
Lin et al. Advances in Difference Equations  (2018) 2018:155 
https://doi.org/10.1186/s13662-018-1609-8

R E S E A R C H Open Access

Asymptotic properties of a stochastic
Lotka–Volterra model with infinite delay and
regime switching
Qingteng Lin1,2, Lijing Chen1, Chunlan Wen1 and Fengying Wei1*

*Correspondence:
weifengying@fzu.edu.cn
1College of Mathematics and
Computer Science, Fuzhou
University, Fuzhou, P.R. China
Full list of author information is
available at the end of the article

Abstract
We investigate the long-term properties of a stochastic Lotka–Volterra model with
infinite delay and Markovian chains on a finite state space. We investigate that the
stochastic model admits a unique positive global solution which stays in the way of
stochastically ultimate boundedness by constructing Lyapunov functions.
Furthermore, the main results that the growth of the solution is slower than time
under moderate condition and moment estimation in time average with the power p
could be controlled are derived, which modified the known ones in recent literatures.

Keywords: Stochastic Lotka–Volterra model; Markovian chains; Infinite delay;
Stochastically ultimate boundedness; Moment estimation

1 Model formulation
Gopalsamy proposed a general nonautonomous Lotka–Volterra model with infinite delay
for n-interacting species in [1], which was described by an n-dimensional ordinary differ-
ential equation

dxi(t)
dt

= xi(t)

(
bi +

n∑
j=1

aijxj(t) +
n∑

j=1

bijxj(t – τij) +
n∑

j=1

cij

∫ t

–∞
kij(t – s)xj(s) ds

)
, (1)

where i = 1, 2, . . . , n, and the sufficient conditions for the global attractivity of a positive
solution of model (1) were obtained therewith. Motivated by model (1), the researchers
investigated the modified models [2–26] and obtained some good results regarding n-
interacting species in the recent literatures. We have known that the intrinsic growth rates
and the carrying capacity of the species often vary when one of the below factors changes,
for instance here, the situation of nutrition supply, adequacy of food resources and changes
of climate as well. Therefore, the ecosystems governed by the deterministic models would
inevitably be affected by the surrounding environmental noises. It is very natural to con-
sider the stochastic ecosystems with the continuous-time Markovian chains r(t) (t ≥ 0),
which take values in a finite state space S = {1, 2, . . . , m}. Let the Markovian chain r(t) be
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generated by the generator � = (qij)m×m

P
{

r(t + �t) = j|r(t) = i
}

=

⎧⎨
⎩qij�t + o(�t), if i �= j,

1 + qij�t + o(�t), if i = j,
(2)

where �t > 0, and qij ≥ 0 is the transition rate from state i to state j if i �= j; while qii =
–

∑
j �=i qij.

In this paper, we modify model (1) further and propose a more general nonautonomous
Lotka–Volterra model with Markovian switching

dxi(t)
dt

= xi(t)

(
bi

(
r(t)

)
+

n∑
j=1

aij
(
r(t)

)
xj(t) +

n∑
j=1

bij
(
r(t)

)
xj(t – τij)

+
n∑

j=1

cij
(
r(t)

)∫ t

–∞
kij(t – s)xj(s) ds

)
, t ≥ 0, (3)

where i = 1, 2, . . . , n and r(t) ∈ S. Assuming that initially, r(t) = k ∈ S, then (3) obeys the
following differential equation:

dxi(t)
dt

= xi(t)

(
bi(k) +

n∑
j=1

aij(k)xj(t) +
n∑

j=1

bij(k)xj(t – τij)

+
n∑

j=1

cij(k)
∫ t

–∞
kij(t – s)xj(s) ds

)
, (4)

until r(t) jumps to another state, say l ∈ S, thus (3) follows the differential equation with
state l before r(t) jumps to a new state, that is

dxi(t)
dt

= xi(t)

(
bi(l) +

n∑
j=1

aij(l)xj(t) +
n∑

j=1

bij(l)xj(t – τij)

+
n∑

j=1

cij(l)
∫ t

–∞
kij(t – s)xj(s) ds

)
. (5)

