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Abstract
In this work, we propose a novel analytical solution approach for solving a general
homogeneous time-invariant fractional initial value problem in the normal form

Dα
t

[
u(x, t)

]
= F(u(x, t)), 0 ≤ t < R,

u(x, 0) = f (x),

where Dα
t is the Caputo fractional operator with 0 < α ≤ 1. The solution is given

analytically in the form of a convergent multi-fractional power series without using
any particular treatments for the nonlinear terms. The new approach is taken to
search patterns for compacton solutions of several nonlinear time-fractional
dispersive equations, namely Kα (2, 2), ZKα (2, 2), DDα (1, 2, 2), and Kα(2, 2, 1). Remarkably,
the graphical analysis showed that the n-term approximate memory solutions,
labeled by the memory parameter 0 < α ≤ 1, are continuously homotopic as they
reflect, in some sense, some memory and heredity properties.
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1 Introduction
The importance of fractional differential equations (FDEs) is stimulated by the appearance
of many scientific models that have a nonlocal dynamical property. It has been observed
that such models possess a continuum flow due to the fractional derivative effect that can
be characterized by a long-term memory in time (memory index). This memory index can
be interpreted as a chaotic or bifurcation behavior of a certain phenomenon for a short
time subject to past circumstances. For example, it has been observed that the universal
electromagnetic, acoustic, and mechanical responses are influenced by a remnant mem-
ory which can be accurately modeled by the fractional diffusion wave equations [1]. Also,
it has been shown that the propagation of mechanical diffusive waves in viscoelastic me-
dia can be identified by the fractional wave equation [2]. More applications that relate to
Newtonian mechanics, electromagnetism, quantum mechanics, electrochemistry, signal
and image processing, and biomedical engineering can be found in [3–10].

In general, it is not an easy task to extract an analytical solution for nonlinear frac-
tional differential equations. Almost all attempts were developed by either finding nu-
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merical solutions over a specific range or considering few terms of an iterative com-
putational series solution as an approximate. Such available methods are (He’s) vari-
ational iteration methods [11, 12], the iterative Laplace transform method [13], Ado-
mian’s decomposition method [14], the differential transform method [15, 16], homo-
topy analysis/perturbation methods [17, 18], the homotopy analysis—Laplace transform
method [19], Chebyshev/Jacobi/Legendre operational matrix methods [20], the fractional
Lie group method [21], the generalized Taylor power series method [22, 23], and the resid-
ual power series method [24–28].

The motivation of the current work is to explore a closed-form solution of a general
homogeneous time-invariant fractional initial value problem in the normal form,

Dα
t
[
u(x, t)

]
= F

(
u(x, t)

)
, 0 ≤ t < R,

u(x, 0) = f (x),

where Dα
t is the Caputo fractional operator with α ∈ (0, 1], u(x, t) is an unknown function,

F is an analytic differential operator in the variables x = 〈x1, . . . , xm〉 that involves both lin-
ear and nonlinear terms, R ∈R, and f (x) ∈ C∞(Rm). Classes of these equations include, but
are not limited to, the Schrödinger equation, Korteweg–de Vries equation, Burgers–Fisher
equation, Cauchy reaction–diffusion equation, Boussinesq equation, and Sharma–Tasso–
Olver equation. In particular, we have successfully applied the present approach to finding
closed-form solutions for various nonlinear time-fractional dispersive equations, namely
Kα(2, 2), ZKα(2, 2), DDα(1, 2, 2), and Kα(2, 2, 1) equations. It should be pointed out here
that the existence of mild solutions of the nonlocal problem of time-fractional evolution
equations is extensively studied in [29–38].

The organization of the current paper is as follows: In Sect. 2, we recall some necessary
definitions and theorems regarding the fractional derivative and fractional power series.
In Sect. 3, the solution to a general time-invariant fractional IVP is constructed with some
related convergence results and error analysis. In Sect. 4, our approach is applied to various
nonlinear time-fractional dispersive equations with graphical and numerical analysis to
illustrate the adequacy of the proposed approach. Finally, some concluding remarks are
given in Sect. 5.

