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Abstract
This paper is concerned with the existence of entire solutions for a reaction–diffusion
equation with doubly degenerate nonlinearity. Here the entire solutions are the
classical solutions that exist for all (x, t) ∈R

2. With the aid of the comparison theorem
and the sup-sub solutions method, we construct some entire solutions that behave
as two opposite traveling front solutions with critical speeds moving towards each
other from both sides of x-axis and then annihilating. In addition, we apply the
existence theorem to a specially doubly degenerate case.
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1 Introduction
In this paper, we consider the following scalar reaction–diffusion equation:

ut = uxx + f (u), (1.1)

where f satisfies (A) f ∈ C2([0, 2]), f (0) = f (1) = 0, f ′(0) = f ′(1) = 0, f ′(s) > 0, f ′(1 – s) < 0 for
small s > 0, and f (u) > 0 for u ∈ (0, 1).

From (A), it is easy to see that u = 0, u = 1 are two constant equilibria of (1.1).
In practical applications, traveling wave solutions can well explain oscillations and finite

velocity propagation phenomena in nature. Thus, in recent years, the existence and the
stability of traveling wave solutions of (1.1) have been extensively studied by many schol-
ars, see [1–5] and the references therein. A traveling wave solution of (1.1) is a solution of
the form u(x, t) = φ(x + ct) satisfying

⎧
⎨

⎩

φ′′ – cφ′ + f (φ) = 0,

φ(–∞) = 0, φ(+∞) = 1,
(1.2)

where ′ := d
dz , z = x + ct and c is the wave speed. Moreover, a monotone and bounded trav-

eling wave solution is called a traveling front solution. In [3], Hou et al. investigated the
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existence, uniqueness, asymptotic behavior as well as the stability of the traveling front
solutions for (1.1).

However, it is not enough to understand the dynamical structure of solutions of
reaction–diffusion equations by only considering traveling front solutions. From the dy-
namical view, the study of entire solutions is essential for a full understanding of the tran-
sient dynamics and the structures of the global attractor as mentioned in [6]. For example,
the ω-limit sets of bounded solutions of (1.1) and global attractor are comprised of entire
solutions as mentioned in [6, 7]. In recent years, the existence of entire solutions is widely
discussed. Firstly, when f satisfies

f ′(0) > 0, f ′(1) < 0, f (u) > 0, f ′(u) ≤ f ′(0), for all u ∈ (0, 1), (1.3)

then (1.1) becomes the famous Fisher–KPP equation (monostable case). For this equation,
Hamel and Nadirashvili in [8] proved the existence of entire solutions by the comparison
theorem and super-sub estimates, which consists of traveling front solutions and solutions
to the diffusion-free equations. Moreover, they also pointed out that the entire solutions to
(1.1) depend only on t and traveling wave solutions are typical examples of entire solutions,
and they showed various entire solutions of (1.1) with (1.3) in their subsequent paper [9].
While for both f ′(0) < 0 and f ′(1) < 0 (bistable case), Yagisita in [10] revealed that the
annihilation process is approximated by a backward global solution of (1.1), which is the
entire solution. We call this kind of entire solutions annihilating entire solutions, and in
the following, without special indication, we use entire solutions to represent annihilating
entire solutions for short. For Allen–Cahn equation

ut = uxx + u(1 – u)(u – a),

with a ∈ (0, 1), as a special example in [10], Fukao et al. in [11] gave a proof for the existence
of entire solutions by using the explicit expression of the traveling front and the compar-
ison theorem. Later, Guo and Morita in [12] extended the results in [8] and [10] to more
general cases including a discrete KPP equation by the super-sub solutions method and
the comparison theorem. At the same time, Chen and Guo in [13] proved the existence
of entire solutions by showing a different technique which used only one function to con-
struct a pair of deterministic super-sub solutions. Moreover, Chen et al. in [14] also used
the method in [13] to construct entire solutions based on standing waves. Furthermore,
in [6], Morita and Ninomiya constructed two kinds of merging entire solutions. Very re-
cently, Wang in [15] investigated the entire solutions for the degenerate Fisher equation
by considering two traveling front solutions with critical speeds. And Zhang et al. in [16]
dealt with the front-like entire solution of a classical nonlocal dispersal equation with ig-
nition nonlinearity, where the dispersal kernel function may not be symmetric.

