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1 Introduction
In this paper, we consider the following nonlinear fractional difference equations:

{
C�αu(t) = f (t + α, u(t + α)), t ∈N1–α , 0 < α < 1,
u(0) = u0,

(1.1)

where C�α is a Caputo-like fractional difference operator, f : [0,∞) × R → R is a given
continuous function and N1–α = {1 – α, 2 – α, . . .}.

Fractional differential operators appear naturally in modeling many phenomena in var-
ious fields of engineering, physics and economics, for example, nonlinear oscillations of
earthquakes, seepage flow in porous media and dynamic traffic flow model. For details,
we refer the reader to the monographs by Kilbas et al. [1], Diethelm [2], Zhou [3, 4], and
to [5–12]. The theory of fractional difference equations has been rapidly developed in re-
cent years (see [13–17]). It can elegantly describe certain behaviors in discrete fractional
calculus or generalized difference equations. There are several definitions of fractional
sum/difference operators proposed by many mathematicians such as Gray and Zhang [18],
Atici and Eloe [19], Abdeljawad [20]. Goodrich [21] studied existence of positive solu-
tions for fractional difference equations with initial-boundary data, Chen et al. [22–24]
obtained some asymptotic stability results for some nonlinear fractional difference equa-
tions. However, to the best of our knowledge, fractional difference equations have not yet
been investigated with the aid of topological degree methods.

In this paper, we show existence of solutions for nonlinear fractional difference equa-
tions by applying a fixed point theorem due to Isaia [25], which was obtained via coinci-
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dence degree theory for condensing maps. The rest of the article is organized as follows.
In Sect. 2, we introduce some important notions about fractional difference operators and
topological degree theory, while Sect. 3 contains our main existence results for Eq. (1.1).

2 Preliminaries
For real numbers a and for α ∈ (0, 1), we denote Na = {a, a + 1, . . .}, Na+α = {a + α,
a + α + 1, . . .} and N1 = N. The forward Euler difference operator � is defined by �u(t) :=
u(t + 1) – u(t), t ∈Na.

Definition 2.1 ([19]) Let α > 0 be given. The fractional sum of order α is defined as

�–αu(t) =
1

�(α)

t–α∑
s=a

(t – s – 1)(α–1)u(s), (2.1)

where u is given for s = a mod (1), �–αu(t) is defined for t = (a +α) mod (1), and the falling
factorial function is

t(α) =
�(t + 1)

�(t + 1 – α)
.

The fractional sum �–α maps functions defined on Na to the functions defined on Na+α .

Definition 2.2 Let μ > 0 be such that m – 1 < μ < m, where m denotes a positive integer
and m = �μ�, �·� ceiling of number. Set ν = m – μ. The Caputo-like fractional difference
operator of order α > 0 is defined by

C�μu(t) := �–ν
(
�mu(t)

)
=

1
�(μ)

t–ν∑
s=a

(t – s – 1)(ν–1)�mu(s), t ∈Na+ν ,

where �m is the mth order forward difference operator. The fractional Caputo-like differ-
ence operator C�μ maps functions defined on Na to the functions defined on Na+m–μ.

Theorem 2.1 Let u be a real value function defined on Na and μ,ν > 0. Then

�–μ
(
�–νu(t)

)
= �–(μ+ν)u(t) = �–ν

(
�–μu(t)

)
.

Lemma 2.1 ([24]) Let 0 < μ < 1. Then

u(t) = u(0) +
1

�(μ)

t–μ∑
s=1–μ

(t – s – 1)(μ–1)C�μu(s), for t ∈N, (2.2)

where u is defined on N0 and C�μ is defined on N1–μ.

Lemma 2.2 ([13]) Assume that μ + ν + 1 is not a nonpositive integer with μ �= –1. Then

�–νt(μ) =
�(μ + 1)

�(μ + ν + 1)
t(μ+ν).
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Definition 2.3 Let � ⊂ X and F : � → X be a continuous bounded map. We say that F is
σ -Lipschitz if there exists κ ≥ 0 such that

σ
(
F(B)

) ≤ κσ (B), for any bounded B ⊂ �.

