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Abstract
In this paper, it is proved that, for the networks of weakly coupled pendulum
equations

d2xn
dt2

+ λ2n sin xn = εWn(xn–1, xn, xn–1), n ∈ Z,

there are many (positive Lebesgue measure) normally hyperbolic invariant tori which
are infinite dimensional in both tangent and normal directions.
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1 Introduction and main result
In the last several decades, models of (infinitely) many coupled oscillators have found di-
verse applications in various fields of science. Among a lot of examples are the collective
dynamics of Josephson junctions [1, 2], lasers [3, 4], relativistic magnetrons [5], chemical
reactions [6–9], circadian pacemakers [10, 11], intestinal electrical rhythms [12], a vari-
ety of biological processes [13–15], etc. The research of these systems has brought out-
standing examples of different types of dynamical behavior that can be induced by the
attendance of coupling. See [13, 14, 16–30] for more details. Meanwhile, the pendulum
equation or analogous ones can be used to depict the synchronous electric motor models
of a single machine infinite bus [31], Josephson junctions [32–34], super-conducting de-
rive [35], shunted model of electrical rotator [36], and many other applications. Among
those interesting models are the networks of weakly coupled pendulum equations

d2xn

dt2 + λ2
n sin xn = εWn(xn–1, xn, xn+1), n ∈ Z, (1.1)

where λn, n ∈ Z are constants and Wn are real analytic functions given in (1.6). While
the existence of normally hyperbolic invariant tori which are infinite dimensional in both
tangent and normal directions for (1.1) can be showed via KAM theory in this paper.

The classical KAM theory [37–39], founded by Kolmogorov, Arnold, and Moser in the
last century, is a milestone of the evolution of Hamiltonian systems. It provided a new
method for the research of Hamiltonian systems. The classical KAM theory established
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on a 2n-dimensional smoothly manifold affirms that most of the non-resonant tori of a
non-degenerate integrable Hamiltonian system are not destroyed under perturbations,
they only have a small deformation. The KAM theory has been developed into a very
complete theory in the past nearly half a century.

In the 1980s, the distinguished KAM theory was triumphantly developed to infinitely
dimensional Hamiltonian systems of short range so as to research a class of Hamiltonian
networks of weakly coupled oscillators. To describe it more precisely, we consider from
three aspects the infinitely dimensional Hamiltonian system

H = H(u, v) =
1
2

∑

n∈Z
λn

(
u2

n + v2
n
)

+ εP(u, v), (1.2)

where P is of short range.
(i) Introducing the action-angle variables on un, vn for ∀n ∈ Z, then the Hamiltonian

system (1.2) takes the form

H = H(I, θ ) =
∑

n∈Z
ωnIn + εP(I, θ ), (1.3)

where tangent frequencies ωn = λn, n ∈ Z. Vittot and Bellissard [40], Fröhlich et al. [41]
asserted that there is a full dimensional invariant torus with infinite dimension for (1.3).
Pöschel [42] got also the above results for the Hamiltonian systems with a more general
spatial structure for P. Thus, any solution starting from the torus is almost-periodic in
time. For more results on the existence of almost-periodic solutions, see Bourgain [43]
and Cong et al. [44].

(ii) Constructing the action-angle variables on un, vn for n ∈ {1, 2, . . . , m} and by abuse of
notation to rearrange the subscript of un, vn,λn, we get

0 → 0; –n → –n; m + n → n, for n ≥ 1.

Then Hamiltonian (1.2) is of the form

H = H(I, θ ) =
m∑

n=1

ωnIn +
1
2

∑

n∈Z
λn

(
u2

n + v2
n
)

+ εP(I, θ , u, v). (1.4)

Here tangent frequencies ω are m-dimensional and normal frequencies are infinite di-
mensional. Kuksin [45], Pöschel [46, 47], and Wayne [48] (in alphabetic order) concluded
that, under the multiplicity of λn equals to 1 for ∀n ∈ Z and some non-resonant condi-
tions (Melnikov condition), most of elliptic type lower-dimensional invariant tori for (1.4)
without being of short range will remain under small perturbations. While all of λn are the
same, Yuan [49, 50] obtained similar KAM results for infinitely dimensional Hamiltonian
system (1.4) of short range. On the other hand, the persistence problem of hyperbolic type
lower-dimensional invariant tori with finite dimension was researched first by Moser [51].
Graff [52] then generalized Moser’s theory. Then, Zehnder in [53, 54] has brought a sub-
stitute proof of Graff’s conclusion by an implicit function technique. For more results on
the evolutions in this direction, one can refer to [55–61]. By virtue of the KAM theory of
this situation, we obtain that there are quasi-periodic solutions for the coupled pendulum
equations.
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(iii) For the case that both tangent frequencies ω and normal frequencies are infinite
dimensional, according to our knowledge, not only of elliptic type but also of hyperbolic
type, there has not been any KAM theorem to deal with this situation. However, the ex-
istence of almost-periodic solutions for the networks of weakly coupled pendulum equa-
tions (1.1) needs to be proved. That is the problem we are most concerned with in this
paper.

To describe it more accurately, by virtue of the technique of action-angle variables on
x2j+1, j ∈ Z and the transformation (x2j – π , ẋ2j) = (1/

√
2λ2j(uj – vj),

√
λ2j/2(uj + vj)), j ∈ Z,

we transform the Hamiltonian of Eq. (1.1) into the form

H = H(I, θ , u, v) =
∑

j∈Z
ωjIj +

∑

j∈Z
λ2jujvj + εP(I, θ , u, v), (1.5)

where P is of short range. Obviously, both tangent frequencies ω = (ωj)j∈Z and nor-
mal frequencies � = (λ2j)j∈Z are infinite dimensional belonging to case (iii). Meanwhile,
(uj, vj)j∈Z = (0, 0)j∈Z is a hyperbolic equilibrium point on the normal direction. From this,
we then mainly study the persistence of normally hyperbolic invariant tori which are in-
finite dimensional in both tangent and normal directions for this Hamiltonian system in
this issue.

Before starting our theorem, we define the norm

|x|∞ := sup
j∈Z

|xj|

in C
Z and give the following assumptions:

(A1) λn, n ∈ Z satisfy

λ2j+1 = λ > 0, λ2j ≥ |j|–N , |λ2i – λ2j| ≥
∣∣|i|–N – |j|–N ∣∣, i, j ∈ Z\{0}, N > 0.

(A2) Wn satisfies

Wn = W ′(xn+1 – xn + (–1)nπ
)
e– 3

4 |n|1+α
– W ′(xn – xn–1 – (–1)nπ

)
e– 3

4 |n–1|1+α
(1.6)

with α > 0 (arbitrarily small), and W = O(|x|3) is real analytic in the strip domain {x ∈ C :
| Im x| < δ0} for some constant δ0 > 0.