However, little is known about the entire solutions of reaction–diffusion equations with
doubly degenerate nonlinearities. Thus, encouraged by [6, 12, 13, 15, 16], in this paper we
will investigate the entire solutions of (1.1) under assumption (A). Moreover, from [17] and
the references therein, we know that the doubly degenerate reaction–diffusion equations
usually mean that the diffusion term is assumed to be doubly degenerate. Here, from as-
sumption (A), we mainly focus on the reaction–diffusion equation with doubly degenerate
nonlinearity.
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The rest of this paper is arranged as follows. In Sect. 2, we show the existence and the
asymptotic behaviors of traveling front solutions of (1.1) and give some preparations that
will be used to construct the sup-sub solutions. An entire solution to (1.1) can be obtained
by considering two traveling front solutions with critical speeds that come from both sides
of the x-axis in Sect. 3. Finally, we apply our results to an example.

2 Preliminaries
In this section, we will give some relevant preparations in order to obtain the main con-
clusions later. First of all, we state the definitions of supersolution and subsolution of (1.1)
as follows.

Definition 2.1 Set � := R× [r, R] for some R > r. u(x, t) is called a subsolution of (1.1) in
� if u(x, t) ≤ u(x, t) ((x, t) ∈ �) for every solution of (1.1) defined in � such that u(x, r) ≤
u(x, r) (x ∈ R). If u(x, t) is a subsolution of (1.1) in R × [r, –T] for any r < –T , then u(x, t)
is called a subsolution of (1.1) in R× [–∞, –T] for some T ≥ 0. Similarly, we can define a
supersolution by reversing the inequalities.

Let F (u) = ut – uxx – f (u). We notice that a bounded function u(x, t) is a subsolution of
(1.1) in R× (–∞, –T) (T ≥ 0) if F (u) ≤ 0 for (x, t) ∈ R× (–∞, –T), while it is a superso-
lution if F (u) ≥ 0.

From [3], we can obtain the following result, which shows the existence and the asymp-
totic behavior of traveling front solutions of (1.1).

Lemma 2.2 ([3]) Suppose that (A) holds, then there is a unique positive number c∗ such
that, for any c ≥ c∗, (1.2) has a monotonically increasing solution φ(z), while for c∗ > c > 0,
there is no positive solution for (1.2). Moreover, the solutions of (1.2) have the following
asymptotic behaviors:

φ(z) =

⎧
⎪⎪⎨

⎪⎪⎩

Bec∗z + o(ec∗z) as z → –∞, if c = c∗,

H0( 1
c z(1 + o(1))) as z → –∞, if c > c∗,

H1( 1
c z(1 + o(1))) as z → +∞, if c ≥ c∗,

(2.1)

where B > 0 is a constant, H0 = F–1
0 , F0 =

∫ u
u0

ds
f (s) , 0 < u < u0 for some small u0, H1 = F–1

1 , F1 =
∫ u

u1
ds

f (s) , u1 < u < 1 and u1 is close to 1.

By Lemma 2.2, it is obvious that there are positive constants ri (i = 1, 2), α and η such that

r1eαz ≤ φ(z) ≤ r2eαz, z ≤ 0, (2.2)

inf
z≤0

φ′(z)
φ(z)

= η, (2.3)

where α ≤ c∗ and φ(z) is the traveling front solution with critical speed. For simplicity of
statements, we denote c as c∗ in the following.

In order to establish the supersolution of (1.1), we should consider the following ordinary
differential problem:

⎧
⎨

⎩

p′(t) = c + Meαp, t < 0,

p(0) < 0,
(2.4)
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where

M > max

{
Lr2

2
2ηr1

,
Lr2

η

}

(2.5)

and L := maxu∈[0,2] |f ′′(u)|. From direct calculation, we can obtain the solution of (2.4) ex-
plicitly as

p(t) = ct –
1
α

ln

{

e–αp(0) +
M(1 – ecαt)

c

}

< 0, t ≤ 0,

and

q = lim
t→–∞

(
p(t) – ct

)
= –

1
α

ln

{

e–αp(0) +
M
c

}

.

Moreover, there exists K > 0 so that for t ≤ 0

0 < p(t) – ct – q ≤ Kecαt .

3 The existence of entire solutions
In this section, we discuss the existence of entire solutions of (1.1). Firstly, we construct
the supersolution.