In case κ < 1, we call F a strict σ -contraction. We say that F is σ -condensing if σ (F(B)) <
σ (B) for any bounded B ⊂ � with σ (B) > 0. In other words, σ (F(B)) ≥ σ (B) implies
σ (B) = 0. The aforementioned σ is the Kuratowski measure of noncompactness.

Proposition 2.1 If F : � → X is compact, then F is σ -Lipschitz with constant κ = 0.

Let

T =
{

(I – F ,�, y) : � ⊂ X open and bounded, F ∈ Cσ (�), y ∈ X \ (I – F)(∂�)
}

be the family of the admissible triplets, where Cσ (�) is defined by the class of all σ -
condensing maps F : � → X.

Theorem 2.2 ([25]) Let F : X → X be σ -condensing and

T =
{

x ∈ X : there exists λ ∈ [0, 1] such that x = λFx
}

.

If T is a bounded set in X, then there exists r > 0 such that T ⊂ Br(0), and for a degree
function D : T → Z,

D
(
I – λF , Br(0), 0

)
= 1, for any λ ∈ [0, 1].

Then F has at least one fixed point and the set of the fixed points of F lies in Br(0).

The space l∞n0 is the set of real sequences defined on the set of positive integers where
any individual sequence is bounded with respect to the usual supremum norm. It is well
known that l∞n0 is a Banach space under the supremum norm.

Definition 2.4 A set � of sequences in l∞n0 is uniformly Cauchy (or equi-Cauchy) if, for
every ε > 0, there exists an integer N such that |x(i) – x(j)| < ε, whenever i, j > N for any
x = {x(n)} in �.

Theorem 2.3 (Discrete Arzela–Ascoli’s theorem) A bounded uniformly Cauchy subset �

of l∞n0 is relatively compact.

Lemma 2.3 ([23]) Assume that β > 1 and γ > 0. Then

(
t(–γ ))β ≤ �(1 + βγ )

�β (1 + γ )
t(–βγ ), for t ∈N.

Lemma 2.4 ([19]) Assume that the falling factorial functions are well defined, then
(i) If 0 < β < 1 and γ > 0, then (t(–γ ))β ≤ t(–βγ );

(ii) t(α+β) = (t – β)(α)t(β).
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Remark 2.1 Obviously, If β = 1 in Lemma 2.3 and β = 1 in Lemma 2.4(i), then the resulting
expressions still hold true.

Lemma 2.5 Assume that the falling factorial functions are well defined. Then

t(β) · t(–α) ≤ t(β–α), for α ≥ 0,β ≥ 0, t > β – 1.

Proof From the definition of falling factorial function t(·), we deduce that t(–α) is non-
increasing for any α ≥ 0, t > –1, that is, t(–α) ≤ (t – β)(–α) for α ≥ 0, β ≥ 0 and t > β – 1.
Indeed, it holds true obviously for α = 0 or β = 0. Then, for α > 0, β > 0 and t > β – 1, we
find that

(t – β)(–α)

t(–α) =
�(t + 1 – β)

�(t + 1 – β + α)
�(t + 1 + α)

�(t + 1)

=
�(t – β + 1)�(t + α + 1)

�(λ(t + α + 1) + (1 – λ)(t – β + 1))�((1 – λ)(t + α + 1) + λ(t – β + 1))
,

where λ = α
β+α

∈ (0, 1). Then, following the log-convexity property of the gamma function,
we have

(t – β)(–α)

t(–α) =
�(t – β + 1)�(t + α + 1)

�(λ(t + α + 1) + (1 – λ)(t – β + 1))�((1 – λ)(t + α + 1) + λ(t – β + 1))

≥ �(t – β + 1)�(t + α + 1)
(�(t + α + 1))λ+1–λ(�(t – β + 1))1–λ+λ

= 1.

Therefore, t(–α) ≤ (t – β)(–α) for α > 0, β > 0 and t > β – 1. By Lemma 2.4(ii), we obtain

t(–α) · t(β) ≤ (t – β)(–α) · t(β) = t(β–α). �

3 Main results
In this section, we study the existence and uniqueness of solutions for nonlinear fractional
difference equations.

