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Abstract
In this paper, we consider the stochastic Lotka–Volterra model with additive jump
noises. We show some desired properties of the solution such as existence and
uniqueness of positive strong solution, unique stationary distribution, and
exponential ergodicity. After that, we investigate the maximum likelihood estimation
for the drift coefficients based on continuous time observations. The likelihood
function and explicit estimator are derived by using semimartingale theory. In
addition, consistency and asymptotic normality of the estimator are proved. Finally,
computer simulations are presented to illustrate our results.
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1 Introduction
The following famous population dynamics

dXt = Xt(a – bXt) dt

is often used to model population growth of a single species, where Xt represents its pop-
ulation size at time t, a > 0 is the rate of growth, and b > 0 represents the effect of in-
traspecies interaction. This equation is also known as the Lotka–Volterra model or logistic
equation. In this paper, we consider one-dimensional stochastic Lotka–Volterra equation
with both multiplicative Brownian noises and additive jump noises, that is,

⎧
⎨

⎩

dXt = Xt(a – bXt) dt + σXt dWt + r dJt , for all t ≥ 0,

X0 = x0, a.s.,
(1.1)

where x0 is a positive initial value, a, b, σ , r ∈ (0,∞), (Wt)t≥0 is a one-dimensional
Brownian motion (which is also known as the Wiener process), and (Jt)t≥0 is a one-
dimensional subordinator independent of (Wt)t≥0 (the precise characterization is given
below in Sect. 2). The “a.s.” above is the abbreviation of “almost surely”. Suppose that σ

and r are known parameters, while a and b are unknown parameters. We will focus on the
maximum likelihood estimation (MLE) of the parameter θ = (a, b)′ ∈ R

2
++ based on the

continuous time observations of the path XT := (Xt)0≤t≤T . Here and after, ′ denotes the
transposition of a vector or a matrix.
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Stochastic Lotka–Volterra equation, being a reasonable and popular approach to model
population dynamics perturbed by random environment, has recently been studied by
many authors both from a mathematical perspective and in the context of real biologi-
cal dynamics. For the mathematical studies, see, for example, [1–8]. In particular, Mao
et al. [3] investigated a multi-dimensional stochastic Lotka–Volterra system driven by
one-dimensional standard Brownian motion. They revealed that the environmental noise
could suppress population explosion. Later, Mao [4] proved a finite second moment of the
stationary distribution under Brownian noise, which is very important in application.

The other case is the stochastic dynamics with Lévy noise, which can be used to describe
the sudden environmental shocks, e.g., earthquakes, hurricanes, and epidemics. Bao et
al. [5] considered a competitive Lotka–Volterra population model with Lévy jumps, see
also Bao et al. [6]. Recently, Zhang et al. [8] considered a stochastic Lotka–Volterra model
driven by α-stable noise, they got a unique positive strong solution of their model. More-
over, they proved stationary property and exponential ergodicity under relatively small
noise and extinction under large enough noise.

We note that our equation (1.1) cannot be covered by [5, 6, 8]. The proof of positive
solution in [5, 8] heavily depends on the explicit solution of the corresponding equation.
This method does not work for our equation (1.1). We turn to prove that the hitting time
of point 0 of the solution is almost surely infinite. We also prove that stationary property
and exponential ergodicity do not depend on the weight of the noise, which is different
from the conditions needed in [5, 6, 8]. From this point of view, equation (1.1) has its own
interest.

On the other hand, the study of the influence of noise is active in the context of real
ecosystems. The influence of noise is of paramount importance in open systems, and
many noise induced phenomena have been found, like stochastic resonance, noise en-
hanced stability, noise delayed extinction, and so on. For more details, see, for example,
[9–11]. However, in this paper, we shall mainly study our equation (1.1) from the view of
mathematics.

We notice that there are huge works in economics and finance considering MLE of jump-
diffusion models, where the data is usually observed discretely. In this case, transition
densities play an important role, but their closed-form expressions cannot be obtained in
general. It will be computationally expensive to conduct MLE. To overcome the difficulty,
a popular method is to use closed-form expansions to approximate transition densities. To
deepen this topic, we refer the reader to [12–14] and the references therein. The situation
of this paper is different from the topic mentioned above. We focus on the MLE of equation
(1.1) with regard to the continuous observations. The main difficulty is how to check the
existence of the likelihood function. After that, we can get our MLE explicitly.

Our motivation also comes from the problem of parameter estimation for jump-type
CIR (Cox–Ingersoll–Ross) process as in Barczy et al. [15] (for related topics, see, e.g., Li
et al. [16]). The authors considered the following jump-type CIR process:

⎧
⎨

⎩

dXt = (a – bXt) dt +
√

Xt dWt + dJt , for all t ≥ 0,

X0 = x0, a.s.,

where (Wt)t≥0 and (Jt)t≥0 are the same as in equation (1.1). By using the Laplace transform
of the process

∫ t
0 Xs ds, t ≥ 0, they proved the asymptotic properties of MLE of b under
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different cases. As the authors pointed out, the asymptotic property for MLE of a or joint
MLE of (a, b) is still open because of the lack of the necessary explicit Laplace transform
∫ t

0 1/Xs ds, t ≥ 0. By studying equation (1.1), we wish to bring some light to this question.
For other topics of statical inference for stochastic processes, the reader can refer to the
excellent monograph [17].

The rest of this paper is organized as follows. In Sect. 2, we firstly prove the existence
of a unique strong positive solution of equation (1.1). After that, we derive the unique
stationary distribution and the exponential ergodicity of the solution. In Sect. 3, joint MLE
of parameter θ = (a, b)′ is deduced from the theory of semimartingale. We prove the strong
consistency and asymptotic normality in Sect. 4. In Sect. 5, we illustrate our results by
computer simulations.