Now, we consider the perturbations of intrinsic growth rates and interacting rates be-
tween species, that is to say, bi(ς ) and aij(ς ), bij(ς ), cij(ς ) will be disturbed by the white
noises in the form of

bi(ς ) → bi(ς ) + σi(ς )Ḃi(t), aij(ς ) → aij(ς ) + αij(ς )Ḃi(t), (6)

bij(ς ) → bij(ς ) + βij(ς )Ḃi(t), cij(ς ) → cij(ς ) + γij(ς )Ḃi(t), (7)

where Ḃi(t) are the white noises and σi(ς ) represent the intensities of the white noises in
regime ς ∈ S for i = 1, 2, . . . , n. Next, we are about to investigate the dynamical properties
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of the following stochastic Lotka–Volterra model under Markovian switching:

dxi(t) = xi(t)

(
bi

(
r(t)

)
+

n∑
j=1

aij
(
r(t)

)
xj(t) +

n∑
j=1

bij
(
r(t)

)
xj(t – τij)

+
n∑

j=1

cij
(
r(t)

)∫ t

–∞
kij(t – s)xj(s) ds

)
dt

+ xi(t)

(
σi

(
r(t)

)
+

n∑
j=1

αij
(
r(t)

)
xj(t) +

n∑
j=1

βij
(
r(t)

)
xj(t – τij)

+
n∑

j=1

γij
(
r(t)

)∫ t

–∞
kij(t – s)xj(s) ds

)
dBi(t), i = 1, 2, . . . , n. (8)

The initial conditions of model (8) are supposed to be given as follows:

(H1) xi(θ ) = ϕi(θ ) > 0, sup
–∞<θ≤0

∣∣ϕi(θ )
∣∣ < ∞, (9)

(H2) λ > 0,
∫ ∞

0
kij(s)eλs ds = k̄ij < ∞, (10)

where ϕi (i = 1, 2, . . . , n) are the continuous functions which are defined on the interval
(–∞, 0] with its Euclidian norm, and kij(s) denotes the weight function with the property∫ ∞

0 kij(s) ds ≤ 1.
If σi(r) = βij(r) = γij(r) = 0, then model (8) turns to be a stochastic Lotka–Volterra model

with infinite delay, where the stochastically ultimate boundedness and pth (0 < p ≤ 2) mo-
ment in time average of the solution were considered by Wan and Zhou [20]. If bij(r) =
cij(r) = 0, σi(r) = βij(r) = γij(r) = 0, model (8) becomes a stochastic Lotka–Volterra model
with Markovian switching, where the sufficient conditions of the stochastic permanence
and extinction were presented by Liu et al. [16]. If bij(r) = cij(r) = 0, αi(r) = βij(r) = γij(r) = 0,
Wu et al. [13] discussed the ergodic property of a positive recurrence. Besides, we prefer
to mention the related work herewith. For example, Hu and Wang [17] investigated the
asymptotic stability in distribution and stochastic boundedness of the solution. Liu and
Shen [18] showed the persistence in the mean, extinction, partial permanence, and partial
extinction. In addition, Zhu and Yin [19] derived the stochastic boundedness and positive
recurrence of the solution.

The framework of this paper will go as follows. We will show that the existence and
uniqueness of the positive global solution always holds with probability one for any pos-
itive initial value in the next section. Later, the stochastically ultimate boundedness will
be derived when constructing a proper function therewith. Consequently, the moment
estimation of the solution will be investigated for the stochastic Lotka–Volterra model (8)
with Markovian chains in this paper.

2 Existence and uniqueness of global solution
To proceed with our main results in this section, we denote R+ := [0,∞), and we will show
that model (8) admits a unique and global solution and the solution will remain in R

n
+

almost surely.
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Theorem 2.1 For any bi(r(t)), aij(r(t)), bij(r(t)), cij(r(t)) ∈R+ (i, j = 1, 2, . . . , n), model (8) ad-
mits a unique solution x(t), and the solution remains in R

n
+ with probability one.