Let X := l∞1 be the set of all real sequences {x(t)}∞t=1 with norm

‖x‖ = sup
t∈N

∣∣x(t)
∣∣.

Then X is a Banach space.

Lemma 3.1 Let f be a real-valued function. Then the problem (1.1) has one solution if and
only if u is a solution of the following fractional Taylor difference equations:

u(t) =

{
u0, t = 0,
u0 + 1

�(α)
∑t–α

s=1–α(t – s – 1)(α–1)f (s + α, u(s + α)), t ∈N,
(3.1)

where 0 < α < 1.

Proof The proof is similar to that of [24, Lemma 2.4]. So we omit it. �
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Now, for γ > 0, we define

S =
{

x ∈ X :
∣∣x(t) – x0

∣∣ ≤ t(–γ ), x(0) = x0, for t ∈ N
}

. (3.2)

Clearly the set S consists of nonempty bounded and closed subsets of X.
For any u ∈ S, define an operator P : X → X as follows:

(Pu)(t) =

{
u0, t = 0,
u0 + 1

�(α)
∑t–α

s=1–α(t – s – 1)(α–1)f (s + α, u(s + α)), t ∈N.
(3.3)

Observe that the existence of a solution u for (1.1) is equivalent to that of a fixed point u
in S such that u = Pu holds.

Lemma 3.2 Assume that
(H1) there exist Cf > 0, β ∈ (α, 1), and γ = 1

2 (β – α) such that

Cf �(1 – β)
�(1 + α – β)

≤ 1. (3.4)

If f satisfies

∣∣f (t, u)
∣∣ ≤ Cf t(–β),

then the operator P is continuous and P maps S into S.

Proof Let u ∈ S. Since 0 < α < β , by the non-increasing characteristic of t(–α) for any t ∈N,
it follows by Lemma 2.5 together with a given ε > 0 that there exists n1 ∈N, such that, for
n ∈Nn1 , we have

Cf �(1 – β)
�(1 + α – β)

�(n + α + 1)
�(n + β + 1)

<
ε

2
. (3.5)

By the definition of P, Lemma 2.2, Lemma 2.4(ii), (H1), and inequality (3.4), for t ∈ N, we
find that

∣∣(Pu)(t) – u0
∣∣ =

1
�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

≤ Cf

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(–β)

= Cf �
–α(t + α)(–β)

=
Cf �(1 – β)
�(1 + α – β)

(t + α)(α–β)

=
Cf �(1 – β)
�(1 + α – β)

(t + α + γ )(γ +α–β)(t + α)(–γ )

≤ Cf �(1 – β)
�(1 + α – β)

t(–γ )t(–γ )
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≤ Cf �(1 – β)
�(1 + α – β)

1
�(2 + γ )

t(–γ )

≤ t(–γ ), (3.6)

where we applied the inequality 1 ≤ �(θ ) for θ ≥ 2. Hence PS ⊂ S.
Let {um}∞m=1 be a sequence of S such that um → u as m → ∞. Then, for t ∈Nn1 , by (H1)

and (3.5), we obtain

∣∣(Pum)(t) – (Pu)(t)
∣∣

=

∣∣∣∣∣ 1
�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(f
(
s + α, um(s + α)

)
– f

(
s + α, u(s + α)

))∣∣∣∣∣
≤ 1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, um(s + α)
)∣∣

+
1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

≤ 2Cf
1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(–β)

=
2Cf �(1 – β)
�(1 + α – β)

(t + α)(α–β)

≤ 2Cf �(1 – β)
�(1 + α – β)

(n1 + α)(α–β) < ε.

For t ∈ {1, . . . , n1 – 1}, in view of the continuity of f , we get

∣∣(Pum)(t) – (Pu)(t)
∣∣

≤ 1
�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, um(s + α)
)

– f
(
s + α, u(s + α)

)∣∣

≤ 1
�(α)

t–α∑
s=1–α

(t – s – 1)(α–1) max
s∈[1–α,...,n1–1–α]

∣∣f (s + α, um(s + α)
)

– f
(
s + α, u(s + α)

)∣∣

=
t(α)

�(α + 1)
max

s∈[1–α,...,n1–1–α]

∣∣f (s + α, um(s + α)
)

– f
(
s + α, u(s + α)

)∣∣
≤ (n1 – 1)(α)

�(α + 1)
max

s∈[1–α,...,n1–1–α]

∣∣f (s + α, um(s + α)
)

– f
(
s + α, u(s + α)

)∣∣
→ 0, as m → ∞.