2 Preliminaries
Let (�,F , (Ft)t≥0,P) be a filtered probability space with the filtration (Ft)t≥0 satisfying the
usual conditions. Equation (1.1) will be considered in this probability space. Let (Wt)t≥0 in
equation (1.1) be a Wiener process. We assume that the jump process (Jt)t≥0 in equation
(1.1) is a subordinator with zero drift. That is, its characteristic function takes the form

E
(
eiuJt

)
= t

∫ ∞

0

(
eiuz – 1

)
ν(dz), (2.1)

where ν is the Lévy measure concentrated on (0,∞) satisfying

∫ ∞

0
(z ∧ 1)ν(dz) < ∞. (2.2)

We recall that a subordinator is an increasing Lévy process. For example, the Poisson pro-
cess, α-stable subordinators, and gamma subordinators are all of this type; for more de-
tails, see, e.g., Applebaum [18] p. 52–54. Moreover, we suppose that (Wt)t≥0 and (Jt)t≥0 in
(1.1) are independent. Let N(dt, dz) be the random measure associated with the subordi-
nator (Jt)t∈R+ , that is,

N(dt, dz) :=
∑

u≥0

1{�Ju(ω) 	=0}δ(u,�Ju(ω))(dt, dz),

where δp is the Dirac measure at point p. Let Ñ(dt, dz) := N(dt, dz) – ν(dz) dt. Then, for
t ∈R+, we can write equation (1.1) as

Xt = x0 +
∫ t

0
(a – bXs)Xs ds +

∫ t

0

∫ ∞

0
rzν(dz) ds

+
∫ t

0
σXs dWs +

∫ t

0

∫ ∞

0
rzÑ(ds, dz). (2.3)

The following assumptions are needed.
(A1) a, b, σ , r ∈ (0,∞) and

∫ ∞
0 zν(dz) < ∞.

(A2)
∫ ∞

0 z2ν(dz) < ∞.
Throughout this paper, we write R, R+, and R++ for real numbers, nonnegative real num-
bers, and positive real numbers, respectively. The value of constant C with or without
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subscript may vary from line to line. First, we prove there is a unique strong positive so-
lution for equation (2.3).

Proposition 2.1 Assume that (A1) holds. Then, for any x0 ∈ R++, there is a unique
strong solution (Xt)t∈R+ of equation (2.3) such that P(X0 = x0) = 1 and
P(Xt ∈R++ for all t ∈R+) = 1.

Proof Since the coefficients of equation (2.3) are locally Lipschitz continuous, for the given
initial value x0 ∈R++, there is a unique solution Xt on [0, τe), where τe is the explosion time.
In the following, we shall prove that the solution is nonexplosive and positive. The proof
below is divided into two steps.

Step 1: We show that the solution of (2.3) is nonexplosive. That is, τe = ∞ a.s. To this
end, let k0 be a sufficiently large real number such that x0 < k0. For each integer k > k0,
define the stopping time

τk := inf
{

t ∈ [0, τe) : Xt > k
}

,

and we set inf{∅} = ∞ by invention. It is easy to see that τk is increasing as k → ∞. Let
τ∞ = limk→∞ τk , then τ∞ ≤ τe a.s. If we can prove τ∞ = ∞ a.s., then τe = ∞ a.s. Let T > 0
be arbitrary. For any 0 ≤ t ≤ T , we have

Xt∧τk = x0 +
∫ t∧τk

0
(a – bXs)Xs ds +

∫ t∧τk

0

∫ ∞

0
rzν(dz) ds

+
∫ t∧τk

0
σXs dWs +

∫ t∧τk

0

∫ ∞

0
rzÑ(ds, dz).

Taking the expectation, we get

E(Xt∧τk ) = x0 +
∫ t∧τk

0

∫ ∞

0
rzν(dz) ds + E

(∫ t∧τk

0
(a – bXs)Xs ds

)

≤ x0 + rT
∫ ∞

0
zν(dz) + a

∫ t

0
E(Xs∧τk ) ds.

By using Gronwall’s inequality

E(XT∧τk ) ≤
(

x0 + rT
∫ ∞

0
zν(dz)

)

eaT ≤ C.

On the other hand,

P(τk ≤ T)k = E(XT∧τk 1{τk≤T}) ≤ E(XT∧τk ),

therefore

P(τk ≤ T)k ≤ C.

Putting k → ∞ yields

P(τ∞ ≤ T) = 0.
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Since T is arbitrary, we get

P(τ∞ = ∞) = 1.

Step 2: We show that the solution is positive. Let τ̃0 := inf{t ∈ [0,∞) : Xt = 0}. Let k̃0 be a
large enough number such that x0 > 1/k̃0. For each integer k > k̃0, define the stopping time

τ̃k := inf
{

t ∈ [0,∞) : Xt < 1/k
}

.

Similarly, if we can prove τ̃∞ := limk→∞ τ̃k = ∞ a.s., then we get τ̃0 = ∞ a.s., which implies
the positive solution. Let g(x) = x – log x, for any 0 ≤ t ≤ T , by Itô’s formula

g(Xt∧τ̃k ) = g(x0) +
∫ t∧τ̃k

0
Ag(Xs) ds + Mt∧τ̃k ,

where

Ag(x) = –bx2 + (a + b)x + a + σ 2/2

+ r
∫ ∞

0
zν(dz) +

∫ ∞

0

[
log x – log(x + rz)

]
ν(dz)

and Mt∧τ̃k is a local martingale defined by

Mt∧τ̃k =
∫ t∧τ̃k

0

∫ ∞

0

[
rz + log Xs– – log(Xs– + rz)

]
Ñ(ds, dz)

+
∫ t∧τ̃k

0
σ (Xs – 1) dWs.