2 Preliminaries
Many definitions and studies of fractional derivatives have been proposed in the literature.
Probably this is due to the fact that no harmonious definition preserves all properties of
the classical integer-order derivative. These definitions include the Grunwald–Letnikov,
Riemann–Liouville, Weyl, Riesz and Caputo versions. However, in the Caputo case, the
derivative of a constant function is zero and one can properly define the initial conditions
for the fractional differential equations which can be handled by using an analogy with the
classical integer-order case. For these reasons, we adopt the Caputo fractional derivative
definition in this work.

Definition 2.1 A real function u(t), t > 0 is in the space C1
λ∈R if there exists a real number

a > λ such that u(t) = tav(t) where v(t) ∈ C[0,∞), and it is in the space Cn
λ if u(n) ∈ C1

λ , n ∈N.



Jaradat et al. Advances in Difference Equations  (2018) 2018:143 Page 3 of 14

Definition 2.2 The Riemann–Liouville fractional integral operator of order α > 0 asso-
ciates with a real function u(t) ∈ C1

λ≥–1 is defined as J α
t [u(t)] = 1

�(α)
∫ t

0 (t – τ )α–1u(τ ) dτ ,
and J 0

t is an identity operator.

Definition 2.3 The Caputo time-fractional derivative of order α > 0 of u(t) ∈ Cn
–1, n ∈ N is

defined as Dα
t [u(t)] = J n–α

t [u(n)(t)] if n – 1 < α < n and Dα
t [u(t)] = u(n)(t) if α = n. Similarly,

for n being the smallest integer that exceeds α, the Caputo time-fractional derivative oper-
ator of order α is given as Dα

t [u(x, t)] = J n–α
t [ ∂nu(x,t)

∂tn ] if n–1 < α < n and Dα
t [u(x, t)] = ∂nu(x,t)

∂tn

if α = n.

Remark 1 A direct implementation of the Caputo derivative yields Dα
t [tp] = �(p+1)

�(p–α+1) tp–α

for p > 0 and Dα
t [c] = 0 where c is a constant. Also, it is easy to see that the Caputo derivative

is a left inverse of the Riemann–Liouville integral but not a right inverse. Specifically, for
n – 1 < α ≤ n, n ∈ N, and u(t) ∈ Cn

λ≥–1 we have Dα
t J α

t [u(t)] = u(t) and J α
t Dα

t [u(t)] = u(t) –
∑n–1

k=0 u(k)(0+) tk

k! , where t > 0.

It should be noted here that it suffices to consider the Caputo fractional derivative of
order 0 < α ≤ 1 since Dα

t [u(t)] = Dα–(n–1)
t [u(n–1)(t)] for arbitrary order n – 1 < α ≤ n, where

α – (n – 1) ∈ (0, 1].

Definition 2.4 ([25]) A fractional power series (FPS) expansion is an infinite series about
t = t0 of the form

∑∞
k=0 ck(t – t0)kα where 0 ≤ n – 1 < α ≤ n, t ≥ t0.

Theorem 2.5 [25] Suppose that u(t) has a FPS expansion about t0 as above for t0 ≤ t ≤
t0 + R. If the Dkα

t [u(t)] are continuous on (t0, t0 + R) for k ∈N
∗, then ck = Dkα

t [u(t0)]
�(kα+1) where Dkα

t

is the k-fold Caputo derivative and R is the radius of convergence.

Definition 2.6 ([24]) A power series of the form

∞∑

k=0

fk(x)tkα , (2.1)

where x ∈ I = I1 × · · · × Im ⊂ R
m, 0 < α ≤ 1, and t ≥ 0 is called a multi-fractional power

series about t = 0.

Theorem 2.7 ([24]) Suppose that u(x, t) has a multi-fractional power series representation
about t = 0 as above for x ∈ I and 0 ≤ t ≤ R. If Dkα

t [u(x, t)] are continuous on I × (0, R) for
each k ∈N

∗, then fk(x) = Dkα
t [u(x,0)]
�(kα+1) where R is the radius of convergence.