Thus, for t ∈N, it is clear that

∣∣(Pum)(t) – (Pu)(t)
∣∣ → 0, as m → ∞.

Hence P is continuous on S. �

Lemma 3.3 Assume that (H1) holds. Then PS is a compact subset of X.
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Proof From Lemma 3.2, we know that PS is a bounded subset of X. Next, we will show
that P is compact.

Let t1, t2 ∈Nn1 with t2 > t1. From (3.5), we have

∣∣(Pu)(t2) – (Pu)(t1)
∣∣ ≤ 1

�(α)

t2–α∑
s=1–α

(t2 – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

+
1

�(α)

t1–α∑
s=1–α

(t1 – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

≤ Cf �(1 – β)
�(1 + α – β)

(t2 + α)(α–β) +
Cf �(1 – β)
�(1 + α – β)

(t1 + α)(α–β)

< ε.

Hence, for an arbitrary choice of ε, {Pu : u ∈ S} is a uniformly Cauchy subset of X by
Definition 2.4. From Lemma 3.2, we know that {Pu : u ∈ S} is bounded. Thus a direct
application Theorem 2.3 implies that PS is relatively compact. �

Theorem 3.1 Assume that (H1) holds. Then the problem (1.1) has at least one solution
u ∈ S and the set of solutions of (1.1) is bounded in S.

Proof Let P : S → S be the operator defined by (3.3). We know that P is continuous and
bounded by Lemma 3.2. Moreover, by Lemma 3.3, P is compact. Hence, it follows by
Proposition 2.1 that P is a strict σ -contraction with constant zero.

Let us set

S0 =
{

u ∈ S : there exists λ ∈ [0, 1] such that u = λPu
}

and show that S0 is bounded in S. Consider u ∈ S0 and λ ∈ [0, 1] such that u = λPu. Using
(3.6), we find that

‖u‖ = λ‖Pu‖ ≤ ‖u0‖ +
1

�(2 + γ )
, for t ∈N, (3.7)

which implies that S0 is bounded in S. If not, we suppose by contradiction, ρ := ‖u‖ → ∞.
Dividing both sides of (3.7) by ρ , and taking the limit ρ → ∞, we have

1 ≤ lim
ρ→∞

1
ρ

(
‖u0‖ +

1
�(2 + γ )

)
= 0,

which is an obvious contradiction. Consequently, by Theorem 2.2, we deduce that P has
at least one solution u∗ in S. �

Theorem 3.2 Assume that (H1) holds. Furthermore, suppose that
(H2) there exist L > 0 and ξ > α such that

∣∣f (t, y) – f (t, x)
∣∣ ≤ Lt(–ξ )|x – y|, for any x, y ∈ S, for t ∈N0. (3.8)
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Then the problem (1.1) has a unique solution provided that

L�(1 – ξ )
�(1 + α – ξ )

< 1. (3.9)

Proof Let u, v ∈ S be two solutions of (1.1). Then, for t ∈N, applying assumption (H2), we
have

∣∣u(t) – v(t)
∣∣ ≤ 1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, u(s + α)
)

– f
(
s + α, v(s + α)

)∣∣

≤ L
�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(–ξ )‖u – v‖

=
L�(1 – ξ )

�(1 + α – ξ )
(t + α)(α–ξ )‖u – v‖

≤ L�(1 – ξ )
�(1 + α – ξ )

t(α–ξ )‖u – v‖

≤ L�(1 – ξ )
�(1 + α – ξ )

‖u – v‖,

which implies that ‖u – v‖ = 0 by virtue of (3.9). Hence, there exists a unique solution of
(1.1). �

Example 3.1 Let us consider the following fractional difference equations:

{
C�0.2u(t) = 0.5(t+0.2)(–0.5)| sin(u(t+0.2))|

(1+9et+0.2)(1+| sin(u(t+0.2))|) , t ∈N0.8,
u(0) = u0,

(3.10)

where f (t, u) = 0.5t(–0.5)| sin(u(t))|
(1+9et )(1+| sin(u(t))|) for t ∈N0.