Note that (Mt∧τ̃k )t∈R+ is a true martingale and
∫ ∞

0 [log x – log(x + rz)]ν(dz) ≤ 0. Therefore,
there exists a positive number C such that Af (x) ≤ C for all x ∈R+, it follows

E
(
g(XT∧τ̃k )

) ≤ g(x0) + C.

On the other hand,

E
(
g(XT∧τ̃k )

) ≥ P(τ̃k ≤ T)(1/k + log k).

By taking k → ∞ and T → ∞, we get

P(τ̃∞ = ∞) = 1.

The proof is complete. �

Remark 2.2 From the study of real ecosystems (see, e.g., [19]), it is known that the effects
of random fluctuations are proportional to the population size in the presence of mul-
tiplicative noise, while they are not proportional to the population size any more in the
presence of additive noise. For the latter case, strongly negative values of the noise can
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cause negative values of the population size. For our equation, there are in fact two types
of noise: one is the multiplicative Brownian noise and the other one is additive positive
jump noise. Due to the positivity of the additive noise, our equation has a unique positive
solution. Therefore, the phenomena stated above are not in contradiction with our result.

In the following, our aim is to show that under assumption (A1) equation (2.3) has a
unique stationary distribution. We need the following lemmas.

Lemma 2.3 Let assumption (A1) hold. Then there exists a constant C > 0 such that

sup
t∈R+

E(Xt) ≤ C.

Proof Applying Itô’s formula, we have

E
(
etXt

)
= x0 + E

∫ t

0
es

(

Xs + aXs – bX2
s + r

∫ ∞

0
zν(dz)

)

ds.

It is easy to see that (a + 1)x – bx2 + r
∫ ∞

0 zν(dz) has an upper bound for all x ∈R+. Hence

et
E(Xt) ≤ x0 + C

(
et – 1

)
,

which implies the desired result. �

Lemma 2.4 Under assumption (A1), equation (2.3) has the Feller property.

Proof The proof is essentially the same as the proof of Lemma 3.2 of [7], so we omit the
proof. �

Based on the standard argument, we can obtain the following result from Lemma 2.3
and Lemma 2.4 (see, e.g., [7, 20]).

Proposition 2.5 Under assumption (A1), equation (2.3) has a unique stationary distribu-
tion.

Proposition 2.6 Under assumption (A1), equation (2.3) is exponentially ergodic.

Proof We define the Lyapunov function V (x) = x. Then

LV (x) = (a – bx)x + r
∫ ∞

0
zν(dz),

where L is the infinitesimal generator of the solution (Xt)t∈R+ . It is easy to see, for all x ∈
R++, there exist two positive constants γ and K such that

LV (x) + γ V (x) = (a + γ )x – bx2 + r
∫ ∞

0
zν(dz) ≤ K ,

which satisfies the condition for exponential ergodicity in [21]. Then our desired result
follows from Theorem 6.1 of [21]. �
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Remark 2.7 The results above show that stationary property and exponential ergodicity
do not depend on the weight of the noise. These are different from the conditions needed
in [5, 6, 8], in which the results only hold under relatively small noise.

Here is a result we will use later to prove the existence of the likelihood function.

Proposition 2.8 Suppose that assumption (A1) holds, then

∫ t

0
X2

s ds < ∞ a.s.

for t ∈R+.

Proof From equation (2.3), for t ∈R+, we have

Xt +
b
2

∫ t

0
X2

s ds = x0 +
∫ t

0

(

aXs –
b
2

X2
s + r

∫ ∞

0
zν(dz)

)

ds

+
∫ t

0
σXs dWs +

∫ t

0

∫ ∞

0
rzÑ(ds, dz).

By taking the expectation and noting that function ax – b/2x2 + r
∫ ∞

0 zν(dz) has an upper
bound, we obtain

E

∫ t

0
X2

s ds ≤ x0 + Ct,

which implies our result. �

3 Existence and uniqueness of MLE
In this section, we shall deduce our maximum likelihood estimation by using the semi-
martingale theory.

Let D := D(R+,R) be the space of càdlàg functions (right-continuous with left limits)
fromR+ toR. We denote by (Bt(D))t≥0 the canonical filtration onD. That is, for the canon-
ical process η = (ηt)t≥0 defined by

ηt : D � ω → ω(t) ∈R.

Then

Bt(D) :=
⋂

ε>0

σ (ηs; s ≤ t + ε).

Let B(D) be the smallest σ -algebra containing (Bt(D))t≥0. We shall call (D,B(D),
(Bt(D))t≥0) the canonical space.

In this section, we denote by Xθ = (Xθ
t )t∈R+ the unique strong solution of equation (2.3)

with parameter θ = (a, b)′. Let Pθ be the probability measures induced by Xθ on the canon-
ical space and P

θ
t be the restriction probability measure of Pθ on σ -algebra Bt(D). We can
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write equation (2.3) in the form

Xt = x0 +
∫ t

0
(a – bXt)Xt dt +

∫ t

0

∫ ∞

0
rz1{rz≤1}ν(dz) ds

+
∫ t

0
σXt dWt +

∫ t

0

∫ ∞

0
rz1{rz≤1}Ñ(ds, dz)

+
∫ t

0

∫ ∞

0
rz1{rz>1}N(ds, dz).

This form is the so-called Grigelionis decomposition for a semimartingale (see, e.g., [22]
Theorem 2.1.2 and [23]). It follows that, under probability measure P

θ , (ηt)t∈R+ is a semi-
martingale with semimartingale characteristics (Bθ , Cθ ,μθ ), where

Bθ
t =

∫ t

0

[

(a – bηs)ηs +
∫ ∞

0
rz1{rz≤1}ν(dz)

]

ds, (3.1)

Cθ
t = σ 2

∫ t

0
η2

s ds (3.2)

and

μθ (dt, dz) = K(ηt , dz) dt,

where K is a Borel kernel from R++ to R++ given by

K(x, A) =
∫ ∞

0
1A(rxz)ν(dz)

for t ∈R+ and A ∈ B(R++).
In order to get the likelihood ratio process, we present the following result from [23],

see also [15, 24].