The expression 1
2 y2 + λ2(1 – cos x) = h with λ2

2 ≤ h ≤ λ2 denotes a simple closed curve 

which encloses (0, 0) in the (x, y)-plane. Let ρ = ρ(h) be the area enclosed by 
(h), i.e.,

ρ(h) =
∮

1
2 y2+λ2(1–cos x)=h

y dx.

Then we can see that ρ ′(h) > 0,ρ ′′(h) 	= 0 for any h ∈ [ λ2

2 ,λ2].
Equation (1.1) can be regarded as a perturbation of the following system:

d2x2j+1

dt2 + λ2 sin x2j+1 = 0, j ∈ Z, (1.7a)

d2x2j

dt2 – λ2
2j(x2j – π ) = 0, j ∈ Z. (1.7b)
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For any η = (hj)j∈Z, hj ∈ [ λ2

2 ,λ2], then, by the fact that 1
2 y2 + λ2(1 – cos x) = hj, j ∈ Z is a first

integral of (1.7a),
∏

j∈Z
(hj) is an invariant torus with the frequenciesω(η) = (H ′
0(ρ(hj)))j∈Z

for (1.7a), where H0 is the inverse of ρ = ρ(h). Observe that (π , 0) is an equilibrium of
(1.7b). Thus,

T (η) =
∏

j∈Z

(hj) ×

∏

j∈Z

{
(π , 0)

}

is an invariant torus with the frequencies ω(η) for (1.7a)–(1.7b). Therefore, any solution
of (1.7a)–(1.7b) starting from T (η) is a trivial breather for (1.7a)–(1.7b). Our goal is to
show that the torus T (η) remains under the small perturbation. Here is our main re-
sult which expresses that there does persist a large Cantor sub-family of rotational Z-tori
which are only slightly deformed, thus the solutions starting from the persisted tori are
almost-periodic breathers of (1.1).

Theorem 1.1 Suppose that Eq. (1.1) satisfies assumptions (A1), (A2). Then, for the set
� = [ λ2

2 ,λ2]Z, there is a positive constant ε∗ sufficiently small such that, when 0 < ε < ε∗,
there are a set S ⊂ � with Prob(S) arbitrarily close to one (depending on ε), a family of
Z-tori

T [S] =
⋃

η∈S
T (η) ⊂

⋃

η∈�
T (η)

over S , and an analytic embedding

 : T [S] ↪→R
Z ×T

Z ×R
Z ×R

Z,

which is a higher order perturbation of the inclusion map 0 :
⋃
η∈� T (η) ↪→ R

Z × T
Z ×

R
Z × R

Z restricted to T [S], such that the restriction  to each T (η) in the family is an
embedding of a rotational Z-torus for (1.1). Moreover, any solution of (1.1) starting from
(T (η)) is an almost-periodic breather of frequencies ω∗ with |ω∗ –ω|∞ = O(ε1/6).

This paper is organized as follows. In Sect. 2, Eq. (1.1) is, by the technique of action-angle
variables, reduced to a normal form to which a KAM theorem is applicable. In Sect. 3, a
KAM theorem and its iterative lemma are given, and the proof for the iterative lemma is
finished. Theorem 1.1 and the KAM theorem are proven in Sect. 4.

2 Reduced to normal form
In this section, we will find a series of changes in variables to transform Eq. (1.1) into a
normal form.

Let ẋn = yn. Then (1.1) is a Hamiltonian system with its Hamiltonian

H =
∑

j∈Z

{
1
2

y2
2j+1 + λ2(1 – cos x2j+1)

}
+

∑

j∈Z

{
1
2

y2
2j – (1 + cos x2j)λ2

2j

}

+ ε
∑

j∈Z

{
W (x2j+2 – x2j+1 – π )e– 3

2 |j+ 1
2 |1+α

+ W (x2j+1 – x2j + π )e– 3
2 |j|1+α}
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=
∑

j∈Z

{
1
2

y2
2j+1 + λ2(1 – cos x2j+1)

}
+

1
2

∑

j∈Z

{
y2

2j – λ2
2j(x2j – π )2}

+
∑

j∈Z
O

(|x2j – π |4)

+ ε
∑

j∈Z

{
W (x2j+2 – x2j+1 – π )e– 3

2 |j+ 1
2 |1+α

+ W (x2j+1 – x2j + π )e– 3
2 |j|1+α}

.

We now carry out the standard reduction to action-angle variables. To construct the map
(x, y) �→ (θ ,ρ), where ρ and θ are action and angle variables, respectively, we let H0(ρ) be
the value of the function 1

2 y2 + λ2(1 – cos x) on the closed curve which encloses area ρ in
the (x, y)-plane, i.e., we define H0(ρ) implicitly by

∮

1
2 y2+λ2(1–cos x)=H0(ρ)

y dx = ρ. (2.1)

We now define a generating function S(x,ρ) as follows:

S(x,ρ) =
∫


∗
y dx, (2.2)

where 
∗ is a part of the closed curve 1
2 y2 + λ2(1 – cos x) = H0(ρ) connecting the y-axis

with point (x, y), oriented clockwise. We define the map ψ : (θ ,ρ) �→ (x, y) via

Sx(x,ρ) = y, Sρ(x,ρ) = θ . (2.3)

Then

dx ∧ dy = dx ∧ (Sxx dx + Sxρ dρ) = Sxρ dx ∧ dρ,

dθ ∧ dρ = (Sρx dx + Sρρ dρ) ∧ dρ = Sρx dx ∧ dρ.

Thus,

dx ∧ dy = dθ ∧ dρ.

Let

� :

⎧
⎨

⎩
(x2j+1, y2j+1) =ψ(θj,ρj),

(x2j – π , y2j) = (1/
√

2λ2j(uj – vj),
√
λ2j/2(uj + vj)).

(2.4)

Then

∑

j∈Z
dx2j+1 ∧ dy2j+1 +

∑

j∈Z
dx2j ∧ dy2j =

∑

j∈Z
dθj ∧ dρj +

∑

j∈Z
duj ∧ dvj.

This implies that � is symplectic. Thus, Hamiltonian H is transformed into

H =
∑

j∈Z
H0(ρj) +

∑

j∈Z
λ2jujvj +

∑

j∈Z
O

(|uj – vj|4
)

+ ε
∑

j∈Z

{
W (x2j+2 – x2j+1 – π )e– 3

2 |j+ 1
2 |1+α

+ W (x2j+1 – x2j + π )e– 3
2 |j|1+α}

. (2.5)
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By assumption (A2), there exists the inverse H–1
0 of H0. Let [μ,ν] = H–1

0 ([ λ2

2 ,λ2]). For any
ξ = (ξj)j∈Z ∈ [μ,ν]Z, let ρ = I + ξ , where I = (Ij)j∈Z. Expand H0(ξj + Ij) in ξj by Taylor’s for-
mula:

H0(ξj + Ij) = H0(ξj) + H ′
0(ξj)Ij + O

(|Ij|2
)
, j ∈ Z.

