i∑

k=0

i!
k!(i – k)!

∫ x

0
(x – z)kW (z)eγ (x–z) dz F (i–k)(γ ).

Interchanging summation and using Eq. (10), (12), one can obtain

j–1∑

i=0

1
i!

∂ i

∂γ i Z(γ , x)νj–i

=
j–1∑

i=0

1
i!

xieγ x
Iνj–i –

j–1∑

k=0

1
k!

∫ x

0
(x – z)keγ (x–z)W (z) dz qIνj–k

=
[

e–�qx – q
∫ x

0
W (z)e–�q(x–z) dz

]
νj = η(q, x)νj. (22)
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Using (22), Eq. (21) can be written as

∫ ∞

0
e–qrH(x, r) dr νj =

1
q

[
η(q, x) – W (x) lim

a→∞ W (a)–1η(q, a)
]
ν

=
1
q
[
η(q, x) – W (x)η(q)

]
νj.

The proof is complete.
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