Lemma 3.1 Let � be a parametric space. For ψ , ψ̃ ∈ � , let Pψ and P
ψ̃ be two proba-

bility measures on the canonical space (D,B(D), (Bt(D))t≥0). We assume that, under these
two probability measures, the canonical process (ηt)t∈R+ is a semimartingale with char-
acteristics (Bψ , Cψ ,μψ ) and (Bψ̃ , Cψ̃ ,μψ̃ ), respectively. We further assume that, for each
φ ∈ {ψ , ψ̃}, there exists a nondecreasing, continuous, and adapted process (Fφ

t )t∈R+ with
Fφ

0 = 0 and a predictable process (cφ
t )t∈R+ such that

Cφ
t =

∫ t

0
cφ

s dFφ
s P

φ-a.s. for every t ∈R+.

This can be guaranteed by the condition
(B1) P

φ(μφ({t} ×R) = 0) = 1 for each φ ∈ {ψ , ψ̃}.
Let P be the predictable σ -algebra on D×R+. We also assume that there exist a P ⊗B(R)-
measurable function V ψ ,ψ̃ : D×R+ ×R → R++ and a predictable R-valued process βψ ,ψ̃

satisfying
(B2) μψ (dt, dz) = V ψ ,ψ̃ (t, z)μψ̃ (dt, dz),
(B3)

∫ t
0
∫

R
(
√

V ψ ,ψ̃ (s, z) – 1)2μψ̃ (ds, dz) < ∞,
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(B4) Bψ
t = Bψ̃

t +
∫ t

0 cψ
s β

ψ ,ψ̃
s dFψ

s +
∫ t

0
∫

|z|≤1 z(V ψ ,ψ̃ (s, z) – 1)μψ̃ (ds, dz),

(B5)
∫ t

0 cψ
s (βψ ,ψ̃

s )2 dFψ
s < ∞

P
ψ -a.s. for every t ∈ R+. Moreover, we assume that, for each φ ∈ {ψ , ψ̃}, local unique-

ness holds for the martingale problem on the canonical space corresponding to the triple
(Bφ , Cφ ,μφ) with the given initial value x0, and P

φ is the unique solution. Then, for any
T ∈ R+, Pψ

T is absolutely continuous with respect to P
ψ̃

T . The corresponding Randon–
Nikodym derivative is

dPθ
T

dPθ̃
T

(η) =
∫ T

0
βψ ,ψ̃

s dηcont
s –

1
2

∫ T

0
cψ

s
(
βψ ,ψ̃

s
)2 dFψ

s

–
∫ T

0

∫

R

(
V ψ ,ψ̃ (s, z) – 1

)
μψ̃ (ds, dz)

+
∫ T

0

∫

R

log
(
V ψ ,ψ̃ (s, z)

)
Nη(ds, dz),

where (ηcont
t )t∈R+ is a continuous martingale part of (ηt)t∈R+ underPψ̃ and Nη is the random

jump measure of process (ηt)t∈R+ defined as

Nη(ω; dt, dz) :=
∑

u
1{�ηu(ω) 	=0}δ(u,�ηu(ω))(dt, dz),

where δp is the Dirac measure at p.

In the following, let θ = (a, b)′, θ̃ = (ã, b̃)′ ∈R
2
++.

Proposition 3.2 Let assumption (A1) hold, then for all T ∈R++, we have

P
θ
T ∼ P

θ̃
T .

Moreover, under probability measure Pθ̃ , we have

log

(
dPθ

T

dPθ̃
T

(η)
)

=
1
σ 2

∫ T

0

(

(a – ã)
1
ηs

– (b – b̃)
)

dηcont
s

–
1

2σ 2

∫ T

0

(
(a – ã) – (b – b̃)ηs

)2 ds,

where ηcont denotes the continuous martingale part of η under probability measure Pθ̃ .

Proof The main task is to check the conditions in Lemma 3.1 and then to apply Lemma 3.1
to get our result. First, it is clear that μθ and μθ̃ do not depend on the unknown parameter.
Hence

P
θ
(
μθ

({t} ×R
)

= 0
)

= P
θ̃
(
μθ̃

({t} ×R
)

= 0
)

= P
θ
(
0 · ν(R++) = 0

)
= 1
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and V θ ,θ̃ ≡ 1. Therefore, conditions (B1)–(B3) readily hold. From (3.1) and (3.2), we see
that, for t ∈R+, cθ

t = σ 2η2
t with Fθ

t = t and

Bψ
t – Bψ̃

t =
∫ t

0

(
(a – bηs)ηs – (ã – b̃ηs)ηs

)
ds

=
∫ t

0
cθ

s
1
σ 2

(
a – ã
ηs

– (b – b̃)
)

ds.

By choosing β
θ ,θ̃
t = 1

σ 2 ( a–ã
ηt

– (b – b̃)) for t ∈R+, we get (B4). Now we check (B5), that is, for
t ∈R+

P
θ

(∫ t

0
cθ

s
(
βθ ,θ̃

t
)2 ds < ∞

)

= 1.

Note that

EPθ

∫ t

0
cθ

s
(
βθ ,θ̃

t
)2 ds = EPθ

∫ t

0

1
σ 2

(
a – ã – (b – b̃)ηs

)2 ds

≤ C
(
a, b, ã, b̃,σ 2)

EPθ

∫ t

0
η2

s ds

= C
(
a, b, ã, b̃,σ 2)

EP

∫ t

0
X2

s ds.