Proof According to Theorem 3.1 in [27], the coefficients of model (8) clearly satisfy the
local Lipschitz condition, but do not satisfy the linear growth condition. To show that the
solution of model (8) is a global solution, we only need to prove that the explosion time
τe = ∞ holds almost surely. Let m0 > 1 be sufficiently large such that

1
m0

≤ min
t≥0

∣∣x(t)
∣∣ ≤ max

t≥0

∣∣x(t)
∣∣ ≤ m0, (11)

where x(t) = (x1(t), x2(t), . . . , xn(t))T. We define the stopping time

τm = inf

{
t ∈ [0, τe) : xi(t) /∈

(
1
m

, m
)

, for some i = 1, 2, . . . , n
}

, m ≥ m0. (12)

As usual, ∅ denotes the empty set, we set inf∅ = ∞. Clearly, τm increases when m tends to
infinity. We set

τ∞ = lim
m→∞ τm, (13)

thus τ∞ ≤ τe by the definition of stopping time. Now, we define two C2-functions in order
to check that τ∞ = ∞ almost surely:

V1
(
x(t)

)
=

n∑
i=1

(
x0.5

i (t) – 1 – 0.5 ln xi(t)
)
, (14)

V2
(
x(t)

)
=

n∑
i=1

n∑
j=1

(
1

2n

∫ t

t–τij

x2
j (s) ds +

1
2n

∫ ∞

0
kij(s)

∫ t

t–s
x2

j (u) du ds

+
|β(r(τk))|2

4(1 – l1)(1 – l2)l3

∫ t

t–τij

x2
j (s) ds

+
|γ (r(τk))|2

4(1 – l1)(1 – l2)(1 – l3)

∫ ∞

0
kij(s)

∫ t

t–s
x2

j (u) du ds
)

, (15)

where 0 < li < 1 (i = 1, 2, 3), and |σ (r(τk))| means the norm of vector (σ1(r(τk)), . . . ,
σn(r(τk))), |β(r(τk))| denotes the norm of the matrix (bij(r(τk)))n×n, so the same to norms
|α(r(τk))| and |γ (r(τk))|. For the sake of simplicity, model (8) could be rewritten in the
following form:

dxi(t) = xi(t)fi(t) dt + xi(t)gi(t) dBi(t), i = 1, 2, . . . , n. (16)

We define the same differential operator L associated with equation (8) by

L =
∂

∂t
+

n∑
i=1

xi(t)fi(t)
∂

∂xi(t)
+

1
2

n∑
i=1

x2
i (t)g2

i (t)
∂2

∂x2
i (t)

, (17)
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then the differential operator L acts on V1(x(t)), generalized Itô’s formula gives

dV1
(
x(t)

)
= 0.5

n∑
i=1

(
x0.5

i (t) – 1
)
fi(t) dt + 0.25

n∑
i=1

(
–0.5x0.5

i (t) + 1
)
g2

i (t) dt

+ 0.5
n∑

i=1

(
x0.5

i (t) – 1
)
gi(t) dBi(t). (18)

The elementary inequality ab ≤ n
4 a2 + 1

n b2 (a > 0, b > 0) gives that

n∑
i=1

(
x0.5

i (t) – 1
)
fi(t)

=
n∑

i=1

(
x0.5

i (t) – 1
)(

bi
(
r(τk)

)
+

n∑
j=1

aij
(
r(τk)

)
xj(t)

+
n∑

j=1

bij
(
r(τk)

)
xj(t – τij) +

n∑
j=1

cij
(
r(τk)

)∫ ∞

0
kij(s)xj(t – s) ds

)

≤
n∑

i=1

(
x0.5

i (t) – 1
)
bi

(
r(τk)

)
+

n∑
i=1

n∑
j=1

[
0.25n

(
x0.5

i (t) – 1
)2(a2

ij
(
r(τk)

)

+ b2
ij
(
r(τk)

)
+ c2

ij
(
r(τk)

))
+

1
n

x2
j (t) +

1
n

x2
j (t – τij)

+
1
n

(∫ ∞

0
kij(s)xj(t – s) ds

)2]
. (19)

The inequalities (u + v)2 ≤ u2

li
+ v2

1–li
for 0 < li < 1 and (

∑n
i=1 aibi)2 ≤ ∑n

i=1 a2
i
∑n

i=1 b2
i yield

that

g2
i (t) ≤ 1

l1
σ 2

i
(
r(τk)

)
+

1
l2(1 – l1)

n∑
j=1

α2
ij
(
r(τk)

) n∑
j=1

x2
j (t)

+
1

l3(1 – l1)(1 – l2)

n∑
j=1

β2
ij
(
r(τk)

) n∑
j=1

x2
j (t – τij)