Lemma 3.1 Assume that (A) holds, and let p(t) be the solution of (2.4). Then the function

ū(x, t) = φ
(
x + p(t)

)
+ φ̃

(
–x + p(t)

)

is a supersolution of (1.1) for t ≤ 0, where φ̃(–x + p(t)) = φ(–x + p(t)).

Proof For simplicity, we use φ and φ̃ instead of φ(x + p(t)) and φ̃(–x + p(t)). Then we have

F (ū) = φ′p′ + φ̃′p′ – φ′′ – φ̃′′ – f (φ + φ̃)

=
(
φ′ + φ̃′)(p′ – c

)
– f (φ + φ̃) + f (φ) + f (φ̃)

=
(
φ′ + φ̃′)[Meαp – G(x, t)

]
, (3.1)

where

G(x, t) :=
f (φ + φ̃) – f (φ) – f (φ̃)

φ′ + φ̃′ .

Now we need to divide R into three parts to estimate G(x, t).
(i) For p ≤ x ≤ –p, then x + p ≤ 0, –x + p ≤ 0. Noting that f (0) = 0, f ∈ C2([0, 2]) and

φ, φ̃ ∈ [0, 1], we can get

f (φ + φ̃) – f (φ) – f (φ̃) =
(∫ 1

0
f ′(φ + sφ̃) ds

)

φ̃ –
(∫ 1

0
f ′(sφ̃) ds

)

φ̃ ≤ Lφφ̃.
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Combining with (2.2) and (2.3), it follows that

G(x, t) ≤ Lφφ̃

η(φ + φ̃)
≤ Lr2

2e2αp

2ηr1eαp =
Lr2

2
2ηr1

eαp. (3.2)

(ii) For x ≤ p, then x + p ≤ 0, –x + p ≥ 0. Now we can modify f ′(u) for u ∈ (1, 2] so that
f ′(u) < f ′(0) = 0 for u ∈ (1, 2). Noting hypothesis (A), it follows that there exists δ ∈ (0, 1)
such that

f ′(u) < f ′(0), u ∈ (1 – δ, 2). (3.3)

Factually, (3.3) can be assured by translating φ(z) along z-axis. In the following, we may
assume that

φ(z) ≥ 1 – δ for any z ≥ 0. (3.4)

Then it follows from (3.3) and (3.4) that

f (φ + φ̃) – f (φ) – f (φ̃) =
(∫ 1

0
f ′(φ̃ + sφ) ds

)

φ –
(∫ 1

0
f ′(sφ) ds

)

φ

≤ φ

∫ 1

0

∣
∣f ′(0) – f ′(sφ)

∣
∣ds ≤ Lφ2.

Then

G(x, t) ≤ Lφ2

φ′ + φ̃′ ≤ Lφ

φ′/φ
≤ Lr2eα(x+p)

η
≤ Lr2

η
eαp. (3.5)

(iii) For x ≥ –p, then x + p ≥ 0, –x + p ≤ 0. Noting that G(x, t) = G(–x, t) and (3.5), we get

G(x, t) ≤ Lr2

η
eαp. (3.6)

Then, combining (2.5), (3.1), (3.2), (3.5), and (3.6), we have

F (ū) =
(
φ′ + φ̃′)[Meαp – G(x, t)

] ≥ 0.

The proof is complete. �

Theorem 3.1 Assume that (A) holds. Let φ and φ̃ be traveling front solutions of (1.1) with
the critical speed c. Then, for arbitrarily given constants θ1, θ2, there exists an entire solution
u(x, t) which satisfies

lim
t→–∞

{
sup
x≥0

∣
∣u(x, t) – φ(x + ct + θ1)

∣
∣ + sup

x≤0

∣
∣u(x, t) – φ̃(–x + ct + θ2)

∣
∣
}

= 0, (3.7)

lim
t→+∞ sup

x∈R

∣
∣u(x, t) – 1

∣
∣ = 0. (3.8)

Moreover, if cα > N = maxu∈[0,2] |f ′(u)|, then this entire solution is unique. Furthermore, this
solution satisfies
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(i) ∂u(x,t)
∂t > 0 for all (x, t) ∈R×R;

(ii) limt→–∞ supx∈[α,β] |u(x, t)| = 0 with α,β ∈ R and α < β ;
(iii) lim|x|→∞ supt∈[S,∞) |u(x, t) – 1| = 0 with S ∈R.

Proof Define

u(x, t) = max
{
φ(x + ct + q), φ̃(–x + ct + q)

}
.