Let ω = (H ′
0(ξj))j∈Z,� = [μ,ν]Z, and from transformation (2.4), we can denote

W (x2j+2 – x2j+1 – π )e– 3
2 |j+ 1

2 |1+α
+ W (x2j+1 – x2j + π )e– 3

2 |j|1+α
= fj(Ij, θj, uj, uj+1, vj, vj+1, ξj).

Then ξ ∈� and (2.5) can be written as

H =
∑

j∈Z
ωjIj +

∑

j∈Z
λ2jujvj +

∑

j∈Z
O

(|uj – vj|4
)

+
∑

j∈Z
O

(|Ij|2
)

+ ε
∑

j∈Z
fj(Ij, θj, uj, uj+1, vj, vj+1, ξj), (2.6)

where the constant
∑

j∈Z H0(ξj) is omitted since it does not affect the dynamics.
Now we need to introduce the domain of the definition for Hamiltonian H . Set

D =
{

(I, θ , u, v, ξ ) ∈C
Z ×C

Z ×C
Z ×C

Z ×C
Z : |Ij| < ρ0

j , | Im θj| < δ0,

|uj| < �0
j , |vj| < �0

j , and
∣∣ξj – ξ ′

j
∣∣ < w for some ξ ′ ∈�, j ∈ Z

}
, (2.7)

here ρ0
j = 1

4μe–|j|1+α , �0
j = 1

4

√
ρ0

j . fj(I, θ , u, v), j ∈ Z are real analytic on the domain D and
satisfy

sup
D

∣∣fj(I, θ , u, v, ξ )
∣∣ ≤ K exp

[
–

3
2

(|j| – 1
)1+α

]
, j ∈ Z, (2.8)

for some K > 0.
Letting

P(I, θ , u, v, ξ ) =
∑

j∈Z
fj(Ij, θj, uj, uj+1, vj, vj+1, ξj),

Q(I, u, v) =
∑

j∈Z
O

(|uj – vj|4
)

+
∑

j∈Z
O

(|Ij|2
)
.

Then Hamiltonian (2.6) is of the form

H = H(I, θ , u, v, ξ ) =
∑

j∈Z
ωjIj +

∑

j∈Z
λ2jujvj + Q(I, u, v) + εP(I, θ , u, v, ξ ), (2.9)

where the Hamiltonian H satisfies the following conditions:
(B1) H is real analytic in D.
(B2) (Non-degenerate) There are constants δb > δa > 0 such that on some complex neigh-

borhood of �

δa ≤
∣∣∣∣
∂ωj

∂ξj

∣∣∣∣ ≤ δb, j ∈ Z.
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(B3) The inequality

|P| ≤ K1

holds on the domain D, where K1 is a positive constant.

3 KAM theorem and its iterative lemma
3.1 Statement of KAM theorem
Let T̂Z = C

Z/(2πZ)Z. Define the phase space

P = C
Z × T̂

Z ×C
Z ×C

Z � (I, θ , u, v).

We now consider a small perturbation

H = H0 + εP(I, θ , u, v, ξ ), ξ ∈�, (3.1)

of an infinite dimensional Hamiltonian in the parameter-dependent normal form

H0 =
∑

j∈Z
ωjIj +

∑

j∈Z
λ2jujvj, ξ ∈�, (3.2)

on the phase space P with the symplectic structure

∑

j∈Z
dθj ∧ dIj +

∑

j∈Z
duj ∧ dvj. (3.3)

The Hamiltonian equations of motion of H0 are as follows:

θ̇ = ω, İ = 0, u̇ =�v, v̇ = –�u,

here � = diag(λ2j)j∈Z. Hence, for each ξ ∈ �, there is an infinite dimensional invariant
torus: T Z

0 = T
Z × {0} × {0} × {0} for H0.

Our aim in this issue is to prove the persistence of the torus T Z

0 under the small pertur-
bation εP for “most” ξ ∈� via a KAM method similar to that in [41].

Theorem 3.1 Suppose that Hamiltonian (2.9) satisfies conditions (B1)–(B3). Then there
exists a small constant ε∗ such that, if 0 < ε < ε∗, then there are a set �∞ ⊂ � with
Prob(�∞) arbitrarily close to one (depending on ε), an analytic torus embedding C∞ :
T
Z × �∞ → P , and a map ω∞ : �∞ → R

Z such that, for each ξ ∈ �∞, the map C∞

restricted to T
Z × {ξ} is an analytic embedding of rotational torus with frequencies ω∞

satisfying |ω∞ –ω|∞ < ε1/6 for the Hamiltonian H defined by (2.9).

3.2 Iterative constants and iterative domains
In what follows, we denote by C, C1, C2, . . . positive constants which arrive in estimates,
and by K , K1, K2, . . . positive constants which arrive in lemmas and theorems. Both of them
are independent of ε and the number m of the iteration, and may be different in differ-
ent parts of the text. Let C(m) be the function of m of the form C1mC2m or C1mC2m2 or
C1mC2m4 .
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As usual, the KAM theorem is proved by the Newton-type iteration procedure which
involves an infinite sequence of coordinate changes. In order to make our iteration proce-
dure run, we need the following iterative constants and iterative domains.

1. εm = ε( 5
4 )m , εm bounds the size of the interaction after m iterations.

2. δm+1 = δm – bm = δm – δ0/[64(m + 1)2], δm measures the size of the analyticity domain
in the angular variables after m iterations, and bm is the amount by which the domain
shrinks in the (m + 1)th step.

3. wm = (εm)2γ , wm measures the size of the analyticity domain in the frequency space.
γ is a small positive constant.

4. Lm = {2(1 + β)| ln εm|/3}1/1+α ; Lm determines the size of the region we must consider
at the mth iterative step. Here β is a small positive constant, α is the constant in (1.6).

5. Mm+1 = 3| ln εm|/(2bm), Mm determines the number of Fourier coefficients we must
consider at the mth step of the iteration, bm is defined in (2).

6.

ρm+1
j = 2–3ρm

j , if |j| > Lm+1,

= 2–3ρm
Lm+1 , if |j| ≤ Lm+1,

ρm measures the size of the analyticity domain for the action variables.
7.

�m+1
j = 2–3�m

j , if |j| > Lm+1,

= 2–3�m
Lm+1 , if |j| ≤ Lm+1,

�m measures the size of the analyticity domain for variables u, v.
8.

ω̂m
j = 0, if |j| > Lm,

=
m–1∑

n=n(j)

(εn)2/9, if |j| ≤ Lm

[Here, n(j) is defined by Ln(j) < |j| ≤ Ln(j)+1].
9.

ηm
ij = min

{ m–1∑

n=n(i)

(εn)1/6,
m–1∑

n=n(j)

(εn)1/6

}
if |i| ≤ Lm, and |j| ≤ Lm,

= 0, otherwise.