+
1

(1 – l1)(1 – l2)(1 – l3)

n∑
j=1

γ 2
ij
(
r(τk)

) n∑
j=1

(∫ ∞

0
kij(s)xj(t – s) ds

)2

, (20)

which implies that

n∑
i=1

(
–0.5x0.5

i (t) + 1
)
g2

i (t)

<
n∑

i=1

g2
i (t)

≤
n∑

i=1

σ 2
i (r(τk))

l1
+

n∑
i=1

( n∑
j=1

α2
ij(r(τk))

l2(1 – l1)

n∑
j=1

x2
j (t)

)
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+
n∑

i=1

( n∑
j=1

β2
ij(r(τk))

(1 – l1)(1 – l2)l3

n∑
j=1

x2
j (t – τij)

)

+
n∑

i=1

[ n∑
j=1

γ 2
ij (r(τk))

(1 – l1)(1 – l2)(1 – l3)

n∑
j=1

(∫ ∞

0
kij(s)xj(t – s) ds

)2
]

≤ |σ (r(τk))|2
l1

+
|α(r(τk))|2
(1 – l1)l2

∣∣x(t)
∣∣2 +

|β(r(τk))|2
(1 – l1)(1 – l2)l3

n∑
i=1

n∑
j=1

x2
j (t – τij)

+
|γ (r(τk))|2

(1 – l1)(1 – l2)(1 – l3)

n∑
i=1

n∑
j=1

(∫ ∞

0
kij(s)xj(t – s) ds

)2

. (21)

By a similar argument, we derive that

dV2
(
x(t)

)
=

[
–

1
2n

n∑
i=1

n∑
j=1

x2
j (t – τij) +

1
2n

n∑
i=1

n∑
j=1

∫ ∞

0
kij(s)

(
x2

j (t) – x2
j (t – s)

)
ds

+ 0.5
∣∣x(t)

∣∣2 +
|β(r(τk))|2

4(1 – l1)(1 – l2)l3

n∑
i=1

n∑
j=1

(
x2

j (t) – x2
j (t – τij)

)

+
|γ (r(τk))|2

4(1 – l1)(1 – l2)l3

n∑
i=1

n∑
j=1

∫ ∞

0
kij(s)

(
x2

j (t) – x2
j (t – τij)

)
ds

]
dt, (22)

where

(∫ ∞

0
kij(s)xj(t – s) ds

)2

≤
∫ ∞

0

(√
kij(s)

)2 ds ·
∫ ∞

0

(√
kij(s)xj(t – s)

)2 ds

≤
∫ ∞

0
kij(s)x2

j (t – s) ds, (23)

together with expressions (18), (22), and (23), which gives that

d
(
V1

(
x(t)

)
+ V2

(
x(t)

))
≤

(
0.5

n∑
i=1

(
x0.5

i (t) – 1
)
bi

(
r(τk)

)
+ 0.125

n∑
i=1

n∑
j=1

n
(
x0.5

i (t) – 1
)2[a2

ij
(
r(τk)

)

+ b2
ij
(
r(τk)

)
+ c2

ij
(
r(τk)

)]
+ 1.5

∣∣x(t)
∣∣2 +

1
4l1

∣∣σ (
r(τk)

)∣∣2

+
1

4l2(1 – l1)
∣∣α(

r(τk)
)∣∣2∣∣x(t)

∣∣2 +
n

4l3(1 – l1)(1 – l2)
∣∣β(

r(τk)
)∣∣2∣∣x(t)

∣∣2

+
n

4(1 – l1)(1 – l2)(1 – l3)
∣∣γ (

r(τk)
)∣∣2∣∣x(t)

∣∣2
)

dt

+ 0.5
n∑

i=1

(
x0.5

i (t) – 1
)
gi(t) dBi(t)

:= F
(
x(t)

)
dt + 0.5

n∑
i=1

(
x0.5

i (t) – 1
)
gi(t) dBi(t), (24)
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where F(x(t)) is a bounded constant due to the boundedness of all x(t) lying within the
interval ( 1

m , m), that is,

sup
1
m <x(t)<m

F
(
x(t)

) ≤ F̂ < ∞. (25)

Inequality (24) thus becomes

d
(
V1

(
x(t)

)
+ V2

(
x(t)