It is obvious that

u(x, t) ≤ ū(x, t), (x, t) ∈R× (–∞, 0].

Combining with the comparison principle, it yields that there exists a solution ũ(x, t) of
(1.1) which satisfies

u(x, t) ≤ ũ(x, t) ≤ ū(x, t), for (x, t) ∈R× (–∞, 0].

Consider the following problem:

⎧
⎨

⎩

ut = uxx + f (u), (x, t) ∈R× [0, +∞),

u(x, 0) = ũ(x, 0), x ∈R.
(3.9)

It is easy to see that there is a unique solution u(x, t) of (3.9) which also satisfies u(x, t) ≤
u(x, t) ≤ 1 for any (x, t) ∈R× [0, +∞). Let

u(x, t) = ũ(x, t) for (x, t) ∈R× (–∞, 0].

Then we can obtain an entire solution of (1.1) which satisfies

u(x, t) ≤ u(x, t) ≤ ū(x, t) for (x, t) ∈R× (–∞, 0]

and

u(x, t) ≤ u(x, t) ≤ 1 for (x, t) ∈R
2.

Next we will prove (3.7). Firstly, we prove

lim
t→–∞

{
sup
x≥0

∣
∣u(x, t) – φ(x + ct + q)

∣
∣ + sup

x≤0

∣
∣u(x, t) – φ̃(–x + ct + q)

∣
∣
}

= 0. (3.10)

Then, for x ≥ 0 and t ≤ 0, we can get

0 ≤ u(x, t) – φ(x + ct + q) ≤ ū(x, t) – φ(x + ct + q)

≤ φ
(
x + p(t)

)
+ φ̃

(
–x + p(t)

)
– φ(x + ct + q)

≤ r2eα(–x+p(t)) + sup
z∈R

∣
∣φ′(z)

∣
∣
(
p(t) – ct – q

)

≤ r2eαp(t) + K sup
z∈R

∣
∣φ′(z)

∣
∣ecαt .
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For x ≤ 0 and t ≤ 0, similarly, we obtain

0 ≤ u(x, t) – φ̃(–x + ct + q) ≤ r2eαp(t) + K sup
z∈R

∣
∣φ̃′(z)

∣
∣ecαt .

For any given θ1, θ2, by choosing

μ =
θ1 – θ2

2
, τ =

θ1 + θ2 – 2q
2c

,

we can obtain the entire solution of (1.1) as û(x, t) = u(x + μ, t + τ ).
Now we discuss the uniqueness. Set u1(x, t), u2(x, t) be two entire solutions of (1.1). Sup-

pose that u1(x, t) ≥ u2(x, t). Noting that max{u1(x, t), u2(x, t)} is a subsolution, there exists
an entire solution û(x, t) satisfying

max
{

u1(x, t), u2(x, t)
} ≤ û(x, t) ≤ ū(x, t) (t ≤ 0).

For any given (x, t), t ≤ 0, let τ ≤ t. Setting v(x, t) := u1(x, t) – u2(x, t), we have

vt = vxx +
(∫ 1

0
f ′(u2 + s(u1 – u2)

)
ds

)

v ≤ vxx + Nv.

Then

v(x, t) ≤ eN(t–τ )
√

4π (t – τ )

∫ ∞

–∞
e– (x–y)2

4(t–τ ) v(y, τ ) dy

=
eN(t–τ )
√

π

∫ ∞

–∞
e–z2

v(x – 2
√

t – τz, τ ) dz.

Furthermore, from the above estimates it also follows that there exists D > 0 such that

v(x, t) ≤ ū(x, t) – max
{
φ(x + ct + q), φ̃(–x + ct + q)

} ≤ Decαt (t ≤ 0).

Thus we can get

0 ≤ v(x, t) ≤ DeNte(cα–N)τ .

Since τ can be made arbitrarily small and cα > N , we can obtain that v(x, t) = 0 for x ∈ R.
This completes the proof. �

Next we give another type of entire solutions. Suppose that ζ (t) is a solution of the fol-
lowing ordinary differential equation:

ζ̇ = f (ζ ) + Nζ , (3.11)

where N is defined in Theorem 3.1 and 0 < ζ (t) < 1.