According to Proposition 2.8, we see that

EPθ

∫ t

0
cθ

s
(
βθ ,θ̃

t
)2 ds < ∞

for t ∈ R+, which implies that (B5) holds. Finally, the local unique property of the corre-
sponding martingale problem comes from the fact that our equation has a unique strong
solution. Therefore, all the conditions of Lemma 3.1 are satisfied. For T ∈ R++, by exchang-
ing the roles of θ and θ̃ , we obtain

P
θ
T ∼ P

θ̃
T .

The proof is complete. �

In the following, our aim is to estimate the parameter based on the continuous time
observations of XT := (Xt)0≤t≤T . Now, we set Pθ̃ as a fixed reference measure. Since

d
(
X θ̃

)cont
s = σX θ̃

s dWs

= dX θ̃
s –

(
ã – b̃X θ̃

s
)
X θ̃

s ds – r dJs,
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then under P we have

log

(
dPθ

T

dPθ̃
T

(
X θ̃

)
)

=
1
σ 2

∫ T

0

(

(a – ã)
1

X θ̃
s

– (b – b̃)
)

[
dX θ̃

s –
(
ã – b̃X θ̃

s
)
X θ̃

s ds – r dJs
]

–
1

2σ 2

∫ T

0

(
(a – ã) – (b – b̃)X θ̃

s
)2 ds

=
1
σ 2

[

(a – ã)
∫ T

0

1
X θ̃

s

(
dX θ̃

s – r dJs
)

– (b – b̃)
∫ T

0

(
dX θ̃

s – r dJs
)

–
1
2
(
a2 – ã2)T –

1
2
(
b2 – b̃2)

∫ T

0
X θ̃

s
2

ds + (ab – ãb̃)
∫ T

0
X θ̃

s ds
]

.

Next, we can define the log-likelihood function with respect to the dominated measure
P

θ̃ as

lT
(
θ ; XT)

= σ 2 log
dPθ

t

dPθ̃
t

(
XT)

.

Then the maximum likelihood estimator (MLE) θ̂T of the unknown parameter θ is defined
as

θ̂T := arg max
θ∈R2

++

lT
(
θ ; XT)

.

Proposition 3.3 If assumption (A1) holds, then for every T ∈ R++, there exists a unique
MLE θ̂T with the form

θ̂T =

⎛

⎜
⎝

∫ T
0 X2

s ds
∫ T

0
1

Xs (dXs–r dJs)–
∫ T

0 Xs ds
∫ T

0 (dXs–r dJs)

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

∫ T
0 Xs ds

∫ T
0

1
Xs (dXs–r dJs)–T

∫ T
0 (dXs–r dJs)

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

⎞

⎟
⎠ (3.3)

almost surely.

Proof By Hölder’s inequality, we have

(∫ T

0
Xs ds

)2

≤
((∫ T

0
ds

)1/2(∫ T

0
X2

s ds
)1/2)2

= T
∫ T

0
X2

s ds

and

P

(

T
∫ T

0
X2

s ds –
(∫ T

0
Xs ds

)2

= 0
)

= P
(
Xs ≡ k, s ∈ [0, T], for some number k

)
.

From equation (1.1), we see that the constant solution is impossible. Hence,

T
∫ T

0
X2

s ds –
(∫ T

0
Xs ds

)2

> 0 a.s.

It follows that (3.3) is well defined almost surely. Note that

Jt =
∑

0≤s≤t

�Js =
∑

0≤s≤t

�Xs/r.
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Hence, for t ∈ [0, T], Jt is a measurable function of XT , which implies that (3.3) is a true
statistic. Next, we have

∂

∂a
lT

(
θ ; XT)

=
∫ T

0

1
Xs

(dXs – r dJs) – aT + b
∫ T

0
Xs ds,

∂

∂b
lT

(
θ ; XT)

= –
∫ T

0
(dXs – r dJs) + a

∫ T

0
Xs ds – b

∫ T

0
X2

s ds.

By direct calculation, we can get our desired result. �

4 Asymptotic properties
In order to get the asymptotic properties of our estimator, we need the following result.

Proposition 4.1 Let assumptions (A1)–(A2) hold. Then, for any x0 ∈ R++, there exists a
positive constant C such that

lim sup
t∈R+

1
t

∫ t

0
X2

s ds ≤ C a.s.

Proof We follow the approach used in Lemma 4.1 of [4]. By the exponential martingale
inequality, we get

P

(

sup
0≤t≤k

(∫ t

0
σXs dWs –

α

2

∫ t

0
σ 2X2

s ds
)

>
2
α

log k
)

≤ 1
k2 ,

where we choose α = b/(2σ 2). The well-known Borel–Cantelli lemma implies that for al-
most all ω ∈ �, there is a random integer k0 = k0(ω) such that

∫ t

0
σXs dWs ≤ 2

α
log k +

α

2

∫ t

0
σ 2X2

s ds

for all t ∈ [0, k], k ≥ k0, almost surely. Substituting this to our equation (2.3), we have

Xt ≤ x0 +
2
α

log k +
∫ t

0

(

aXs –
3
4

bX2
s + r

∫ ∞

0
zν(dz)

)

ds

+
∫ t

0

∫ ∞

0
rzÑ(ds, dz)

for all t ∈ [0, k], k ≥ k0, almost surely. Hence

b
2

∫ t

0
X2

s ds ≤ x0 +
2
α

log k +
∫ t

0

(

aXs –
b
4

X2
s + r

∫ ∞

0
zν(dz)

)

ds

+
∫ t

0

∫ ∞

0
rzÑ(ds, dz)

≤ x0 +
2
α

log k + C1t +
∫ t

0

∫ ∞

0
rzÑ(ds, dz)
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for all t ∈ [0, k], k ≥ k0, almost surely. Now, for almost all ω ∈ �, let k ≥ k0 and k –1 ≤ t ≤ k,
then

1
t

∫ t

0
X2

s ds ≤ 2
(k – 1)b

(

x0 +
2
α

log k + C1k +
∫ k

0

∫ ∞

0
rzÑ(ds, dz)

)

.