)) ≤ F̂ dt + 0.5
n∑

i=1

(
x0.5

i (t) – 1
)
gi(t) dBi(t). (26)

Integrating both sides of (26) from 0 to τm ∧ T and taking expectations imply that

EV1
(
x(τm ∧ T)

)
< E

[
V1

(
x(τm ∧ T)

)
+ V2

(
x(τm ∧ T)

)]
≤ V1

(
x(0)

)
+ V2

(
x(0)

)
+ F̂T , (27)

where T is an arbitrary positive constant. For every w ∈ �m = {τm ≤ T}, there exists some
i such that xi(τm, w) equals either m or 1

m , then

V1
(
x(τm ∧ T)

) ≥ min

{√
m – 1 – 0.5 ln m,

√
1
m

– 1 + 0.5 ln m
}

, (28)

which leads to

P{τm ≤ T}min

{√
m – 1 – 0.5 ln m,

√
1
m

– 1 + 0.5 ln m
}

≤ E
[
1�m (ω)V1

(
x(τm ∧ T)

)] ≤ V1
(
x(0)

)
+ V2

(
x(0)

)
+ F̂T , (29)

where 1�m (ω) is the indicator function of �m. We therefore get that

lim
m→∞P{τm ≤ T} = 0, (30)

when m tends to infinity. From the arbitrariness of a positive number T , the following
assertion holds:

P{τ∞ = ∞} = 1. (31)

The proof is complete. �

3 Stochastically ultimate boundedness
The moment estimation of the solution to model (8) will be investigated as the first part
of this section. Then the stochastically ultimate boundedness of the solution follows later
in Theorem 3.2.

Lemma 3.1 If condition (H2) holds, then there exists positive constants p, λ such that

lim sup
t→∞

E
∣∣x(t)

∣∣p ≤ Q̄
λ

n
p
2 , (32)

where Q̄ is a positive constant and 0 < p < 1.
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Proof Let us define a C2-function

V3
(
x(t)

)
=

n∑
i=1

xp
i (t). (33)

For any given λ > 0, applying Itô’s formula to eλtV3(x(t)) and taking expectation, we derive
that

eλt
E

(
V3

(
x(t)

))
= EV3

(
x(0)

)
+ E

∫ t

0
eλs[LV3

(
x(s)

)
+ λV3

(
x(s)

)]
ds, (34)

where

LV3
(
x(t)

)
= p

n∑
i=1

xp
i (t)fi(t) +

p(p – 1)
2

n∑
i=1

xp
i (t)g2

i (t)

≤
n∑

i=1

pxp
i (t)bi

(
r(τk)

)

+
np2

4

n∑
i=1

n∑
j=1

x2p
i (t)

[
a2

ij
(
r(τk)

)
+ b2

ij
(
r(τk)

)
+ c2

ij
(
r(τk)

)]

+
1
n

n∑
i=1

n∑
j=1

(∫ ∞

0
kij(s)xj(t – s) ds

)2

+
∣∣x(t)

∣∣2 +
1
n

n∑
i=1

n∑
j=1

x2
j (t – τij)

–
p(1 – p)

2

n∑
i=1

xp
i (t)

[
σ 2

i
(
r(τk)

)
+ α2

ii
(
r(τk)

)
x2

i + β2
ii
(
r(τk)

)
x2

i (t – τii)

+ γ 2
ii
(
r(τk)

)(∫ ∞

0
kii(s)xi(t – s) ds

)2]
. (35)

Again we define

V4
(
x(t)

)
=

1
n

n∑
i=1

n∑
j=1

∫ t

t–τij

eλ(s+τij)x2
j (s) ds

+
1
n

n∑
i=1

n∑
j=1

∫ ∞

0
kij(s)

∫ t

t–s
eλ(u+s)x2

j (u) du ds, (36)

according to the same argument, we then derive that

dV4
(
x(t)

) ≤
(

eλ(t+τ )∣∣x(t)
∣∣2 –

1
n

n∑
i=1

n∑
j=1

eλtx2
j (t – τij)

+ eλt k̄
∣∣x(t)

∣∣2 –
1
n

n∑
i=1

n∑
j=1

eλt
∫ ∞

0
kij(s)x2

j (t – s) ds

)
dt, (37)

where

τ = max
1≤i,j≤n

τij, k̄ = max
1≤i,j≤n

k̄ij. (38)
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Further, we combine (23), (35), and (37) to get that

d
(
eλtV3

(
x(t)