3 Analytic solution of homogeneous time-invariant fractional IVP
As our approach depends mainly on constructing an analytical solution of the time-
fractional differential equation under consideration, we first present, in a similar fashion
to the classical power series, some essential convergence theorems pertaining to our pro-
posed solution.

Theorem 3.1 Let {fk(x)}k=0 be a sequence of functions fk : I → R. If (2.1) is convergent for
some t = t0 > 0, then it is convergent for all t ∈ (0, t0).
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Proof Assume that (2.1) is convergent for t = t0 > 0. Then, for fixed ε0 > 0, there exists N ∈
N such that |fk(x)tαk

0 | < ε0 for all k ≥ N . It follows that if k ≥ N , we have |fk(x)tαk| < ε0( t
t0

)αk

for all x ∈ I and t ∈ (0, t0), which shows that
∑∞

k=0 fk(x)tkα is absolutely convergent (and so
convergent). �

We remark here that if f0(x) is a bounded function on I , then the convergence of (2.1) at
some t = t0 > 0 implies the convergence on [0, t0).

Corollary 3.2 Let {fk(x)}k=0 be a sequence of functions fk : I → R. If (2.1) is divergent for
some t = t0 > 0, then it is divergent for all t > t0.

Proof Suppose not. That is, (2.1) is convergent for some t > t0. Then from Theorem 3.1, it
converges on (0, t) and thus converges at t0, which is a contradiction. �

Corollary 3.3 Let {fk(x)}k=0 be a sequence of functions fk : I →R. Then one of the following
cases is true as regards (2.1):

p1: The series converges only at t = 0;
p2: the series converges for all t ≥ 0;
p3: there exists R > 0 (called the radius of convergence) such that (2.1) converges for all

t ∈ (0, R) and diverges for all t > R.

Proof Suppose it is the case that both p1 and p2 are not valid. Then there exist α,β ∈
R

+ such that (2.1) converges at t = α and diverges at t = β . Therefore, the set T = {t >
0 :

∑∞
k=0 fk(x)tkα converges} is nonempty and T ⊆ (0,α) by Theorem 3.1. Thus R := supT

exists. Now, if t > R, then (2.1) is divergent and if 0 < t < R, then, by the definition of the
supremum there exists t < t0 ∈ T such that (2.1) is convergent at t0 and so by Theorem 3.1
convergent on (0, t0). The other cases can be handled easily. �

Now, consider the following general homogeneous time-invariant fractional initial value
problem:

Dα
t
[
u(x, t)

]
= F

(
u(x, t)

)
, 0 ≤ t < R,

u(x, 0) = f (x),
(3.1)

where Dα
t is the Caputo fractional operator with α ∈ (0, 1], u(x, t) is an unknown function,

F is an analytic differential operator in the variables x = 〈x1, . . . , xm〉 that involves both
linear and nonlinear terms, R ∈ R, and f (x) ∈ C∞(Rm). In our next theorem, we exhibit
a parallel scheme of the Taylor series method to solve problem (3.1). The method gives
an analytical solution in the form of convergent multi-fractional power series without the
need for linearization, perturbation, or discretization of the variables. Instead of equating
terms with the same degree of homogeneity, our approach depends recursively on time-
fractional differentiation to obtain the unknown series coefficients.

Notation 3.4 We denote the coefficient extraction operator for a multi-fractional power
series G(x, t), which extracts a constant multiple of the coefficient of tnα in G, by [tnα]G.
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More precisely, for n ≥ 1

[
tnα

]
G =

[
tnα

] ∞∑

k=0

gk(x)tkα = �(nα + 1)gn(x). (3.2)

Note that, for a multi-fractional power series representation, G(x, t) =
∑∞

k=0 gk(x)tkα , we
have

Dnα
t

[
G(x, t)

]|t=0 = �(nα + 1)gn(x) =
[
tnα

]
G, (3.3)

where Dnα
t = Dα

t · · ·Dα
t (n times).