10. {�m}∞m=0: be a sequence of compact subsets of RZ

+ with

�0 ⊃�1 ⊃ · · · ⊃�m ⊃�m+1 ⊃ · · · ,

here �0 =�.
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11. Dl
m = {(I, θ , u, v) ∈ C

Z × C
Z × C

Z × C
Z : |Ij| <

ρm
j

2l , | Im θj| < δm – (1 – 1
2l )bm, |uj| <

�m
j

2l , |vj| <
�m

j
2l , j ∈ Z}, l = 0, 1, 2; and denote Dm = D0

m.
12. Om = {ξ ∈C

Z : |ξj – ξ ′
j | < wm, j ∈ Z, for some ξ ′ ∈�m}.

3.3 Iterative lemma
The proof of Theorem 3.1 uses the KAM method with a novel addition:

We introduce a sequence of length scales, Lm ↗ ∞, and at the mth stage of our iterative
procedure, we consider only sites j : |j| ≤ Lm.

As a standard way of proving the theorem, we must give the iterative lemma.

Lemma 3.2 Consider a family of Hamiltonians Hl (0 ≤ l ≤ m):

Hl = ωl · I +�lu · v + Q + Pl + ε
∑

|j|≥Ll+1

fj(I, θ , u, v, ξ ), (3.4)

where (I, θ , u, v, ξ ) ∈ Dl,�lu · v =
∑

j∈Z�
l
jujvj. Write Pl := P′

2l + P′
3l , where P′

3l = Pl – P′
2l

and

P′
2l =

∑

2|p|+|q+q̄|≤2

Rl
pqq̄(θ , ξ )Ip(l)uq(l)vq̄(l), (3.5)

in the usual multi-index notation, where

I(l) = (Ij)|j|≤Ll+1 , u(l) = (uj)|j|≤Ll+1 , v(l) = (vj)|j|≤Ll+1 .

Assume that, for 0 ≤ l ≤ m, the following conditions hold true:
(l.1) Hl is real analytic in the domain Dl ×Ol , H0 = H ;
(l.2) Pl = Pl + ε

∑
Ll≤|j|<Ll+1

fj and Pl depends only on (Ij, θj, uj, vj, ξj) with |j| ≤ Ll , P0 =
ε

∑
|j|<L0

fj(I, θ , u, v, ξ ), and |Pl|Dl×Ol ≤ C(l)εl ;
(l.3) ωl

j = ωl–1
j + Rl–1

j00 (0, ξ ), l ≥ 1,ω0 = ω, and Rl–1
j00 (0, ξ ) = 0 with |j| > Ll , and |ωl

j –ωj|Ol–1 ≤
ω̂j, |∂ξi (ωl

j –ωj)|Ol ≤ ηl
ij;

(l.4) �l
j = �l–1

j + Rl–1
0jj (0, ξ ), l ≥ 1,�0 = �, and Rl–1

0jj (0, ξ ) = 0 with |j| > Ll , |�l
j – �j|Ol ≤

ω̂j;
(l.5) Prob(�l) ≥ 1 –

∑l
j=0(εj)κ for some κ > 0;

(l.6) Writing Cl = C1 ◦ · · · ◦ Cl = [I +l, θ +� l, u + φl, v +ψ l], we have

∣∣l
j
∣∣ ≤

l–1∑

n=n(j)

(εn)
8
9 ,

∣∣� l
j
∣∣ ≤

l–1∑

n=n(j)

(εn)
2
9 ,

∣∣φl
j
∣∣ ≤

l–1∑

n=n(j)

(εn)
5
9 ,

∣∣ψ l
j
∣∣ ≤

l–1∑

n=n(j)

(εn)
5
9 ,

(3.6)

and Cl = identity at sites, j, with |j| > Ll .
Then there is a positive constant ε∗ small enough such that, if 0 < ε < ε∗, there is a

set �m+1 ⊂ �m with Prob(�m \�m+1) ≤ (εm)κ , and a change of variables Cm+1 : Dm+1 ×
Om+1 → Dm × Om is real analytic in Dm+1 × Om+1. Furthermore, the new Hamiltonian
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Hm+1 = Hm ◦ Cm+1 = H0 ◦ Cm+1 is of the form

Hm+1 = ωm+1 · I +�m+1u · v + Q + Pm+1 + ε
∑

|j|≥Lm+2

fj(I, θ , u, v, ξ ) (3.7)

and satisfies all the above conditions (l.1)–(l.6) with l being replaced by m + 1.

3.4 Derivation of homological equations
Step 1. Splitting the perturbation. Let us consider the Hamiltonian Hm. Following Kuksin
[45] and Yuan [49], we split the perturbation Pm into an “essential” part P′

2m (i.e., l = m in
(3.5)) which is linear in I , quadratic in u, v, and an unessential part P′

3m.

Lemma 3.3 If 0 < ε < ε∗ � 1, then the following estimates hold true:
(a)

∣∣Rm
j00(0, ξ )

∣∣Om ≤ (εm)
2
9 ,

∣∣Rm
0jj(0, ξ )

∣∣Om ≤ (εm)
2
9 , |j| ≤ Lm+1,

∣∣∂ξi R
m
j00(0, ξ )

∣∣Om+1 ≤ (εm)
1
6 , |i|, |j| ≤ Lm+1,

∂ξi R
m
j00(0, ξ ) = 0, otherwise;

Rm
j00(0, ξ ) = Rm

0jj(0, ξ ) = 0, |j| > Lm+1.

(3.8)

(b) |P′
3m|Dm+1×Om ≤ C(m + 1)εm+1;

(c) the functions P′
2m and P′

3m are real analytic and depend only on (Ij, θj, uj, vj, ξj) with
|j| ≤ Lm+1.

Proof For (a), we consider Rm
j00(θ , ξ ). Since |Pm|Dm×Om ≤ C(m)εm, by Assumption (l.2), we

get that |P′
2m|Dm×Om ≤ C(m)εm. Therefore,

∣∣∣∣
∑

|j|≤Lm+1

Rm
j00(θ , ξ )I(m)j

∣∣∣∣
Dm×Om

≤ C(m)εm.

For any k with |k| ≤ Lm+1, let I∗(m) satisfy

I∗(m)j =

⎧
⎨

⎩

1
2ρ

m
k j = k,

0 otherwise.

Then |∑
|j|≤Lm+1

Rm
j00(θ , ξ )I∗(m)j|Dm×Om ≤ C(m)εm. At the same time,

∣∣∣∣
∑

|j|≤Lm+1

Rm
j00(θ , ξ )I∗(m)j

∣∣∣∣
Dm×Om

=
1
2
ρm

k
∣∣Rm

k00(θ , ξ )
∣∣Dm×Om .

Thus

∣∣Rm
k00(θ , ξ )

∣∣Dm×Om ≤ (
ρm

k
)–1C(m)εm. (3.9)



Li Advances in Difference Equations  (2018) 2018:157 Page 11 of 22

By the definition of ρm, when |j| ≤ Lm, we have

ρm
j = 2–3�m–1

Lm = 2–3mρ0
Lm = 2–3m–2τ (εm)

2+2β
3 .