Letting t → ∞ and hence k → ∞, we obtain

lim sup
t→∞

1
t

∫ t

0
X2

s ds ≤ 2
b

(

x0 + C2 + lim sup
k→∞

1
k

∫ k

0

∫ ∞

0
rzÑ(ds, dz)

)

. (4.1)

Under assumption (A2), note that (
∫ t

0
∫ ∞

0 rzÑ(ds, dz))t∈R+ is a local martingale with
Meyer’s angle bracket process (

∫ t
0
∫ ∞

0 rz2ν(dz) ds)t∈R+ and

lim
t→∞

∫ t

0

∫ ∞
0 rz2ν(dz)

(1 + s)2 ds < ∞.

By using the strong law of large numbers for local martingales (Lemma A.1), we get

lim
t→∞

1
t

∫ t

0

∫ ∞

0
rzÑ(ds, dz) = 0

almost surely. Hence, there exists a constant C2 such that

lim sup
k→∞

1
k

∫ k

0

∫ ∞

0
rzÑ(ds, dz) ≤ C2

almost surely. Combining this with (4.1), we complete the proof. �

Corollary 4.2 Suppose that assumptions (A1)–(A2) hold. The invariant measure π has a
finite second moment, moreover

lim
t∈R+

1
t

∫ t

0
Xs ds =

∫ ∞

0
yπ (dy) a.s.

and

lim
t∈R+

1
t

∫ t

0
X2

s ds =
∫ ∞

0
y2π (dy) a.s.

Proof The proof of the first result is essentially the same as the proof of Theorem 4.2 in
[4], and the second is the same as the proof in [20]. So, we omit them. �

In the following, we present the weak and strong consistency of our estimator.

Theorem 4.3 Under assumption (A1), the estimator θ̂T = (âT , b̂T )′ of θ = (a, b)′ admits the
weak consistency, i.e.,

θ̂T
P−→ θ as T → ∞,
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where P−→ denotes the convergence in probability. Under assumptions (A1)–(A2), the esti-
mator θ̂T = (âT , b̂T )′ of θ = (a, b)′ admits the strong consistency, i.e.,

θ̂T → θ a.s. as T → ∞.

Proof We have

âT = a +
∫ T

0 X2
s ds

∫ T
0 dWs –

∫ T
0 Xs ds

∫ T
0 Xs dWs

T
∫ T

0 X2
s ds – (

∫ T
0 Xs ds)2

,

b̂T = b +
∫ T

0 Xs ds
∫ T

0 dWs – T
∫ T

0 Xs dWs

T
∫ T

0 X2
s ds – (

∫ T
0 Xs ds)2

.

Note that

âT – a =
∫ T

0 X2
s ds

∫ T
0 dWs –

∫ T
0 Xs ds

∫ T
0 Xs dWs

T
∫ T

0 X2
s ds – (

∫ T
0 Xs ds)2

=
∫ T

0 X2
s ds

∫ T
0 dWs

T
∫ T

0 X2
s ds – (

∫ T
0 Xs ds)2

–
∫ T

0 Xs ds
∫ T

0 Xs dWs

T
∫ T

0 X2
s ds – (

∫ T
0 Xs ds)2

:= I1 – I2.

Case 1: Under assumption (A1), for I1, we have

|I1| ≤
∣
∣
∣
∣

∫ T

0
dWs/T

∣
∣
∣
∣.

According to the strong law of large numbers for continuous local martingales
(Lemma A.2), we have

lim
T→∞

∫ T

0
dWs/T = 0 a.s.

Then we obtain limT→∞ I1 = 0, a.s. For I2, we have

|I2| ≤
∣
∣
∣
∣

∫ T
0 Xs ds

T

∫ T
0 Xs dWs
∫ T

0 X2
s ds

∣
∣
∣
∣.

Note (
∫ T

0 Xs ds
T )T>0 is tight. Indeed, by Lemma 2.3, for M > 0, we have

P

(∫ T
0 Xs ds

T
> M

)

≤
∫ T

0 EXs ds
MT

≤ C
M

. (4.2)

On the other hand, by Proposition 2.5 and Proposition 2.6, we have

lim
T→∞

∫ T
0 X2

s ds
T

=
∫ ∞

0
y2π (dy) > 0,
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where π is the unique invariant measure. It follows that

lim
T→∞

∫ T

0
X2

s ds = ∞ a.s.

By Proposition 2.8, we also have
∫ T

0
X2

s ds < ∞ a.s.

for each T > 0. Then, again by Lemma A.2, we get

lim
T→∞

∫ T
0 Xs dWs
∫ T

0 X2
s ds

= 0 a.s. (4.3)

From (4.2) and (4.3), we get limT→∞ I2 = 0 in probability. Therefore, we obtain
limT→∞ âT = a in probability. Similarly, we can prove limT→∞ b̂T = b in probability.

Case 2: Under assumptions (A1)–(A2). For I1, we have

I1 =
∫ T

0 X2
s ds/T

∫ T
0 X2

s ds/T – (
∫ T

0 Xs ds/T)2

∫ T

0
dWs/T .

According to Corollary 4.2 and Lemma A.2, we have limT→∞ I1 = 0, a.s. For I2, we have

I2 =
∫ T

0 Xs ds
∫ T

0 X2
s ds/T2

∫ T
0 X2

s ds/T – (
∫ T

0 Xs ds/T)2

∫ T
0 Xs dWs
∫ T

0 X2
s ds

.