Theorem 3.5 Suppose that the solution u(x, t) of (3.1) has a convergent multi-fractional
power series representation of the form (2.1) for x ∈ I ⊂ R

m, and 0 ≤ t ≤ R. If Dnα
t [u(x, t)]

are continuous on I × (0, R) for n ∈N, then the solution of (3.1) is given analytically by

u(x, t) = f (x) +
∞∑

n=1

[t(n–1)α]F

�(nα + 1)
tnα . (3.4)

Proof As u(x, t) satisfies the initial condition, we should have f0(x) = f (x). Applying the
operator Dα

t to Eq. (3.1) (n – 1) times, using the linearity property of the Caputo operator,
and Remark 1 we have for n ≥ 1

D(n–1)α
t

[
F
(
u(x, t)

)]
= D(n–1)α

t
[
Dα

t
[
u(x, t)

]]

= Dnα
t

[ ∞∑

k=0

fk(x)tkα

]

=
∞∑

k=n

�(kα + 1)fk(x)
�((k – n)α + 1)

t(k–n)α , (3.5)

for all x ∈ I and 0 ≤ t ≤ R. In particular at t = 0, we obtain

fn(x)�(nα + 1) = D(n–1)α
t

[
F
(
u(x, t)

)]|t=0 (3.6)

for x ∈ I , and hence

fn(x) =
D(n–1)α

t [F(u(x, t))]|t=0

�(nα + 1)

=
[t(n–1)α]F

�(nα + 1)
(3.7)

as required. �

As an immediate consequence of Theorems 2.7 and 3.5, we obtain the following gener-
alized Taylor formula.
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Corollary 3.6 Let u(x, t) be the solution of (3.1) under the same hypotheses of Theorem 3.5.
Then u(x, t) is analytic at t = 0 in the sense of fractional power series. I.e.

u(x, t) =
∞∑

n=0

Dnα
t [u(x, 0)]
�(nα + 1)

tnα . (3.8)

As an immediate special case of Theorem 3.5, we have the following explicit description
of the solution coefficients in terms of the previous coefficient.

Corollary 3.7 If F is a linear differential operator with constant coefficients, i.e. F(u) =
∑m

j=1
∑k

i=0 aij
∂ iu
∂xi

j
where aij’s are constants, then for n ≥ 1

fn(x) =
1

�(nα + 1)

m∑

j=1

k∑

i=0

aij
∂ i

∂xi
j
fn–1(x). (3.9)

Remark 2 In practical terms to find fn(x) for n ≥ 1, it is sufficient to substitute the (n –
1)-truncated series

∑n–1
k=0 fk(x)tkα of u(x, t) in Eq. (3.7) since the remaining terms contain

higher powers O(tnα) and D(n–1)α
t [O(tnα)] = O(t) = 0 when t = 0.

Due to the complexity related to this kind of equations, it is not always possible to find
a general expression for the series coefficients. In such a case, the solution can be found
approximately as a partial sum of the series, un(x, t) =

∑n
k=0 fk(x)tαk in some reasonable

interval of t, and thus the overall errors can be made smaller by adding more new terms
as shown in the following case.

Corollary 3.8 Let {fk(x)}k=0 be a uniformly bounded sequence of functions fk : I →R. Then
(2.1) is uniformly convergent for 0 ≤ t ≤ R < 1. Moreover, ‖u(x, t) – un(x, t)‖ → 0 as n → ∞.

Proof By the uniform boundedness of {fk(x)}k=0, there exists M > 0 such that |fk(x)| ≤ M
for all k ∈ N and x ∈ I . Thus |fk(x)tαk| ≤ MRαk . Since

∑∞
k=0 MRαk is convergent geometric

series (with ratio Rα < 1), by the comparison test, we see that
∑∞

k=0 fk(x)tαk is uniformly
convergent as desired. Moreover,

∥
∥u(x, t) – un(x, t)

∥
∥ ≤

∞∑

k=n+1

MRαk =
MR(n+1)α

1 – Rα

n→∞−−−→ 0. (3.10)
�

4 Applications and discussions
The goal of this section is to verify the applicability of our proposed approach, derived
from Theorem 3.5, in studying the memory effects due to the time-fractional derivative
on various nonlinear dispersive equations. It should be noted here that all necessary cal-
culations and graphical analysis have been done by using Mathematica 10 software.