Since

∣∣f (t, u)
∣∣ =

∣∣∣∣ 0.5t(–0.5)| sin(u(t))|
(1 + 9et)(1 + | sin(u(t))|)

∣∣∣∣ ≤ 0.5t(–0.5),

and, from the above given data, we find that

0.5�(0.5)
�(0.7)

≈ 0.6827 < 1,

therefore, condition (H1) holds. Thus, by Theorem 3.1, there exists at least one solution
in S. Furthermore,

∣∣f (t, u) – f (t, v)
∣∣ =

∣∣∣∣ 0.5t(–0.5)| sin(u(t))|
(1 + 9et)(1 + | sin(u(t))|) –

0.5t(–0.5)| sin(v(t))|
(1 + 9et)(1 + | sin(v(t))|)

∣∣∣∣
≤ 0.5t(–0.5)

1 + 9et

∣∣∣∣ | sin(u(t))|
1 + | sin(u(t))| –

| sin(v(t))|
1 + | sin(v(t))|

∣∣∣∣
≤ 0.5t(–0.5)

1 + 9et
|| sin(u(t))| – | sin(v(t))||

(1 + | sin(u(t))|)(1 + | sin(v(t))|)
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≤ 0.5t(–0.5)

1 + 9et
| sin(u(t)) – sin(v(t))|

(1 + | sin(u(t))|)(1 + | sin(v(t))|)

≤ t(–0.5)
∣∣∣∣ sin

(
u(t) – v(t)

2

)
cos

(
u(t) + v(t)

2

)∣∣∣∣
≤ 0.5t(–0.5)‖u – v‖,

which implies that (H2) holds. With the given data, we also find that the inequality (3.9)
holds. Thus the problem (3.10) admits a unique solution.

Theorem 3.3 Let 1
1–α

< q. Assume that
(H3) there exist C′

f > 0, η ∈ (0, q(1 – α) – 1) and γ ∈ ( η+α

q–1 , 1+η

q ) such that

C′
f �(1 + γ q)�(1 + η – γ q)

�q(1 + γ )�(1 + α + η – γ q)
≤ 1. (3.11)

If f satisfies

∣∣f (t, u)
∣∣ ≤ C′

f t(η)∣∣u(t)
∣∣q,

then the problem (1.1) has at least one solution u ∈ S and the set of solutions of
(1.1) is bounded in S.

Proof From the definition of P, by the non-increasing characteristic of t(–α) for any t ∈N,
together with (H3), Lemma 2.3, Lemma 2.4(ii) and Lemma 2.5, for any u ∈ S, we have

∣∣(Pu)(t) – u0
∣∣ ≤ 1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

≤ C′
f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(η)∣∣u(s + α)
∣∣q

≤ C′
f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(η)((s + α)(–γ ))q

≤ C′
f �(1 + γ q)

�q(1 + γ )�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(η)(s + α)(–γ q)

≤ C′
f �(1 + γ q)

�q(1 + γ )�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(η–γ q)

=
C′

f �(1 + γ q)
�q(1 + γ )

�(1 + η – γ q)
�(1 + α + η – γ q)

(t + α)(α+η–γ q)

≤ C′
f �(1 + γ q)
�q(1 + γ )

�(1 + η – γ q)
�(1 + α + η – γ q)

t(α+η+γ (1–q))t(–γ )

≤ C′
f �(1 + γ q)
�q(1 + γ )

�(1 + η – γ q)
�(1 + α + η – γ q)

1
�(2 – α – η – γ (1 – q))

t(–γ )

≤ t(–γ ).

This shows that PS ⊂ S.
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The remaining proof concerning continuity of P is similar to that of Lemma 3.2. Conse-
quently, PS is compact by Lemma 3.3 and hence there exists at least one solution for the
problem (1.1) by Theorem 3.1. �

Corollary 3.1 Assume that η = 0 in (H3) and that
(H3)′ there exist C′

f > 0, q > 1, and γ ∈ ( α
q–1 , 1

q ) such that

∣∣f (t, u)
∣∣ ≤ C′

f
∣∣u(t)

∣∣q.