Hence, if |k| ≤ Lm, we have

∣∣Rm
k00(θ , ξ )

∣∣Dm×Om ≤ C(m)(εm)
1
3 –β . (3.10)

For the case Lm < |k| ≤ Lm+1, by Assumption (l.2), we know that Pm makes no contribu-
tion to Rm

k00(θ , ξ ). Thus we see that in this case the factor εm in (3.9) can be replaced by
e– 3

2 (|k|–1)1+α and by the definition of ρm:

∣∣Rm
k00(θ , ξ )

∣∣Dm×Om ≤ (
ρm

k
)–1C(m) exp

{
–

3
2

(|k| – 1
)1+α

}

≤ C(m) exp

{
|k|1+α –

3
2

(|k| – 1
)1+α

}

≤ C(m) exp

{
(1 + β)

(|k| – 1
)1+α –

3
2

(|k| – 1
)1+α

}

≤ C(m) exp

{
–

1 – 2β
2

(Lm)1+α
}

≤ C(m)(εm)
1
3 –β . (3.11)

Also, by Assumption (l.2), if |k| > Lm+1, Rm
k00(θ , ξ ) = 0. From (3.10) and (3.11), for β small

enough, we have |Rm
j00(θ , ξ )|Dm×Om ≤ (εm)2/9, |j| ≤ Lm+1. Thus

∣∣Rm
j00(0, ξ )

∣∣Om ≤ (εm)2/9, |j| ≤ Lm+1 and Rm
j00(0, ξ ) = 0, |j| > Lm+1. (3.12)

The case of Rm
0jj(0, ξ ) can be proved in a similar way.

By the Cauchy estimate, we have

∣∣∂ξi R
m
j00(0, ξ )

∣∣Om+1 ≤ |Rm
j00(0, ξ )|Om

wm – wm+1
≤ 2(εm)

2
9 –2γ ≤ (εm)

1
6 , |i|, |j| ≤ Lm+1.

If |i| > Lm+1 or |j| > Lm+1, ∂ξi R
m
j00(0, ξ ) = 0 is obvious.

For (b). Let (I, θ , u, v) ∈ Dm+1, Pm = εmPm, and υ = (εm)1/12. Then (( z
υ

)2I, θ , ( z
υ

)u, ( z
υ

)v)
∈ Dm for z ∈ C, |z| ≤ 1. Let us consider the function z �→ Pm(( z

υ
)2I, θ , ( z

υ
)u, ( z

υ
)v) and its

Taylor series at zero:

Pm

((
z
υ

)2

I, θ ,
(

z
υ

)
u,

(
z
υ

)
v
)

= h0 + h1z + h2z2 + · · · .

From |Pm|Dm×Om ≤ C(m)εm, we have |Pm|Dm×Om ≤ C(m). Thus |hk|Dm×Om ≤ C(m) for
all k. Since P′

3m = εm(h3υ
3 + h4υ

4 + · · · ), then

∣∣P′
3m

∣∣Dm×Om = εm
∣∣h3υ

3 + h4υ
4 + · · · ∣∣Dm×Om ≤ C(m)(εm)5/4

1 – (εm)1/12 ≤ C(m + 1)εm+1.

For (c). From Assumptions (l.1), (l.2), the proof of (c) is obvious. �
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Step 2. Truncation. Let

ωm+1
j = ωm

j + Rm
j00(0, ξ ), j ∈ Z, (3.13)

�m+1
j =�m

j + Rm
0jj(0, ξ ), j ∈ Z. (3.14)

Then, by Lemma 3.3, the frequencies satisfy assumptions (l.3) and (l.4) with l = m + 1.
Write

P2m =
∑

|k|≤Mm+1

∑

2|p|+|q+q̄|≤2

Rm
kpqq̄(ξ )e

√
–1k·θ Ipuqvq̄ –

∑

j

{
Rm

0j00Ij + Rm
00jjujvj

}

P̂2m =
∑

|k|>Mm+1

∑

2|p|+|q+q̄|≤2

Rm
kpqq̄(ξ )e

√
–1k·θ Ipuqvq̄, k ∈ Z

2Lm+1 ,

P3m = P̂2m + P′
3m

(3.15)

here I = I(m), u = u(m), v = v(m). In addition, Rm
0j00 = Rm

j00(0, ξ ), Rm
00jj = Rm

0jj(0, ξ ) is obvious.
Then we can write Hm as

Hm = ωm+1 · I +�m+1u · v + Q(I, u, v) + P2m + P3m

+ ε
∑

|j|≥Lm+1

fj(I, θ , u, v, ξ ), (3.16)

and the functions P2m and P3m are real analytic and depend only on (Ij, θj, uj, vj, ξj) with
|j| ≤ Lm+1.

Claim

|P3m|Dm+1×Om ≤ C(m + 1)εm+1.

Proof From (3.15) we first consider

|P̂2m|Dm+1×Om ≤
∑

|k|>Mm+1

∣∣P̂′2m(k)
∣∣Dm×Om e|k|δm+1

≤
∑

|k|>Mm+1

∣∣P′
2m

∣∣Dm×Om e–|k|bm

≤ C(m + 1)(εm)2 ≤ εm+1.

With Lemma 3.3(b), we obtain that

|P3m|Dm+1×Om ≤ C(m + 1)εm+1. (3.17)

Thus the proof of the claim is complicated. �

Step 3. Derivation of the homological equations.
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Proof We look for a near-to-the-identity transformation Cm+1 so that (3.7) holds; such
transformation will be determined by a generating function of the form

I ′θ + u′v + S
(
I ′, θ , u′, v

)
,

⎧
⎨

⎩
I = I ′ + ∂S

∂θ
, θ ′ = θ + ∂S

∂I′ ,

u = u′ + ∂S
∂v , v′ = v + ∂S

∂u′ ,
(3.18)

and assume that S is O(εm).
Inserting I = I ′ + ∂S

∂θ
, u = u′ + ∂S

∂v into Hm, one finds

Hm

(
I ′ +

∂S
∂θ

, θ , u′ +
∂S
∂v

, v
)

= ωm+1 · I ′ +�m+1u′ · v′ + Q
(
I ′, u′, v′)

+ωm+1 · ∂S
∂θ

+�m+1
(

v · ∂S
∂v

– u′ · ∂S
∂u′

)
+ P2m

(
I ′, θ , u′, v

)

+ Pm+1 + ε
∑

|j|≥Lm+2

fj

(
I ′ +

∂S
∂θ

, θ , u′ +
∂S
∂v

, v
)

,

where Pm+1 = Pm+1 + ε
∑

Lm+1≤|j|<Lm+2
fj(I ′ + ∂S

∂θ
, θ , u′ + ∂S

∂v , v) and

Pm+1 = Q
(

I ′ +
∂S
∂θ

, u′ +
∂S
∂v

, v
)

– Q
(
I ′, u′, v′) + P3m

(
I ′ +

∂S
∂θ

, θ , u′ +
∂S
∂v

, v
)

+ P2m

(
I ′ +

∂S
∂θ

, θ , u′ +
∂S
∂v

, v
)

– P2m
(
I ′, θ , u′, v

)
.