Example 1 In [39], Rosenau and Hyman introduced a class of solitary waves with compact
support (called compactons) to understand the role of nonlinear dispersion on pattern for-
mation in liquid drops. These compactons are solitary waves free of exponential tails and
they re-emerge with exactly the same coherent shape after a collision. Motivated by the
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importance of taking into account the memory effects due to time-fractional derivative,
we first consider the time-fractional version Kα(2, 2) of the third-order Rosenau–Hyman
equation, which reads

Dα
t u + a

(
u2)

x +
(
u2)

xxx = 0, (4.1)

subject to the initial condition with compact support

u(x, 0) =

⎧
⎨

⎩

4c
3a cos2(

√
ax
4 ), |x| ≤ 2π√

a ,

0, otherwise,
(4.2)

where t ≥ 0, a ∈ R
+, and 0 < α ≤ 1. In this case we have F(u) = –(a(u2)x + (u2)xxx). In

accordance with Theorem 3.5, the proposed fractional power series solution of Eqs. (4.1)
and (4.2) has the form

u(x, t) =
4c
3a

cos2
(√

ax
4

)
+ f1(x)tα + f2(x)t2α + f3(x)t3α + · · · . (4.3)

Following Eq. (3.7) and taking into account Remark 2, we successively obtain the coeffi-
cients fn(x) as follows:

f1(x) = +
c2

3
√

a�(α + 1)
sin

(√
ax
2

)
, f2(x) = –

c3

6�(2α + 1)
cos

(√
ax
2

)
,

f3(x) = –
c4√a

12�(3α + 1)
sin

(√
ax
2

)
, f4(x) = +

c5a
24�(4α + 1)

cos

(√
ax
2

)
,

f5(x) = +
c6

√
a3

48�(5α + 1)
sin

(√
ax
2

)
, f6(x) = –

c7a2

96�(6α + 1)
cos

(√
ax
2

)
,

f7(x) = –
c8

√
a5

192�(7α + 1)
sin

(√
ax
2

)
, f8(x) = +

c9a3

384�(8α + 1)
cos

(√
ax
2

)
,

...
...

and so on. In general, for n ≥ 1 we have

�(nα + 1)fn(x) =

⎧
⎨

⎩

2c
3a (–1)k( c

√
a

2 )2k cos(
√

ax
2 ) if n = 2k,

2c
3a (–1)k( c

√
a

2 )2k+1 sin(
√

ax
2 ) if n = 2k + 1.

(4.4)

Therefore, in view of (3.4) we have the exact memory solution of Kα(2, 2) in closed form,

u(x, t) =
2c
3a

[

1 + cos

(√
ax
2

) ∞∑

k=0

(–1)k

�(2kα + 1)

(
c
√

atα

2

)2k

+ sin

(√
ax
2

) ∞∑

k=0

(–1)k

�((2k + 1)α + 1)

(
c
√

atα

2

)2k+1
]

=
2c
3a

[
1 + cos

(√
ax
2

)
E2α,1

(
–

c2a
4

t2α

)
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+
c
√

atα

2
sin

(√
ax
2

)
E2α,α+1

(
–

c2a
4

t2α

)]
, (4.5)

where E2α,1(·) and E2α,α+1(·) are the two-parameter Mittag–Leffler functions. Similar ver-
sions of (4.1) were handled using homotopy analysis/perturbation methods [40, 41] and
the reduced differential transform approach [40], where the obtained solutions were con-
sistent with (4.5). Particularly when α = 1, we have the exact solution for the classical
K(2, 2) Rosenau–Hyman equation [39]

u(x, t) =
2c
3a

[

1 + cos

(√
ax
2

) ∞∑

k=0

(–1)k

(2k)!

(
c
√

at
2

)2k

+ sin

(√
ax
2

) ∞∑

k=0

(–1)k

(2k + 1)!

(
c
√

at
2

)2k+1
]

=
2c
3a

[
1 + cos

(√
ax
2

)
cos

(
c
√

at
2

)
+ sin

(√
ax
2

)
sin

(
c
√

at
2

)]

=
4c
3a

cos2
(√

a(x – ct)
4

)
(4.6)

with compact support |x – ct| ≤ 2π√
a .