Theorem 3.2 Assume that (A) holds. Define ρ(t) := ρ0eNt , and let ρ0 > 0 satisfy

0 < ζ (t) – ρ(t) ≤ R0eNt (t ≤ 0),
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where R0 is a positive number. For given c1, c2 ≥ c∗,ν1,ν2 ∈ R and positive constants kj (j =
1, 2), R1 and T , there exist monotone increasing functions pj(t) (j = 1, 2) satisfying

∣
∣pj(t) – cjt – νj

∣
∣ ≤ R1ekjt (t ≤ –T)

such that ūik(x, t) := χiφ(x + p(t)) + χkφ̃(–x + p(t)) + ρ(t) ((i, k) = (1, 0), (0, 1), (1, 1)) are su-
persolutions for t ∈ (–∞, –T], where χi = i (i = 0, 1). Furthermore, for (x, t) ∈R× (–∞, –T],
there are entire solutions uik(x, t), (i, k) = (1, 0), (0, 1), (1, 1) of (1.1) which satisfy

max
{
χiφ(x + ct + θ1),χkφ̃(–x + ct + θ2), ζ (t)

} ≤ uik(x, t) ≤ min
{

ūik(x, t), 1
}

. (3.12)

Proof We just need to prove that ūik(x, t) is a supersolution of (1.1). Now set

ū(x, t) = φ
(
x + p(t)

)
+ φ̃

(
–x + p(t)

)
+ ρ(t).

Similarly, we can have that

F (ū) = φ′p′ + φ̃′p′ + ρ ′ – φ′′ – φ̃′′ – f (φ + φ̃ + ρ)

=
(
φ′ + φ̃′)(p′ – c

)
– f (φ + φ̃ + ρ) + f (φ) + f (φ̃) + ρ ′

=
(
φ′ + φ̃′)Meαp – H(x, t) + ρ ′(t),

where

H(x, t) = f (φ + φ̃ + ρ) – f (φ) – f (φ̃).

If x ≤ 0, we can get

H = f (φ + φ̃ + ρ) – f (φ̃ + ρ) – f (φ) + f (φ̃ + ρ) – f (φ̃)

=
(∫ 1

0
f ′(φ̃ + ρ + sφ) ds

)

φ –
(∫ 1

0
f ′(sφ) ds

)

φ +
(∫ 1

0
f ′(φ̃ + sρ) ds

)

ρ

≤
(∫ 1

0

[
f ′(0) – f ′(sφ)

]
ds

)

φ + Nρ

≤ Lφ2 + Nρ.

Noting that ρ ′ = Nρ and

Lφ2

φ′ + φ̃′ ≤ Lr2

η
eαp,

then it follows that

F (ū) ≥ (
φ′ + φ̃′)[Meαp – (Lr2/η)eαp] ≥ 0.

Similarly, we can prove that F (ū) ≥ 0 if x ≥ 0. That is, ū(x, t) is a supersolution of (1.1).
The rest of the proof is similar to that of [8]. �
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4 Applications
For the double degenerated generalized Fisher-type equation,

ut = uxx + up(1 – u)q, p > 1, q > 1, (4.1)

where p and q are not necessarily integers. Now we show the conclusion of the existence
of traveling wave front solutions of (4.1).

Lemma 4.1 ([4]) If p > 1, q > 1, there exists c∗(p, q) > 0 such that, for any c ≥ c∗(p, q), there
are traveling front solutions φc(z) (z = x – ct) connecting u = 0 and u = 1 which satisfy

φ(z) ∼
⎧
⎨

⎩

e–c∗z as z → +∞, if c = c∗(p, q),

[ c
(p–1)z ]

1
p–1 as z → +∞, if c > c∗(p, q),

1 – φc(z) ∼
[

c
(q – 1)|z|

] 1
q–1

, as z → –∞, if c ≥ c∗(p, q).

It is easy to verify that f (u) = up(1 – u)q satisfy assumption (A) in Theorem 3.1. Thus we
have the following result for (4.1).

Theorem 4.1 Assume that p > 1, q > 1. Let φ and φ̃ be traveling front solutions of (4.1)
with the minimum speed c. Then, for arbitrarily given constants θ1, θ2, there exists an entire
solution u(x, t) which satisfies

lim
t→–∞

{
sup
x≥0

∣
∣u(x, t) – φ(x + ct + θ1)

∣
∣ + sup

x≤0

∣
∣u(x, t) – φ̃(–x + ct + θ2)

∣
∣
}

= 0,

lim
t→+∞ sup

x∈R

∣
∣u(x, t) – 1

∣
∣ = 0.
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