Clearly, we hope to find the transformation S satisfying

ωm+1 · ∂S
∂θ

+�m+1 ·
(

v · ∂S
∂v

– u′ · ∂S
∂u′

)
+ P2m

(
I ′, θ , u′, v

)
= 0, (3.19)

i.e., the homological equation. �

3.5 Solutions to the homological equations and investigation of Cm+1

We can solve (3.19) by means of Fourier series, and we find

Skpqq̄ =

⎧
⎨

⎩

Rm
kpqq̄√

–1〈k,ωm+1〉+〈q̄–q,�m+1〉 |k| + |q – q̄| 	= 0,

0 otherwise.
(3.20)

Thus

S = S
(
I ′, θ , u′, v, ξ

)
=

∑

|k|+|q–q̄|	=0

Rm
kpqq̄(ξ )e

√
–1k·θ I ′pu′qvq̄

√
–1〈k,ωm+1〉 + 〈q̄ – q,�m+1〉 . (3.21)

In general, the sum in (3.21) will diverge. To cure this problem, we first reduce the infinite
sum to a finite one. By the definition of P2m, we can restrict the sum in (3.21) to vectors
k ∈X

m+1 with

X
m+1 ≡ {

k ∈ Z
2Lm+1 : 0 < |k| < Mm+1

}
. (3.22)
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With these restrictions, the sum in (3.21) contains only a finite number of terms, and a
simple estimate shows this number is bounded by (2Mm+1)(2Lm+1).

To prevent that the sum in (3.21) fails to be well defined, we exclude

Rm ≡ {
ξ ∈�m : ∃k ∈X

m+1 s.t.
∣∣k ·ωm+1∣∣ < (εm)γ

}
, (3.23)

and set �m+1 =�m \ Rm.
Now we start to estimate �m+1. By the definition of Xm+1,

Rm ∩
( ∏

|j|>Lm+1

R+

)
= ∅,

therefore we just need to consider the finite dimensional situation. Let ξ (m) = (ξ )|j|≤Lm+1 ,
ωm+1(m) = {(ωm+1

j )(ξ (m))}|j|≤Lm+1 ,�m(m) = �m ∩ (
∏

|j|≤Lm+1
R+),Om(m) be the complex

wm-neighborhood of �m(m). In view of estimates (l.3) with l = m + 1 and assumption
(B2), it is easy to see that, if 0 < ε < ε∗ < δa

2 ,

∣∣∣∣
∂ωm+1(m)
∂ξ (m)

∣∣∣∣
Om(m)

≥ δa

2
.

Moreover, by the inverse function theorem, there exists the inverse (ωm+1(m))–1(ω(m)) for
ω(m) ∈ ωm+1(m)(Om(m)) =def �m, and

∣∣∣∣
∂(ωm+1(m))–1

∂ω(m)

∣∣∣∣
�m

≤ K2

δa
, here K2 = max

ξ∈�
∣∣ω(ξ )

∣∣∞.

Obviously, the Kolmogorov measure

Prob
{
ω(m) ∈ (

ωm+1(m)
)–1(

�m(m)
)

:
∣∣k ·ω(m)

∣∣ ≤ (εm)γ
} ≤ C(εm)γ , k ∈X

m+1,

then

Prob
{
ξ (m) ∈�m(m) :

∣∣k ·ωm+1(m)
∣∣ ≤ (εm)γ

} ≤ CK3(εm)γ , k ∈X
m+1,

here K3 = maxξ (m)∈�m(m) | ∂ωm+1(m)
∂ξ (m) |. Hence

Prob
{
ξ ∈�m :

∣∣k ·ωm+1∣∣ ≤ (εm)γ
} ≤ CK3(εm)γ , k ∈X

m+1.

Since there are at most (2Mm+1)2Lm+1 vectors in X
m+1, we find that Prob(�m\�m+1) is

bounded by (εm)κ for some 0 < κ < γ , and the bound on Prob(�m+1) follows.
We can bound the denominators in (3.21) only if ξ ∈�m+1. However, note that for any

ξ ′ ∈Om+1, we can write

k ·ωm+1(
ξ ′)

= k ·ωm+1(ξ )
{

1 –
(
k ·ωm+1(ξ )

)–1[
k ·ωm+1(ξ ) – k ·ωm+1(

ξ ′)]}
. (3.24)
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Since

∣∣k ·ωm+1(ξ ) – k ·ωm+1(
ξ ′)∣∣ ≤

∑

|j|≤Lm+1

|kj|
∣∣∣∣

∑

|i|≤Lm+1

∂ωm+1
j

∂ξi

(
ξi – ξ ′

i
)∣∣∣∣

≤ (εm)2γ
∑

|i|,|j|≤Lm+1

|kj|
{∣∣∣∣
∂(ωm+1

j –ωj)
∂ξi

∣∣∣∣ +
∣∣∣∣
∂ωj

∂ξi

∣∣∣∣

}

≤ (εm)2γ (
δb + 4Lm+1ε

1/6) ∑

|j|≤Lm+1

|kj|

≤ (εm)2γ (
δb + 4Lm+1ε

1/6)
Mm+1, (3.25)

thus, for ε small enough, one gets

∣∣(k ·ωm+1(ξ )
)–1[

k ·ωm+1(ξ ) – k ·ωm+1(
ξ ′)]∣∣ ≤ (εm)γ

(
δb + 4Lm+1ε

1/6)
Mm+1 ≤ 1

2
.

Therefore

∣∣k ·ωm+1(
ξ ′)∣∣ ≥ 1

2
(εm)γ (3.26)

remains valid on the domain Om+1.
For these preparations, we now can estimate the transformation S = S(I ′, θ , u′, v). For the

estimates, we decompose P2m = R0 + R1 + R2, where Rj comprises |q + q̄| = j; and further-
more,

R0 = R00,

R1 =
〈
R10, u(m)

〉
+

〈
R01, v(m)

〉
,

R2 =
〈
R20u(m), u(m)

〉
+

〈
R11u(m), v(m)

〉
+

〈
R02v(m), v(m)

〉
,

(3.27)

where Rij depend on θ , ξ , and R00 depends in addition on I . With a similar decomposition
of S, it suffices to discuss each term individually. In the following we do this for Ṡ = S10 and
S̈ = S11.