Then the problem (1.1) has at least one solution u ∈ S and the set of solutions of (1.1) is
bounded in S provided with (3.11) holds.

Example 3.2 Consider the following fractional difference equations:

{
C�0.2u(t) = 0.5u2(t + 0.2), t ∈ N0.8,
u(0) = 0,

where f (t, u) = 0.5u2(t) for t ∈N0.

Since |f (t, u)| ≤ 0.5|u(t)|2, the condition (H3)′ holds for γ = 0.25. In consequence, there
exists at least one solution for the given problem in S by Corollary 3.1.

Remark 3.1 Replacing the condition q > 1 of (H3) by 0 < q ≤ 1, we observe that there does
not exist any solution for the problem (1.1). However, with suitable conditions on f , we
may have existence results for the problem (1.1).

Theorem 3.4 Let 0 < q ≤ 1. Assume that
(H4) there exist C′′

f > 0, σ ∈ [1 + (α – 1)q, 1) and γ ∈ (0, 1–σ
q ), such that

C′′
f �(1 – σ – γ q)

�(1 + α – σ – γ q)
≤ 1. (3.12)

If f satisfies

∣∣f (t, u)
∣∣ ≤ C′′

f (t + 1)(–σ )∣∣u(t)
∣∣q,

then the problem (1.1) has at least one solution u ∈ S and the set of solutions of
(1.1) is bounded in S.

Proof By definition of P, the non-increasing characteristic of t(–α) for any t ∈ N, together
with (H4), Lemma 2.4 and Lemma 2.5, for any u ∈ S, we have

∣∣(Pu)(t) – u0
∣∣ ≤ 1

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)∣∣f (s + α, u(s + α)
)∣∣

≤ C′′
f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α + 1)(–σ )∣∣u(s + α)
∣∣q
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≤ C′′
f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α + γ q)(–σ )((s + α)(–γ ))q

≤ C′′
f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α + γ q)(–σ )(s + α)(–γ q)

=
C′′

f

�(α)

t–α∑
s=1–α

(t – s – 1)(α–1)(s + α)(–σ–γ q)

=
C′′

f �(1 – σ – γ q)
�(1 + α – σ – γ q)

(t + α)(α–σ–γ q)

≤ C′′
f �(1 – σ – γ q)

�(1 + α – σ – γ q)
t(α–σ+γ (1–q))t(–γ )

≤ C′′
f �(1 – σ – γ q)

�(1 + α – σ – γ q)
1

�(2 – α + σ – γ (1 – q))
t(–γ )

≤ t(–γ ),

then PS ⊂ S. The remaining proof (concerning the continuity of P) is similar to that of
Lemma 3.2. Therefore PS is compact by Lemma 3.3 and hence there exists at least one
solution for the problem (1.1) by Theorem 3.1. �

Similarly, we can have another existence result for the problem (1.1) by changing the
condition on σ in Theorem 3.4.

Theorem 3.5 Let 0 < q < 1. Assume that
(H4)′ there exist C′′

f > 0, σ ∈ (α, 1 + (α – 1)q) and γ ∈ (0, σ–α
1–q ), such that

∣∣f (t, u)
∣∣ ≤ C′′

f (t + 1)(–σ )∣∣u(t)
∣∣q.

Then the problem (1.1) has at least one solution u ∈ S and the set of solutions of (1.1) is
bounded in S provided with (3.12).

Example 3.3 Consider the following fractional difference equations:

{
C�0.4u(t) = 0.15(t + 1.4)(–0.8)| sin(u(t + 0.4))|0.5, t ∈N0.6,
u(0) = u0,

where f (t, u) = 0.15(t + 1)(–0.8)| sin(u(t))|0.5 for t ∈N0.

Since |f (t, u)| = 0.15(t + 1)(–0.8)| sin(u(t))|0.5 ≤ 0.15(t + 1)(–0.8)|u(t)|0.5, the condition (H4)
holds for γ = 0.2. Thus there exists at least one solution for the given problem in S by
Theorem 3.4.
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