)
+ V4

(
x(t)

))
= dV4

(
x(t)

)
+ λeλtV3

(
x(t)

)
dt + eλtLV3

(
x(t)

)
dt + eλt

n∑
i=1

pxp
i (t)gi(t) dBi(t)

≤ eλt

{
λV3

(
x(t)

)
+

(
eλτ + k̄ + 1

)∣∣x(t)
∣∣2 +

n∑
i=1

pxp
i (t)bi

(
r(τk)

)

+
np2

4

n∑
i=1

n∑
j=1

x2p
i (t)

[
a2

ij
(
r(τk)

)
+ b2

ij
(
r(τk)

)
+ c2

ij
(
r(τk)

)]

–
p(1 – p)

2

n∑
i=1

xp
i (t)

[
σ 2

i
(
r(τk)

)
+ α2

ii
(
r(τk)

)
x2

i (t)

+ β2
ii
(
r(τk)

)
x2

i (t – τii) + γ 2
ii
(
r(τk)

)
×

(∫ ∞

0
kij(s)xi(t – s) ds

)2]}
dt + eλt

n∑
i=1

pxp
i (t)gi(t) dBi(t)

< eλtQ
(
x(t)

)
dt + eλt

n∑
i=1

pxp
i (t)gi(t) dBi(t), (39)

where the term with p(1 – p) is positive, and the boundedness Q̄ = supx(t)∈Rn
+ Q(x(t)) < ∞

is derived due to the boundedness of x(t) ∈ R
n
+. Integrating both sides of (39) and taking

expectation from 0 to t therefore give

eλt
EV3

(
x(t)

) ≤ V3
(
x(0)

)
+ V4

(
x(0)

)
+ E

∫ t

0
eλsQ

(
x(s)

)
ds

≤ V3
(
x(0)

)
+ V4

(
x(0)

)
+

Q̄eλt

λ
, (40)

which implies that

lim sup
t→∞

EV3
(
x(t)

) ≤ Q̄
λ

. (41)

The inequality |x(t)|2 ≤ n maxi x2
i (t) admits the following inequality:

∣∣x(t)
∣∣p ≤ n

p
2 max

i
xp

i (t) ≤ n
p
2

n∑
i=1

xp
i (t) = n

p
2 V3

(
x(t)

)
, (42)

which yields that

lim sup
t→∞

E
∣∣x(t)

∣∣p ≤ Q̄
λ

n
p
2 . (43)

The proof is complete. �
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Theorem 3.2 If condition (H2) holds, then the following property is valid for any arbitrary
positive constant ε ∈ (0, 1):

lim sup
t→∞

P
{∣∣x(t)

∣∣ ≤ ζ
} ≥ 1 – ε, (44)

that is, the solution x(t) of model (8) is stochastically ultimately bounded.

Proof We take p = 1
2 in (43), then there exists a positive constant Q̄

λ
n 1

4 such that

lim sup
t→∞

E
∣∣x(t)

∣∣ 1
2 ≤ Q̄

λ
n

1
4 . (45)

For any positive constant ε, let

ζ =
Q̄2

λ2ε2 n
1
2 , (46)

the Chebyshev’s inequality gives

lim sup
t→∞

P
{∣∣x(t)

∣∣ ≥ ζ
} ≤ lim sup

t→∞
E|x(t)| 1

2

ζ
1
2

≤ ε, (47)

which yields that

lim sup
t→∞

P
{∣∣x(t)

∣∣ < ζ
} ≥ 1 – ε. (48)

The proof is complete. �

4 Moment estimation of the solution
We are about to discuss other properties of the solution to model (8) in this section, for
instance, the absolute value of the solution will grow slower than time t when t goes to
infinity. Moreover, the pth moment in time average of the solution to model (8) is discussed
in Theorem 4.2.