Consider the term Ṡ = S10, and the corresponding coefficient of Ṡ is given by

Ṡk,j =
Ṙk,j√

–1k ·ωm+1 –�m+1
j

, |j| ≤ Lm+1, |k| ≤ Mm+1. (3.28)

By the small divisor assumptions, we have

∣∣√–1k ·ω –�m+1
j

∣∣Om+1 ≥ min

{
(εm)γ

2
,

1
2jN

}
≥ (εm)γ

2



Li Advances in Difference Equations  (2018) 2018:157 Page 16 of 22

and thus |Ṡk,j|Om+1 ≤ 2(εm)–γ |Ṙk,j|Om . Hence

|Ṡj|D1
m×Om+1 ≤

∑

|k|≤Mm+1

|Ṡk,j|Om+1 e|k|(δm– bm
2 )

≤ 2(εm)–γ
∑

|k|≤Mm+1

|Ṙk,j|Om e|k|(δm– bm
2 )

≤ 2(εm)–γ
∑

|k|≤Mm+1

|Ṙj|Dm×Om e–|k| bm
2

≤ 2
(

2
bm

)2Lm+1

(εm)–γ |Ṙj|Dm×Om .

Therefore

∣∣〈S10, u′(m + 1)
〉∣∣D1

m×Om+1 ≤
∑

|j|≤Lm+1

∣∣Ṡju′
j
∣∣D1

m×Om+1

≤ 2
(

2
bm

)2Lm+1

(εm)–γ
∑

|j|≤Lm+1

δm
j |Ṙj|Dm×Om

(by Cauchy estimate) ≤ C(m)Lm+1

(
2

bm

)2Lm+1

(εm)1–γ .

Consider now the term S̈ = S11, and the corresponding coefficient of S̈ is given by

S̈k,ij =
R̈k,ij√

–1k ·ωm+1 +�m+1
j –�m+1

i
, |i|, |j| ≤ Lm+1, |k| ≤ Mm+1. (3.29)

Without loss of generality, let i > j, and from the norm frequencies assumption, we get

∣∣�m+1
j –�m+1

i
∣∣Om ≥ j–N–1 – 2(εn(j))2/9 ≥ L–N–1

m+1 – 2(εm)2/9.

Choose ε small enough such that

[
2(εm)2/9 + (εm)γ

](
2
3

(1 + β)| ln εm+1|
) N+1

1+α ≤ 1.

Thus

∣∣�m+1
j –�m+1

i
∣∣Om ≥ (εm)γ , i 	= j. (3.30)

For Om+1 ⊂Om, the small divisor satisfies

∣∣√–1k ·ωm+1 +�m+1
j –�m+1

i
∣∣Om+1 ≥ 1

2
(εm)γ . (3.31)

Using this estimate, we see that

|S̈k,ij|Om+1 ≤ 2(εm)–γ |R̈k,ij|Om , |i|, |j| ≤ Lm+1, |k| ≤ Mm+1. (3.32)
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Hence

|S̈ij|D1
m×Om+1 ≤

∑

|k|≤Mm+1

|S̈k,ij|Om+1 e|k|(δm– bm
2 )

≤ 2(εm)–γ
∑

|k|≤Mm+1

|R̈k,ij|Om e|k|(δm– bm
2 )

≤ 2(εm)–γ
∑

|k|≤Mm+1

|R̈ij|Dm×Om e– bm
2 |k|

≤ 2
(

2
bm

)2Lm+1

(εm)–γ |R̈ij|Dm×Om .

Therefore

∣∣〈S11u′(m + 1), v(m + 1)
〉∣∣D1

m×Om+1 ≤
∑

|i|,|j|≤Lm+1

∣∣S̈iju′
ivj

∣∣D1
m×Om+1

≤ 2( 2
bm

)2Lm+1

(εm)γ
∑

|i|,|j|≤Lm+1

δm
i δ

m
j |R̈ij|Dm×Om

(by Cauchy estimate) ≤ C(m)L2
m+1

(
2

bm

)2Lm+1

(εm)1–γ .

The remaining terms of S can be estimated in the same line. Therefore we obtain

|S|D1
m×Om+1 ≤ C(m)L2

m+1

(
2

bm

)2Lm+1

(εm)1–γ ≤ (εm)1–γ , (3.33)

where we have written 2γ as γ by abuse of notation.
Using the similar discussion in the proof of Lemma (a) and the Cauchy estimate, on the

domain D2
m ×Om+1, one has

∣∣∣∣
∂S
∂I ′

j

∣∣∣∣ ≤ 4
(
ρm

j
)–1(εm)1–γ ,

∣∣∣∣
∂S
∂θj

∣∣∣∣ ≤ 4(bm)–1(εm)1–γ ,

∣∣∣∣
∂S
∂u′

j

∣∣∣∣,
∣∣∣∣
∂S
∂vj

∣∣∣∣ ≤ 4
(
�m

j
)–1(εm)1–γ , |j| ≤ Lm

∣∣∣∣
∂S
∂I ′

j

∣∣∣∣ ≤ 4
(
ρm

j
)–1(εm)–γ e– 3

2 (|k|–1)1+α
,

∣∣∣∣
∂S
∂θj

∣∣∣∣ ≤ 4(bm)–1(εm)–γ e– 3
2 (|k|–1)1+α

,

∣∣∣∣
∂S
∂u′

j

∣∣∣∣,
∣∣∣∣
∂S
∂vj

∣∣∣∣ ≤ 4
(
�m

j
)–1(εm)–γ e– 3

2 (|k|–1)1+α
, Lm < |j| ≤ Lm+1.

(3.34)

Choose β ,γ small enough, thus

∣∣∣∣
∂S
∂I ′

j

∣∣∣∣
D2

m×Om+1

� bm

8
,

∣∣∣∣
∂S
∂θj

∣∣∣∣
D2

m×Om+1

� ρm
j

8
,

∣∣∣∣
∂S
∂u′

j

∣∣∣∣
D2

m×Om+1

,
∣∣∣∣
∂S
∂vj

∣∣∣∣
D2

m×Om+1

� �m
j

8
, |j| ≤ Lm+1.

(3.35)
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By the analytic inverse function theorems, the equations

I = I ′ +
∂S
∂θ

(
I ′, θ , u′, v, ξ

)
, θ ′ = θ +

∂S
∂I ′

(
I ′, θ , u′, v, ξ

)
,

u = u′ +
∂S
∂v

(
I ′, θ , u′, v, ξ

)
, v′ = v +

∂S
∂u′

(
I ′, θ , u′, v, ξ

) (3.36)

can be inverted to yield an analytic and invertible canonical transformation on the domain
Dm+1 ×Om+1. More precisely, we have

Cm+1
(
I ′, θ ′, u′, v′) =

(
I ′ +�

(
I ′, θ ′, u′, v′, ξ

)
, θ ′ +�

(
I ′, θ ′, u′, v′, ξ

)
,

u′ +�
(
I ′, θ ′, u′, v′, ξ

)
, v′ +ϒ

(
I ′, θ ′, u′, v′, ξ

))
(3.37)

maps Dm+1 ×Om+1 into Dm ×Om. Furthermore, on the domain Dm+1 ×Om+1, we get

|�j| ≤ (εm)1–γ ≤ (εm)
8
9 , |�j| ≤ (εm)

1
3 –β–γ ≤ (εm)

2
9 , |j| ≤ Lm,

|�j|, |ϒj| ≤ (εm)
2
3 –β–γ ≤ (εm)

5
9 ,

|�j| ≤ 4(bm)–1(εm)–γ e– 3
2 (|k|–1)1+α ≤ (εm)1–γ ≤ (εm)

8
9 , Lm < |j| ≤ Lm+1,

|�j| ≤ 4
(
ρm

j
)–1(εm)–γ e– 3

2 (|k|–1)1+α ≤ (εm)
1
3 –β–γ ≤ (εm)

2
9 ,

|�j|, |ϒj| ≤ 4
(
�m

j
)–1(εm)–γ e– 3

2 (|k|–1)1+α ≤ (εm)
2
3 –β–γ ≤ (εm)

5
9 .