Figure 1 shows the effect of different values of the fractional derivative order 0 < α ≤ 1 on
the cross section approximate solutions u4(x, t) =

∑4
n=0 fn(x)tnα of the equation for Kα(2, 2)

with fixed t = 0.5 and c = a = 1 in the compact support |x – 0.5| ≤ 2π . Clearly, u4(x, 0.5)
for α = 1 is in high agreement with the cross section of the exact solution for K(2, 2) on its
compact support. Furthermore, u4(x, 0.5) for different values of 0 < α ≤ 1 are continuously
homotopic, as α increases, to the corresponding one of the exact solution of K(2, 2).

Table 1 shows the consecutive errors conn(x, t) = |un+1(x, t)–un(x, t)| for n = 4 and n = 10.
It is clear that we have a remarkable accuracy even with few terms and we can have more

Figure 1 The cross section t = 0.5 of Kα (2, 2)
approximate solutions for different values of α with
c = a = 1

Table 1 The consecutive errors of Kα (2, 2) for different values 0 < α < 1 at some points

(x, t) con4(x, t) con10(x, t)

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(π2 , 0.2) 1.7390E–03 7.9294E–05 2.1250E–06 6.2255E–07 1.1442E–10 5.7731E–15
(π2 , 0.5) 5.4667E–03 7.8359E–04 6.6013E–05 7.7359E–06 1.7667E–08 1.0940E–11
(π2 , 0.8) 9.8372E–03 2.5374E–03 3.8466E–04 2.8173E–05 2.3433E–07 5.2849E–10

(π , 0.2) 2.4593E–03 1.1213E–04 3.0052E–06 8.8043E–07 1.6181E–10 8.1046E–15
(π , 0.5) 7.7310E–03 1.1081E–03 9.3357E–05 1.0940E–05 2.4985E–08 1.5472E–11
(π , 0.8) 1.3912E–02 3.5884E–03 5.4400E–04 3.9843E–05 3.3140E–07 7.4740E–10
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accuracy when n gets larger and/or t gets closer to zero. Also, we can see that the error
approaches zero as the memory index α approaches one.

Example 2 In [42, 43], Zakharov and Kuznetsov introduced an isotropic two-dimensional
equation ZK(2, 2) to describe the weakly nonlinear ion acoustic waves in a strongly mag-
netized lossless plasma. As our next example, we consider the time-fractional nonlinear
dispersive equation ZKα(2, 2),

Dα
t u + 2

(
u2)

x +
(
u2)

xxx +
(
u2)

yyx = 0, (4.7)

subject to the initial condition with compact support

u(x, y, 0) =

⎧
⎨

⎩

2c
3 cos2( x+y

4 ), |x + y| ≤ 2π ,

0, otherwise,
(4.8)

where t ≥ 0 and 0 < α ≤ 1. From Theorem 3.5, the fractional power series solution for Eqs.
(4.7) and (4.8) has the form

u(x, y, t) =
2c
3

cos2
(

x + y
4

)
+ f1(x, y)tα + f2(x, y)t2α + f3(x, y)t3α + · · · . (4.9)

Proceeding as before with straightforward calculations, the coefficients are obtained re-
cursively as

f1(x, y) = +
c2

6�(α + 1)
sin

(
x + y

2

)
, f2(x, y) = –

c3

12�(2α + 1)
cos

(
x + y

2

)
,

f3(x, y) = –
c4

24�(3α + 1)
sin

(
x + y

2

)
, f4(x, y) = +

c5

48�(4α + 1)
cos

(
x + y

2

)
,

f5(x, y) = +
c6

96�(5α + 1)
sin

(
x + y

2

)
, f6(x, y) = –

c7

192�(6α + 1)
cos

(
x + y

2

)
,

f7(x, y) = –
c8

384�(7α + 1)
sin

(
x + y

2

)
, f8(x, y) = +

c9

768�(8α + 1)
cos

(
x + y

2

)
,

...
...

and so on. For n ≥ 1, we have the following general form for the unknown coefficients:

�(nα + 1)fn(x, y) =

⎧
⎨

⎩

c
3 (–1)k( c

2 )2k cos( x+y
2 ) if n = 2k,

c
3 (–1)k( c

2 )2k+1 sin( x+y
2 ) if n = 2k + 1.