Again by Corollary 4.2 and Lemma A.2, we immediately get limT→∞ I2 = 0, a.s. Therefore,
we obtain limT→∞ âT = a a.s. Similarly, we can prove limT→∞ b̂T = b a.s. We complete the
proof. �

For simplicity of our notations, we denote μ1 :=
∫ ∞

0 yπ (dy) and μ2 :=
∫ ∞

0 y2π (dy). Now
we present the following asymptotic normality.

Theorem 4.4 Under assumptions (A1)–(A2). The estimator θ̂T of θ is asymptotically nor-
mal, i.e.,

√
T(θ̂T – θ ) D−→ N(0,�)

as T → ∞, where D−→ denotes the convergence in distribution, � = AA′ and

A =
1

μ2 – μ2
1

(
μ2 + μ2

1 μ1
√

μ2

2μ1
√

μ2

)

.

By a random scaling, we also have

√
T

⎛

⎜
⎝

1 –
∫ T

0 Xs ds
T

– 2
∫ T

0 Xs ds/T
√∫ T

0 X2
s ds/T

∫ T
0 X2

s ds/T+(
∫ T

0 Xs ds/T)2
√∫ T

0 X2
s ds/T

⎞

⎟
⎠ (θ̂T – θ ) D−→ N(0, I)

as T → ∞, where I is the identity matrix.
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Proof We write our estimator in the matrix form

θ̂ – θ =

⎛

⎜
⎝

∫ T
0 X2

s ds
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

T
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

⎞

⎟
⎠

( ∫ T
0 dWs

–
∫ T

0 Xs dWs

)

.

Let

Mt :=

( ∫ t
0 dWs

–
∫ t

0 Xs dWs

)

,

then (Mt)t∈R+ is a 2-dimensional continuous local martingale with M0 = 0 a.s. and with
quadratic variation process

[M]t =

(
t –

∫ t
0 Xs ds

–
∫ t

0 Xs ds
∫ T

0 X2
s ds

)

.

Let

Q(t) :=

(
1/

√
t 0

0 1/
√

t

)

.

Then, by Corollary 4.2, we have

Q(t)[M]tQ(t)T →
(

1 μ1

μ1 μ2

)

= ζ ζ ′ a.s. as T → ∞,

where

ζ :=

(
1 0
μ1

√
μ2

)

.

By applying Lemma (A.3), we get

1/
√

TMT
D−→ ζZ as T → ∞, (4.4)

where Z is a 2-dimensional standard normal random vector. Note that, again by Corol-
lary 4.2,

T

⎛

⎜
⎝

∫ T
0 X2

s ds
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

T
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

⎞

⎟
⎠

→ 1
μ2 – μ2

1

(
μ2 μ1

μ1 1

)

a.s. T → ∞. (4.5)
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Combining (4.4) with (4.5), by using Slutsky’s lemma, we have

√
T(θ̂T – θ )

= T

⎛

⎜
⎝

∫ T
0 X2

s ds
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

∫ T
0 Xs ds

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

T
T

∫ T
0 X2

s ds–(
∫ T

0 Xs ds)2

⎞

⎟
⎠ · 1√

T
MT

D−→ 1
μ2 – μ2

1

(
μ2 μ1

μ1 1

)(
1 0
μ1

√
μ2

)

Z

=
1

μ2 – μ2
1

(
μ2 + μ2

1 μ1
√

μ2

2μ1
√

μ2

)

Z

= AZ

as T → ∞. We have proved the first result. Next, it is easy to see that

⎛

⎜
⎝

1 –
∫ T

0 Xs ds
T

– 2
∫ T

0 Xs ds/T
√∫ T

0 X2
s ds/T

∫ T
0 X2

s ds/T+(
∫ T

0 Xs ds/T)2
√∫ T

0 X2
s ds/T

⎞

⎟
⎠ →

(
1 –μ1

– 2μ1√
μ2

μ2+μ2
1√

μ2

)

= A–1

a.s. T → ∞. Again by Slutsky’s lemma, we have

√
T

⎛

⎜
⎝

1 –
∫ T

0 Xs ds
T

– 2
∫ T

0 Xs ds/T
√∫ T

0 X2
s ds/T

∫ T
0 X2

s ds/T+(
∫ T

0 Xs ds/T)2
√∫ T

0 X2
s ds/T

⎞

⎟
⎠ (θ̂T – θ )

D−→ A–1AZ = Z, as T → ∞.

We finish the proof. �

5 Simulation results
In this section, we present some computer simulations. First, we apply Euler–Maruyama
method to illustrate the stationary solution of equation (1.1) under assumption (A1). We
consider the following two examples.

Examples 5.1 Let a = 5, b = 1, σ = 1, r = 1, and x0 = 10 for equation (1.1). Let (Jt)t≥0 be a
Poisson process with intensity 1. Note that the Poisson process with intensity 1 is a subor-
dinator with Lévy measure ν(dz) = δ1(dz). It follows from Proposition 2.5 there is a unique
stationary distribution. We apply the Euler–Maruyama method to perform a computer
simulation of 30,000 iterations of the single path of Xt with initial value x0 = 10, T = 30,
and step size � = 0.001, which is shown in Fig. 1.

Examples 5.2 Let a = 5, b = 1, σ = 1, r = 1, and x0 = 10 for equation (1.1). Let (Jt)t≥0 be a
compound Poisson process with exponentially distributed jump size, namely

ν(dz) = cλe–λzI(0,∞)(z) dz.
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Figure 1 (Left) Computer simulation of 30,000 iterations of a single path Xt of Example 5.1. (Right) The
histogram of the path

Figure 2 (Left) Computer simulation of 2000 iterations of a single path Xt of Example 5.2. (Right) The
histogram of the path

We set c = 1 and λ = 10. It is easy to see that ν satisfies assumption (A1). Again by Proposi-
tion 2.5 there is a unique stationary distribution. We apply the Euler–Maruyama method
to perform a computer simulation of 2000 iterations of the single path of Xt with initial
value x0 = 10, T = 20, and step size � = 0.01, which is shown in Fig. 2.