(3.38)

Since Cm+1 = Cm ◦ Cm+1,

m+1(I, θ , u, v) =�(I, θ , u, v) +m(I +�, θ +�, u +�, v +ϒ),

�m+1(I, θ , u, v) =�(I, θ , u, v) +�m(I +�, θ +�, u +�, v +ϒ),

φm+1(I, θ , u, v) =�(I, θ , u, v) + φm(I +�, θ +�, u +�, v +ϒ),

ψm+1(I, θ , u, v) =ϒ(I, θ , u, v) +ψm(I +�, θ +�, u +�, v +ϒ),

and (3.38) imply the bounds on Cm+1 stated in (3.6) with l = m + 1. In addition, on the
domain Dm+1 ×Om+1, by Cauchy estimate and (3.38), we obtain

∣∣m+1
j –m

j
∣∣ =

∣∣�j +m
j (I +�, θ +�, u +�, v +ϒ) –m

j (I, θ , u, v)
∣∣

≤ (εm)
8
9 +

∑

|i|≤Lm+1

{∣∣∣∣
∂m

j

∂Ii

∣∣∣∣
D2

m
|�i|Dm+1 +

∣∣∣∣
∂m

j

∂θi

∣∣∣∣
D2

m
|�i|Dm+1

+
∣∣∣∣
∂m

j

∂ui

∣∣∣∣
D2

m
|�i|Dm+1 +

∣∣∣∣
∂m

j

∂vi

∣∣∣∣
D2

m
|ϒi|Dm+1

}
,

≤ (εm)
8
9 +

∣∣m
j

∣∣Dm
{ ∑

|i|≤Lm

C(m)(εm)
2
9 –β

+
∑

Lm<|i|≤Lm+1

C(m)(εm)
1
3 –2β–γ

}
≤ (εm)

1
6 , |j| ≤ Lm+1. (3.39)
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Making use of the same way to the other three terms, on the domain Dm+1 × Om+1, one
gets

∣∣�m+1
j –�m

j
∣∣,

∣∣φm+1
j – φm

j
∣∣,

∣∣ψm+1
j –ψm

j
∣∣ ≤ (εm)

1
6 , |j| ≤ Lm+1. (3.40)

By virtue of the fact that S does not depend on (Ij, θj, uj, vj) with |j| > Lm+1, we see that
Cm+1, and hence Cm+1 will reduce to the identity at these sites. Then with these bounds we
conclude that

∣∣Cm+1 – Cm∣∣Dm+1×Om+1
∞ ≤ (εm)

1
6 . (3.41)

It remains to verify l.2 with l = m + 1. Write Hm+1 = Hm ◦ Cm+1(I ′, θ ′, u′, v′) = Hm(I ′ +
�, θ ′ +�, u′ +�, v′ +ϒ), which is in turn equal to

ωm+1 · I ′ +�m+1u′ · v′ + Q
(
I ′, u′, v′) + Pm+1 + ε

∑

|j|≥Lm+2

fj
(
I ′, θ ′, u′, v′)

with Pm+1 having the form

∑

|j|≤Lm+1

(
2
∣∣I ′

j
∣∣|�j| + |�j|2

)
+

∑

|j|≤Lm+1

(∣∣u′
j – v′

j –�j +ϒj
∣∣4 –

∣∣u′
j – v′

j
∣∣4)

+ P3m

+
∑

|j|≤Lm+1

∫ 1

0

{
∂P2m

∂Ij

(
I ′ + t�, θ , u′ +�, v

)
�j

+
∂P2m

∂uj

(
I ′ +�, θ , u′ + t�, v

)
�j

}
dt. (3.42)

Now we estimate Pm+1. From (3.38), the first term in (3.42) is bounded on the domain
Dm+1 ×Om+1 by

2Lm+1
[
2–3m–5τ (εm+1)

2+2β
3 (εm)1–γ + (εm)2–2γ ] ≤ (εm)

3
2 . (3.43)

The second term in (3.42) can be similarly estimated on Dm+1 × Om+1 by (εm) 3
2 . Finally,

the fourth term in (3.42) is bounded by using similar discussion as that in the proof of
Lemma 3.3(a) on the domain Dm+1 ×Om+1, and we find it is less than

2Lm+1
[
C(m)(εm)

1
3 –β (εm)1–γ + C(m)(εm)

2
3 –β (εm)

2
3 –β–γ ] ≤ (εm)

5
4 = εm+1. (3.44)

Thus, with (3.17), we obtain that

∣∣Pm+1∣∣Dm+1×Om+1 ≤ C(m + 1)εm+1

completing the verification of l.2 with l = m + 1 and the proof of Lemma 3.2.

4 Proof of the theorem

Proof of Theorem 3.1 The proof is finished by running Lemma 3.2. Obviously, the Hamil-
tonian H defined by (2.9) satisfies conditions (l.1)–(l.6), with l = 0. Thus, the iterative
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lemma (Lemma 3.2) works. Inductively, we get the following sequences:

Dm+1 ×�m+1 ⊂Dm+1 ×�m+1,

Cm+1 : Dm+1 ×�m+1 →D0,

Hm+1 = Hm ◦ Cm+1 = ωm+1 · I +�m+1u · v + Q + Pm+1 + ε
∑

|j|≥Lm+2

fj.

Let

�∞ =
∞⋂

m=0

�m,

D∞ =
{

(I, θ , u, v) ∈C
Z ×C

Z ×C
Z ×C

Z : Ij = uj = vj = 0, | Im θj| <
δ0

2
, j ∈ Z

}
.

By (3.41), l.2, and l.3, we conclude that Hm,Cm converges uniformly on the domain D∞ ×
�∞, and

C∞ = lim
m→∞Cm,

H∞ = ω∞ · I +�∞u · v + Q.

Thus, TZ × {0} × {0} × {0} is an embedding torus with rotational frequencies ω∞ ∈�∞
of the Hamiltonian H∞. Returning to the original Hamiltonian H , it has an embedding
torus C∞(TZ × {0} × {0} × {0}) with frequencies ω∞. This proves the theorem. �

Proof of Theorem 1.1 By Sect. 2, Theorem 1.1 is just a corollary of Theorem 3.1. �
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