Theorem 4.1 If condition (H2) holds, then the solution of model (8) has the property that

lim sup
t→∞

ln |x(t)|
ln t

≤ 1 a.s. (49)

Proof In order to prove this theorem, we need to define two C2-functions:

V5
(
x(t)

)
=

n∑
i=1

xi(t), (50)

V6
(
x(t)

)
=

n∑
i=1

n∑
j=1

∣∣bij
(
r(τk)

)∣∣ ∫ t

t–τij

eλ(s+τij)xj(s) ds

+
n∑

i=1

n∑
j=1

∣∣cij
(
r(τk)

)∣∣ ∫ ∞

0
kij(s)

∫ t

t–s
eλ(u+s)xj(u) du ds. (51)
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Generalized Itô’s formula yields

dV5
(
x(t)

)
=

n∑
i=1

xi(t)fi(t) dt +
n∑

i=1

xi(t)gi(t) dBi(t), (52)

dV6
(
x(t)

)
=

( n∑
i=1

n∑
j=1

∣∣bij
(
r(τk)

)∣∣eλ(t+τij)xj(t)

–
n∑

i=1

n∑
j=1

∣∣bij
(
r(τk)

)∣∣eλtxj(t – τij)

+
n∑

i=1

n∑
j=1

∣∣cij
(
r(τk)

)∣∣ ∫ ∞

0
kij(s)eλ(t+s)xj(s) ds

–
n∑

i=1

n∑
j=1

∣∣cij
(
r(τk)

)∣∣ ∫ ∞

0
kij(s)eλtxj(t – s) ds

)
dt. (53)

For any given λ > 0, expressions (52) and (53) imply that

d
(
eλt ln V5

(
x(t)

)
+ V6

(
x(t)

))
= dV6

(
x(t)

)
+ eλt

(
λ ln V5

(
x(t)

)
+

n∑
i=1

xi(t)fi(t)V –1
5

(
x(t)

)
–

|xT(t)g(t)|2
2V 2

5 (x(t))

)
dt

+
eλt|xT(t)g(t)|

V5(x(t))
dB(t). (54)

We denote

M∗(t) =
∫ t

0

eλs|xT(t)g(t)|
V5(x(t))

dB(s), (55)

then the strong law of large numbers (see Theorem 3.4 in [27]) for a local martingale M∗(t)
yields that

lim
t→∞

M∗(t)
t

= 0 a.s. (56)

and

〈
M∗(t), M∗(t)

〉
=

∫ t

0

e2λs|xT(t)g(t)|2
V 2

5 (x(t))
ds. (57)

The exponential martingale inequality (see Theorem 7.4 in [27]) shows that when choos-
ing

T = v, α =
η

eλk , β =
veλk ln k

η
, (58)

and letting v > 1, 0 < η < 1, we get

P

{
sup

0≤t≤v

(
M∗(t) –

η

2eλk

〈
M∗(t), M∗(t)

〉)
>

veλk

η
ln k

}
≤ 1

kv . (59)
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By the Borel–Cantelli lemma, for almost all w ∈ �, there exists a random integer v0 = v0(w)
such that

M∗(t) ≤ η

2eλk

〈
M∗(t), M∗(t)

〉
+

veλk

η
ln k, v ≥ v0(ω). (60)

Therefore, we have

d
(
eλt ln V5

(
x(t)

)
+ V6

(
x(t)

))
≤ eλt

[ n∑
i=1

n∑
j=1

∣∣bij
(
r(τk)

)∣∣eλτij xj(t) –
|xT(t)g(t)|2
2V 2

5 (x(t))

+
n∑

i=1

n∑
j=1

∣∣cij
(
r(τk)

)∣∣ ∫ ∞

0
kij(s)eλsxj(s) ds

+ λ ln V5
(
x(t)

)
+

n∑
i=1

∣∣bi
(
r(τk)

)∣∣ +
n∑

i=1

n∑
j=1

∣∣aij
(
r(τk)

)∣∣xj(t)

]
dt

+
eλt|xT(t)g(t)|

V5(x(t))
dB(t)

≤ eλt
[√

n
∣∣x(t)

∣∣(a + b + c) + λ ln V5
(
x(t)

)
+ b̄ –

|xT(t)g(t)|2
2V 2

5 (x(t))

]
dt

+
eλt|xT(t)g(t)|

V5(x(t))
dB(t), (61)

where

a = max
j

n∑
i=1

∣∣aij
(
r(τk)

)∣∣, b = max
j

n∑
i=1

∣∣bij
(
r(τk)

)∣∣eλτij , (62)

c = max
j

n∑
i=1

∣∣cij
(
r(τk)