From the simulation paths of Fig. 1 and Fig. 2, we can see their stationary trends. The dis-
tributions implied by their histograms can be seen as the approximations of the stationary
distributions.

Next, we exhibit the consistency of the MLE. It follows from Theorem 3.3 that our MLE
is

θ̂T =

⎛

⎜
⎝

∫ T
0 X2

s ds
∫ T

0
1

Xs (dXs–r dJs)–
∫ T

0 Xs ds
∫ T

0 (dXs–r dJs)

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

∫ T
0 Xs ds

∫ T
0

1
Xs (dXs–r dJs)–T

∫ T
0 (dXs–r dJs)

T
∫ T

0 X2
s ds–(

∫ T
0 Xs ds)2

⎞

⎟
⎠ . (5.1)
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Table 1 Mean and standard deviation of the estimators

Parameters Ex.1 Ex.2

â – a b̂ – b â – a b̂ – b

Mean Stddev Mean Stddev Mean Stddev Mean Stddev

� = 0.01 T = 10 0.34571 1.07444 0.07110 0.21637 0.37412 1.01528 0.08287 0.21657
T = 102 0.03285 0.30957 0.00639 0.06176 0.04797 0.30105 0.01051 0.06318
T = 103 0.00469 0.09906 0.00082 0.01975 0.00384 0.09616 0.00091 0.01993

Figure 3 (Left) 3D histogram of 1000 Monte Carlo simulations of βT of Example 5.1 with a = 1, b = 7, σ = 1,
r = 1, T = 10, and � = 0.01 and x0 = 10. (Right) The 3D histogram of 1000 random vectors from 2-dimensional
standard normal distribution

We perform 1000 Monte Carlo simulations of the sample paths generated by Example 5.1
and Example 5.2. The results are presented in Table 1. We see that the estimate errors
become small as the observation time increases. This is consistent with our theoretical
result.

Finally, we investigate the asymptotic distribution of the MLE in (5.1). That is, we will
focus on the distribution of the following statistic:

βT :=
√

T

⎛

⎜
⎝

1 –
∫ T

0 Xs ds
T

– 2
∫ T

0 Xs ds/T
√∫ T

0 X2
s ds/T

∫ T
0 X2

s ds/T+(
∫ T

0 Xs ds/T)2
√∫ T

0 X2
s ds/T

⎞

⎟
⎠ (θ̂T – θ ).

We perform 1000 Monte Carlo simulations for Example 5.1 with a = 1, b = 7, σ = 1, r = 1,
T = 10, and � = 0.01 and x0 = 10. The 3D histogram of the 1000 simulations is presented
in Fig. 3. By comparing the 3D histogram of the 1000 simulations to the 3D histogram of
standard normal distribution (Fig. 3), we can see the tendency of the joint normality. The
trend of normality of each element of the estimator βT can be seen from Fig. 4, where the
histogram of each element is given.

6 Conclusions
In this paper, we consider a stochastic Lotka–Volterra model with both multiplicative
Brownian noises and additive jump noises. Some desired properties of the solution, such
as existence and uniqueness of positive strong solution, unique stationary distribution,
and exponential ergodicity, are proved. We also investigate the maximum likelihood es-
timation for the drift coefficients based on continuous time observations. The likelihood
function and explicit estimator are derived by using semimartingale theory, and then con-
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Figure 4 1000 Monte Carlo simulations of Example 5.1 with a = 1, b = 7, σ = 1, r = 1, T = 10, and � = 0.01
and x0 = 10. (Left) The histogram of the first element of βT . (Right) The histogram of the second element of βT

sistency and asymptotic normality of the estimator are proved. Finally, we give some com-
puter simulations, which are consistent with our theoretical results. The case with multi-
plicative jump noises will be the subject of future investigation.

Appendix: Limit theorems for local martingales
In this section, we recall some limit theorems for local martingales. The first one is a strong
law of large numbers for local martingales, e.g., [25].

Lemma A.1 Let (Mt)t∈R+ be a one-dimensional local martingale vanishing at time t = 0.
For t ∈R+, we define

ρM(t) :=
∫ t

0

1
(1 + s)2 d〈M〉s,

where (〈M〉t)t∈R+ is Meyer’s angle bracket process. Then

lim
t→∞ρM(t) < ∞ a.s.

implies

lim
t→∞

Mt

t
= 0 a.s.

The next result is a strong law of large numbers for continuous local martingales, see,
e.g., Lemma 17.4 of [26].

Lemma A.2 Let (Mt)t∈R+ be a one-dimensional square-integrable continuous local mar-
tingale vanishing at time t = 0. Let ([M]t)t∈R+ be the quadratic variation process of M such
that, for t ∈R+,

[M]t < ∞ a.s.

and

[M]t → ∞ a.s. as t → ∞.
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Then

lim
t→∞

Mt

[M]t
= 0 a.s.

The last one is about the asymptotic behavior of continuous multivariate local martin-
gales, see Theorem 4.1 of [27].

Lemma A.3 Let (Mt)t∈R+ be a d-dimensional square-integrable continuous local martin-
gale vanishing at time t = 0. Suppose that there exists a function Q : R+ → R

d×d such that
Q(t) is an invertible (non-random) matrix for all t ∈R+, limt→∞ ‖Q(t)‖ = 0 and

Q(t)[M]tQ(t)T P−→ ζ ζ T as t → ∞,

where ‖Q(t)‖ := sup{|Q(t)x| : x ∈ R
d, |x| = 1}, [M]t is the quadratic variation process of M

and ζ is a d × d random matrix. Then

Q(t)Mt
D−→ ζZ as t → ∞,

where Z is a d-dimensional standard normally distributed random vector independent of ζ .
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