(4.10)

Therefore, the memory solution in closed form is given by

u(x, y, t) =
c
3

[

1 + cos

(
x + y

2

) ∞∑

k=0

(–1)k

�(2kα + 1)

(
ctα

2

)2k

+ sin

(
x + y

2

) ∞∑

k=0

(–1)k

�((2k + 1)α + 1)

(
ctα

2

)2k+1
]
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=
c
3

[
1 + cos

(
x + y

2

)
E2α,1

(
–

c2

4
t2α

)

+
ctα

2
sin

(
x + y

2

)
E2α,α+1

(
–

c2

4
t2α

)]
. (4.11)

In particular when α = 1, we have the exact solution to the classical ZK(2, 2) equation [44]

u(x, y, t) =
c
3

[

1 + cos

(
x + y

2

) ∞∑

k=0

(–1)k

(2k)!

(
ct
2

)2k

+ sin

(
x + y

2

) ∞∑

k=0

(–1)k

(2k + 1)!

(
ct
2

)2k+1
]

=
2c
3

cos2
(

x + y – ct
4

)
. (4.12)

Figure 2 shows the effect of the memory index 0 < α ≤ 1 on the surface approximate
solutions u4(x, y, t) of ZKα(2, 2) with fixed t = 0.5 and c = 1. In some sense, u4(x, y, 0.5)
for different values of α are continuously communicated to reach the corresponding one
when α = 1.

Table 2 shows the consecutive errors for n = 4 and n = 10. Apparently, we have a smaller
error when t is relatively small, n is large, or α approaches one.

Figure 2 The approximate solutions u4(x, y, 0.5) of ZKα (2, 2) for different values of α with c = 1

Table 2 The consecutive errors of Kα (2, 2) for different values 0 < α < 1 at some points

(x, y, t) con4(x, t) con10(x, t)

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

(π2 ,
π
2 , 0.2) 1.2296E–03 5.6069E–05 1.5026E–06 4.4021E–07 8.0908E–11 4.0523E–15

(π2 ,
π
2 , 0.5) 3.8655E–03 5.5408E–04 4.6678E–05 5.4701E–06 1.2492E–08 7.7363E–12

(π2 ,
π
2 , 0.8) 6.9560E–03 1.7942E–03 2.7200E–04 1.9921E–05 1.6570E–07 3.7370E–10

(π , π2 , 0.2) 8.6950E–04 3.9647E–05 1.0625E–06 3.1127E–07 5.7211E–11 2.8588E–15
(π , π2 , 0.5) 2.7333E–03 3.9179E–04 3.3006E–05 3.8679E–06 8.8338E–09 5.4704E–12
(π , π2 , 0.8) 4.9186E–03 1.2687E–03 1.9233E–04 1.4086E–05 1.1716E–07 2.6424E–10
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Example 3 In [45], Rosenau proposed a dispersive dissipative entity DD(k, m, n) which
combines the interaction between convection, dispersion and dissipation. In this exam-
ple, we consider the time-fractional version DDα(1, 2, 2) (the classical one is known as the
K(2, 2)-Burger equation), which reads

Dα
t u –

(
u2)

x +
(
u2)

xxx –
(
u1)

xx = 0, (4.13)

subject to the initial condition u(x, 0) = –2(1 + tanh(– x
4 ))–1 = –(1 + e x

2 ), where t ≥ 0 and 0 <
α ≤ 1. Following Eq. (3.7), we recursively obtain the coefficients fn(x) for n ≥ 1 as follows:

�(nα + 1)fn(x) =

⎧
⎨

⎩
– 1

2n e x
2 : n even,

1
2n e x

2 : n odd.
(4.14)

Therefore, in view of (3.4) we have the memory solution of DDα(1, 2, 2) in closed form,

u(x, t) = –1 – e
x
2

∞∑

k=0

1
�(2kα + 1)

(
tα

2

)2k

+ e
x
2

∞∑

k=0

1
�((2k + 1)α + 1)