)∣∣k̄ij, b̄ =
n∑

i=1

∣∣bi
(
r(τk)

)∣∣. (63)

For all 0 ≤ t ≤ τk ≤ k and k ≥ k0(w), it follows et ≤ ek and V 2
5 (x(t)) ≤ n|x(t)|2, we then get

eλt ln V5
(
x(t)

) ≤ eλt ln V5
(
x(t)

)
+ V6

(
x(t)

)
= ln V5

(
x(0)

)
+ V6

(
x(0)

)
+

∫ t

0
d
(
eλs ln V5

(
x(s)

)
+ V6

(
x(s)

))

≤ C0 +
∫ t

0
eλs[((a + b + c)

√
n + λ ln

√
n
)∣∣x(s)

∣∣ + b̄
]

ds

–
∫ t

0
(1 – η)

eλs|xT(s)g(x(s))|2
2n|x(s)|2 ds +

veλk

η
ln k

≤ C0 +
∫ t

0
eλs[((a + b + c)

√
n + λ ln

√
n
)∣∣x(s)

∣∣ + b̄
]

ds +
veλk

η
ln k

:= C0 +
∫ t

0
eλsU

(
x(s)

)
ds +

veλk

η
ln k

< C0 + C1λ
–1(eλt – 1

)
+

veλk

η
ln k (64)
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due to the boundedness of x in R
n
+. For 0 ≤ k – 1 ≤ t ≤ k and k ≥ k0(w), expression (64)

thus gives

ln V5(x(t))
ln t

≤ C0 + η–1veλk ln k + λ–1C1(eλt – 1)
eλt ln(k – 1)

, (65)

taking superior limit on both sides of (64) as t tends to infinity, which then becomes

lim sup
t→∞

ln V5(x(t))
ln t

≤ veλ

η
a.s. (66)

Letting v → 1, η → 1, and λ → 0 yields

lim sup
t→∞

ln V5(x(t))
ln t

≤ 1 a.s. (67)

Noting that |x(t)|2 ≤ n maxi x2
i (t), which leads to

V 2
5 (x(t))

n
≤ ∣∣x(t)

∣∣2 ≤ nV 2
5
(
x(t)

)
, (68)

then we have that

lim sup
t→∞

ln |x(t)|
ln t

≤ 1 a.s. (69)

The proof is complete. �

Theorem 4.2 If condition (H1) is valid, for any positive constant p, then there exists a
positive constant C such that the following property holds:

lim sup
T→∞

1
T

∫ T

0
E

∣∣x(t)
∣∣p dt ≤ C. (70)

Proof Let

H
(
x(t)

)
= F

(
x(t)

)
+

∣∣x(t)
∣∣p, (71)

where F(x(t)) is the same as in (24). Then there exists a positive constant C such that

sup
x(t)∈Rn

+

H
(
x(t)

) ≤ C. (72)

Integrating both sides of (18) from 0 to T and taking expectation give

V1
(
x(T)

)
+ V2

(
x(T)

)
– V1

(
x(0)

)
– V2

(
x(0)

) ≤
∫ T

0
F
(
x(t)

)
dt, (73)

the relationship |x(t)|p = H(x(t)) – F(x(t)) implies that

∫ T

0
E

∣∣x(t)
∣∣p dt ≤ CT + V1

(
x(0)

)
+ V2

(
x(0)

)
– V1

(
x(T)

)
– V2

(
x(T)

)
. (74)



Lin et al. Advances in Difference Equations  (2018) 2018:155 Page 14 of 15

Letting T → ∞ yields that

lim sup
t→∞

1
T

∫ T

0
E

∣∣x(t)
∣∣p dt ≤ C. (75)

The proof is complete. �

5 Example and conclusion
We take the weight function kij(t) = e–(λ+1)t in (8), then (H2) is always valid because∫ ∞

0 kij(s)eλs ds = 1 < ∞. Therefore the existence and uniqueness of the positive solution
is derived with probability one as time approaches infinity. Moreover, the pth moment
of the solution is controlled by a bounded constant as presented in Lemma 3.1, and the
solution is stochastically ultimately bounded as proved in Theorem 3.2. In addition, the
absolute value of the solution will not explode in a long run, and the pth moment in the
mean always keeps a constant no matter how large the time scale is.
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