(
tα

2

)2k+1

= –1 + e
x
2

[
tα

2
E2α,α+1

(
t2α

4

)
– E2α,1

(
t2α

4

)]
. (4.15)

Particularly with α = 1, we have the exact solution u(x, t) = –(1 + e x–t
2 ) = –2(1 + tanh( t–x

4 ))–1

for the classical DD(1, 2, 2) equation [46].
Figure 3 shows the behavior of the approximate solutions u4(x, 0.5) of DDα(1, 2, 2) for

various values of 0 < α ≤ 1. Evidently, u4(x, 0.5) when α = 1 is in harmony with the exact
solution in x ∈ [ –4π+1

2 , 4π+1
2 ]. Moreover, u4(x, 0.5) for different values of α is continuously

communicated until α = 1 is reached. Thus a convenient solution is expected for various
values of α.

Example 4 In [47], Dey studied the role of the fifth-order dispersion term in the existence
of the compacton solutions and as regards the soliton stability for the usual Korteweg–de
Vries (KdV) equation. We next consider the time-fractional version Kα(2, 2, 1) of the form

Dα
t u +

(
u2)

x –
(
u2)

xxx +
(
u1)

5x = 0 (4.16)

Figure 3 The cross section t = 0.5 of DDα (1, 2, 2)
approximate solutions for different values of α
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subject to the initial condition u(x, 0) = 16c–1
12 cosh2( x

4 ), where t ≥ 0 and 0 < α ≤ 1. Follow-
ing the formula (3.7), we recursively obtain the coefficients fn(x), n ≥ 1 as follows:

�(nα + 1)fn(x) =

⎧
⎨

⎩

16c–1
24 ( c

2 )n cosh( x
2 ) : n even,

– 16c–1
24 ( c

2 )n sinh( x
2 ) : n odd.

(4.17)

Therefore in view of (3.4), the solution of Kα(2, 2, 1) is given in closed form by

u(x, t) =
16c – 1

24

[

1 + cosh

(
x
2

) ∞∑

k=0

1
�(2kα + 1)

(
ctα

2

)2k

– sinh

(
x
2

) ∞∑

k=0

1
�((2k + 1)α + 1)

(
ctα

2

)2k+1
]

=
16c – 1

24

[
1 + cosh

(
x
2

)
E2α,1

(
c2t2α

4

)

–
ctα

2
sinh

(
x
2

)
E2α,α+1

(
c2t2α

4

)]
, (4.18)

which is identical to the solution obtained by using the homotopy perturbation method [48].
Particularly with α = 1, we have the exact solution for the classical K(2, 2, 1) equation [49],

u(x, t) =
16c – 1

24

[

1 + cosh

(
x
2

) ∞∑

k=0

1
(2k)!

(
ct
2

)2k

– sinh

(
x
2

) ∞∑

k=0

1
(2k + 1)!

(
ct
2

)2k+1
]

=
16c – 1

12
cosh2

(
x – ct

4

)
(4.19)

with compact support |x – ct| ≤ 2π .
Figure 4 exhibits the approximate solutions u4(x, 0.5) of Kα(2, 2, 1) for various values of

0 < α ≤ 1. Apparently, u4(x, 0.5) when α = 1 is in harmony with the exact solution on its
compact support. Further, u4(x, 0.5) for different values of α is continuously communi-
cated until α = 1 is reached.

Figure 4 The cross section t = 0.5 of Kα (2, 2, 1)
approximate solutions for different values of α
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5 Conclusion
In this paper, a hybrid version of the power series method is presented to handle a general
time-invariant fractional initial value problem of the form (3.1). The solution of (3.1) is
given analytically in the form of a convergent multi-fractional power series (2.1) without
the need of any linearization, perturbation, or discretization methods. Several nonlinear
dispersive examples were tested and the exact memory solutions were successfully ob-
tained in closed form. In fact, the physical interpretation of these solutions is beyond the
scope of this work. However, in some sense, the graphs of the n-term approximate mem-
ory solutions, labeled by the memory index 0 < α ≤ 1, were continuously deformed as they
represent the memory and hereditary effects.
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